JP2002367434A - Corrosion resistant metal member and metal separator for fuel cell using the member - Google Patents

Corrosion resistant metal member and metal separator for fuel cell using the member

Info

Publication number
JP2002367434A
JP2002367434A JP2001173920A JP2001173920A JP2002367434A JP 2002367434 A JP2002367434 A JP 2002367434A JP 2001173920 A JP2001173920 A JP 2001173920A JP 2001173920 A JP2001173920 A JP 2001173920A JP 2002367434 A JP2002367434 A JP 2002367434A
Authority
JP
Japan
Prior art keywords
metal
base material
film layer
thin film
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001173920A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Hiroaki Yoshida
広明 吉田
Yoshitake Suzuki
良剛 鈴木
Masaki Shinkawa
雅樹 新川
Yasushi Kaneda
安司 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001173920A priority Critical patent/JP2002367434A/en
Priority to CA2373344A priority patent/CA2373344C/en
Priority to EP02004655A priority patent/EP1237215A3/en
Priority to US10/084,434 priority patent/US6699593B2/en
Publication of JP2002367434A publication Critical patent/JP2002367434A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion resistant metal member having high corrosion resistance and low contact electrical resistance, and is suitable for mass produc tivity, and a metal separator for a fuel cell, using this member. SOLUTION: This corrosion resistant metal member 1 is composed of a metal base material 2, and a thin-film layer 6 of Au (noble metal) for covering the obverse and reverse 4 and 5 of such a metal base material 2, and is 50% or less in a peel off quantity (the area ratio) of a tape 8 in a peeling test after a corrosion test on adhesive strength of the metal base material 2 and the thin film layer 8 of the Au. This metal separator 10 for the fuel cell is obtained by molding this member into a recess-projection shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性金属部材お
よびこれを用いた燃料電池用金属セパレータに関する。
The present invention relates to a corrosion-resistant metal member and a metal separator for a fuel cell using the same.

【0002】[0002]

【従来の技術】一般に、耐食性を要する用途には、ステ
ンレス鋼、Ni基合金、あるいはTi合金などの素材を
そのまま用いるか、鋼またはステンレス鋼の表面にC
u,Cr,Ni,Au,Agなどをメッキにより被覆し
た金属部材が用いられている。一方、固体高分子形燃料
電池に用いるセパレータは、単位電池の電極と隣接する
単位電池の電極とが接触して電気的に導通し且つ反応ガ
スを分離するため、高い導電性および反応ガスに対する
高い気密性が求められると共に、水素/酸素を酸化また
は還元する反応に際し、高い耐食性が求められている。
2. Description of the Related Art Generally, for applications requiring corrosion resistance, a material such as stainless steel, a Ni-based alloy, or a Ti alloy may be used as it is, or the surface of steel or stainless steel may be coated with carbon.
Metal members coated with u, Cr, Ni, Au, Ag, and the like by plating are used. On the other hand, the separator used for the polymer electrolyte fuel cell has a high conductivity and a high resistance to the reaction gas because the electrode of the unit cell and the electrode of the adjacent unit cell come into contact and electrically conduct and separate the reaction gas. Airtightness is required, and high corrosion resistance is required for the reaction of oxidizing or reducing hydrogen / oxygen.

【0003】従来、上記燃料電池用セパレータとして
は、黒鉛などからなるカーボン板を切削加工して、その
表面に燃料ガスまたは酸化性ガスを流す複数の凹溝を形
成したものの適用が検討されていた。しかし、係るカー
ボン板では、素材コストおよび加工コストが嵩むため、
実用的ではない、という問題があった。また、ステンレ
ス鋼板をプレス加工して複数の凹溝を形成し、係る凹溝
を含む表面に約0.01μmの薄いNiメッキ膜または
Auメッキ膜を被覆した燃料電池用金属セパレータも提
案されている(特開平10−228914号公報参照)。
Hitherto, as the above-mentioned fuel cell separator, application of a separator formed by cutting a carbon plate made of graphite or the like and forming a plurality of grooves for flowing a fuel gas or an oxidizing gas on the surface thereof has been studied. . However, in such a carbon plate, material costs and processing costs increase,
There was a problem that it was not practical. Also, a metal separator for a fuel cell in which a plurality of grooves are formed by pressing a stainless steel plate and a surface including the grooves is coated with a thin Ni plating film or Au plating film of about 0.01 μm has been proposed. (See JP-A-10-228914).

【0004】[0004]

【発明が解決すべき課題】しかしながら、従来のよう
に、予め複数の凹溝を形成した表面に、後から金属メッ
キ膜を形成した場合、メッキ膜とステンレス鋼との間に
隙間が生じたり、凹溝の開口部におけるエッジ(コーナ
ー)部分でメッキ膜が薄くなり過ぎることがある。しか
も、上記メッキ膜は、ポーラスな組織であるため、ステ
ンレス鋼との密着性が低く且つメッキ膜中に含まれるピ
ンホールやポアを通じてステンレス鋼が腐食する、とい
う問題もあった。本発明は、以上に説明した従来の技術
における問題点を解決し、高耐食性および低電気抵抗性
を備えると共に、量産性にも適した耐食性金属部材およ
びこれを用いた燃料電池用金属セパレータを提供するこ
とを課題とする。
However, when a metal plating film is later formed on a surface on which a plurality of grooves are formed in advance as in the prior art, a gap may be formed between the plating film and stainless steel, The plating film may be too thin at the edge (corner) at the opening of the concave groove. In addition, since the plating film has a porous structure, there is a problem that the adhesion to the stainless steel is low and the stainless steel is corroded through pinholes and pores contained in the plating film. The present invention solves the above-described problems in the conventional technology, and provides a corrosion-resistant metal member having high corrosion resistance and low electric resistance and suitable for mass production, and a metal separator for a fuel cell using the same. The task is to

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するため、任意の素材からなる金属ベース材の表面に
貴金属の薄膜層を緻密な組織で且つ高い密着力を保持し
て被覆する、ことに着想して成されたものである。即
ち、本発明の耐食性金属部材(請求項1)は、金属ベース
材と、係る金属ベース材の表面および裏面の少なくとも
一方に被覆した貴金属の薄膜層とからなり、上記金属ベ
ース材と貴金属の薄膜層との密着力が、腐食試験後の引
き剥がし試験における剥離量で50%以下である、こと
を特徴とする。これによれば、貴金属の薄膜層は、高い
密着力で金属ベース材の表・裏面に被覆されているた
め、高耐食性および低い接触抵抗を発揮でき、且つ量産
も容易とすることができる。尚、上記剥離量が50%を
越えると密着力が低下して剥離し易くなり、耐食性が劣
化するため、係る範囲を除いたものであり、望ましい剥
離量は、10%以下である。また、上記引き剥がし試験
は、JIS Z 0237に準拠したもので、且つこれに
用いるテープにより剥離された貴金属の薄膜層の面積比
を上記剥離量として示した。更に、上記腐食試験は、p
H2の沸騰硫酸溶液(雰囲気)中に168時間にわたり保
持するものである。但し、係る腐食試験は、上記金属ベ
ース材や貴金属を必ず腐食するために行うものではな
い。
According to the present invention, in order to solve the above-mentioned problems, a thin film layer of a noble metal is coated on the surface of a metal base material made of an arbitrary material with a dense structure and high adhesion. It was made with inspiration. That is, the corrosion-resistant metal member of the present invention (claim 1) comprises a metal base material, and a noble metal thin film layer coated on at least one of the front surface and the back surface of the metal base material. It is characterized in that the adhesion to the layer is 50% or less as a peeling amount in a peeling test after the corrosion test. According to this, since the thin film layer of the noble metal is coated on the front and back surfaces of the metal base material with high adhesion, high corrosion resistance and low contact resistance can be exhibited, and mass production can be facilitated. If the above-mentioned peeling amount exceeds 50%, the adhesive force is reduced and the peeling becomes easy, and the corrosion resistance is deteriorated. Therefore, the above range is excluded, and the preferable peeling amount is 10% or less. The peeling test was based on JIS Z 0237, and the area ratio of the thin film layer of the noble metal peeled by the tape used for the test was shown as the peeling amount. Further, the corrosion test described above
It is kept in a boiling sulfuric acid solution of H2 (atmosphere) for 168 hours. However, such a corrosion test is not performed to inevitably corrode the metal base material and the noble metal.

【0006】また、本発明には、前記貴金属の薄膜層
は、1nm以上で且つ100nm以下の厚みで且つ緻密
な組織である、耐食性金属部材(請求項2)も含まれる。
これによれば、腐食試験を施した状態において行う剥離
試験によっても、貴金属の薄膜層が剥離しにくいので、
従来の耐食性金属部材より薄くしても耐食性が維持され
る。このため、低コストで且つ安定した耐食性を得るこ
とが可能となる。尚、貴金属の薄膜層の厚みが1nm未
満では、耐食性が低下し且つ実用的でなく、一方、10
0nm超では、コスト高になるため、上記の範囲とし
た。望ましい貴金属の薄膜層の厚みは、5nm以上で且
つ50nm以下である。また、上記の緻密な組織とは、
後述する貴金属のメッキ層うなどを圧縮加工することに
より、貴金属の薄膜層が金属ベース材の表・裏面に均一
に付着した金属組織を指す。
The present invention also includes a corrosion-resistant metal member in which the noble metal thin film layer has a dense structure with a thickness of 1 nm or more and 100 nm or less.
According to this, even in a peel test performed in a state where a corrosion test has been performed, the thin film layer of the noble metal is difficult to peel,
Corrosion resistance is maintained even if it is thinner than conventional corrosion-resistant metal members. Therefore, low-cost and stable corrosion resistance can be obtained. If the thickness of the noble metal thin film layer is less than 1 nm, the corrosion resistance is lowered and is not practical.
If it exceeds 0 nm, the cost is high, so the above range is set. Desirable thickness of the noble metal thin film layer is 5 nm or more and 50 nm or less. In addition, the above-mentioned dense organization
A metal structure in which a noble metal thin film layer is uniformly attached to the front and back surfaces of a metal base material by compressing a noble metal plating layer, which will be described later.

【0007】更に、本発明には、前記金属ベース材の表
面および裏面の少なくとも一方に被覆された前記貴金属
の薄膜層は、両者(金属ベース材と貴金属の薄膜層)の合
計厚みを5%以上圧縮する圧縮加工が施されている、耐
食性金属部材(請求項3)も含まれる。これによれば、貴
金属の薄膜層を金属ベース材の表・裏面に高い密着力を
伴い且つピンホールやポアなどがない緻密な組織にして
被覆した耐食性部材を確実に提供することができる。
尚、上記圧縮加工の圧縮率が5%未満では、貴金属の薄
膜層の密着力が不十分になるので、係る範囲を除外した
もので、望ましくは10%以上、より望ましくは30%
以上である。また、上記圧縮加工には、例えば圧延また
はプレスが挙げられ、且つ上記圧延において上記圧縮率
は、圧下率として示される。
Further, according to the present invention, the noble metal thin film layer coated on at least one of the front surface and the back surface of the metal base material has a total thickness of both (metal base material and noble metal thin film layer) of 5% or more. The present invention also includes a corrosion-resistant metal member that has been subjected to compression processing for compression (claim 3). According to this, it is possible to surely provide a corrosion-resistant member in which the thin film layer of the noble metal is coated on the front and back surfaces of the metal base material in a dense structure free from pinholes, pores, and the like.
If the compression ratio of the compression processing is less than 5%, the adhesion of the thin film layer of the noble metal becomes insufficient. Therefore, the above range is excluded, preferably 10% or more, more preferably 30%.
That is all. The compression processing includes, for example, rolling or pressing. In the rolling, the compression ratio is indicated as a rolling reduction.

【0008】また、本発明には、前記貴金属の薄膜層
は、Au,Ag,Pt,Pdの単体、またはこれらの何
れかをベースとする合金、あるいは上記の2種以上から
なる合金を、メッキ、スクリーン印刷、PVD処理、ま
たはCVD処理することにより、前記金属ベース材に被
覆されたものである、耐食性金属部材(請求項4)も含ま
れる。これによれば、上記貴金属の薄膜層を1〜100
nmの厚みで金属ベース材の表・裏面に精度良く被覆す
ることができる。尚、上記PVD処理には、真空蒸着
法、スパッタリング法、またはイオンプレーティング法
などが含まれる。
In the present invention, the thin film layer of the noble metal may be formed by plating Au, Ag, Pt, or Pd alone or an alloy based on any of them, or an alloy comprising two or more of the above. The present invention also includes a corrosion-resistant metal member that is coated on the metal base material by screen printing, PVD processing, or CVD processing. According to this, the thin film layer of the noble metal is 1 to 100
With a thickness of nm, the front and back surfaces of the metal base material can be coated with high accuracy. The PVD treatment includes a vacuum deposition method, a sputtering method, an ion plating method, and the like.

【0009】更に、本発明には、前記金属ベース材は、
Fe,Ni,Ti,Cu,Alの単体、またはこれらの
何れかをベースとする合金からなる、耐食性金属部材
(請求項5)も含まれる。これによれば、上記の任意の素
材からなる金属ベース材に、前記のような極く薄い貴金
属の薄膜層を、高い密着力を伴い且つ緻密な組織にして
被覆した耐食性金属部材となる。このため、各種の高耐
食性および低電気抵抗性を要する用途に応じて、最適コ
ストにより耐食性金属部材が提供可能となる。
Further, according to the present invention, the metal base material includes:
Corrosion-resistant metal member made of a simple substance of Fe, Ni, Ti, Cu, Al, or an alloy based on any of them
(Claim 5) is also included. According to this, the corrosion-resistant metal member is obtained by coating the above-described extremely thin noble metal thin film layer with high adhesion and a dense structure on the metal base material made of any of the above-mentioned materials. Therefore, it is possible to provide a corrosion-resistant metal member at an optimum cost according to various applications requiring high corrosion resistance and low electric resistance.

【0010】一方、本発明の燃料電池用金属セパレータ
(請求項6)は、金属ベース材と、係る金属ベース材の表
面および裏面の少なくとも一方に被覆した貴金属の薄膜
層とからなり、上記金属ベース材と貴金属の薄膜層との
密着力が、腐食試験後の引き剥がし試験における剥離量
で50%以下である、ことを特徴とする。これによれ
ば、貴金属の薄膜層は、高い密着力により金属ベース材
の表・裏面に被覆されているため、高耐食性および低い
接触電気抵抗を併有し、且つ量産性にも適した燃料電池
用金属セパレータとなる。
On the other hand, the metal separator for a fuel cell of the present invention
(Claim 6) comprises a metal base material and a thin film layer of a noble metal coated on at least one of the front and back surfaces of the metal base material, and the adhesion between the metal base material and the thin film layer of the noble metal is reduced by corrosion. The peel amount after the test is 50% or less in the peel test. According to this, since the noble metal thin film layer is coated on the front and back surfaces of the metal base material with high adhesion, the fuel cell has both high corrosion resistance and low contact electric resistance and is suitable for mass production. Metal separator.

【0011】また、本発明には、前記貴金属の薄膜層
は、1nm以上で且つ100nm以下の厚みで且つ緻密
な組織である、燃料電池用金属セパレータ(請求項7)も
含まれる。これによれば、従来に比べて薄く且つ緻密な
組織となるため、低コストで且つ高い耐食性および低い
接触抵抗を有する燃料電池用金属セパレータとなる。更
に、本発明には、前記貴金属の薄膜層が被覆される前記
金属ベース材の表面および裏面の少なくとも一方には、
燃料ガスまたは酸化性ガスを流すための流路が形成され
ている、燃料電池用金属セパレータ(請求項8)も含まれ
る。これによれば、上記流路を含む表・裏面に倣って、
高密着力および高耐食性を伴いつつ貴金属の薄膜層が被
覆されると共に、低い接触抵抗を有しているため、流路
を含む断面凹凸形状の表面を優れた寸法精度にして有す
る実用的な上記セパレータとすることができる。
The present invention also includes a metal separator for a fuel cell, wherein the thin film layer of the noble metal has a dense structure having a thickness of 1 nm or more and 100 nm or less (claim 7). According to this, since the structure becomes thinner and more dense than in the past, a metal separator for a fuel cell having low cost, high corrosion resistance and low contact resistance is obtained. Further, in the present invention, at least one of the front surface and the back surface of the metal base material coated with the thin film layer of the noble metal,
The present invention also includes a metal separator for a fuel cell in which a flow path for flowing a fuel gas or an oxidizing gas is formed. According to this, following the front and back surfaces including the flow path,
The above-mentioned practical separator having a surface with a cross-sectional unevenness including a flow path with excellent dimensional accuracy because the thin film layer of the noble metal is coated with high adhesion and high corrosion resistance and has low contact resistance. It can be.

【0012】また、本発明には、前記金属ベース材およ
びその表面および裏面の少なくとも一方に被覆された前
記貴金属の薄膜層は、両者(金属ベース材と貴金属の薄
膜層)の合計厚みを5%以上圧縮する圧縮加工が施され
ている、燃料電池用金属セパレータ(請求項9)も含まれ
る。これによれば、金属ベース材の表・裏面に、貴金属
の薄膜層を高い密着力と高耐食性とを伴い且つ緻密な組
織にして被覆した上記セパレータとすることができる。
更に、本発明には、前記貴金属の薄膜層は、Au,A
g,Pt,Pdの単体、またはこれらの何れかをベース
とする合金、あるいは上記の2種以上からなる合金を、
メッキ、スクリーン印刷、PVD処理、またはCVD処
理することにより、前記金属ベース材に被覆されたもの
である、燃料電池用金属セパレータ(請求項10)も含ま
れる。これによれば、上記貴金属の薄膜層を1〜100
nmの厚みで金属ベース材の表・裏面に精度良く被覆し
た上記セパレータとし得る。加えて、本発明において
は、前記金属ベース材は、Fe,Ni,Ti,Cu,A
lの単体、またはこれらの何れかをベースとする合金か
らなる、燃料電池用金属セパレータ(請求項11)も含ま
れる。これによれば、任意の素材の金属ベース材の表・
裏面に、前記の極く薄い貴金属の薄膜層を、高い密着力
を伴い且つ緻密な組織にして被覆した比較的低コストの
上記セパレータとすることができる。
Further, according to the present invention, the metal base material and the noble metal thin film layer coated on at least one of the front surface and the back surface thereof have a total thickness of both (the metal base material and the noble metal thin film layer) of 5%. The present invention also includes a metal separator for a fuel cell which has been subjected to a compression process for compressing as described above. According to this, it is possible to obtain the above-described separator in which a thin film layer of a noble metal is coated on the front and back surfaces of the metal base material in a dense structure with high adhesion and high corrosion resistance.
Further, according to the present invention, the thin film layer of the noble metal includes Au, A
g, Pt, Pd alone or an alloy based on any of them, or an alloy composed of two or more of the above,
The present invention also includes a metal separator for a fuel cell, wherein the metal base material is coated by plating, screen printing, PVD processing, or CVD processing. According to this, the thin film layer of the noble metal is 1 to 100
The separator can be obtained by precisely covering the front and back surfaces of the metal base material with a thickness of nm. In addition, in the present invention, the metal base material is Fe, Ni, Ti, Cu, A
Also included is a metal separator for a fuel cell (claim 11), which is composed of a simple substance of 1 or an alloy based on any of them. According to this, the table of metal base material of any material
A relatively low-cost separator can be provided in which the extremely thin noble metal thin film layer is coated on the back surface in a dense structure with high adhesion.

【0013】[0013]

【発明の実施の形態】以下において、本発明の実施に好
適な形態を図面と共に説明する。図1(A)は、本発明の
耐食性金属部材1の断面を示し、図示のように、金属ベ
ース材2と、その表・裏面4,5に被覆した貴金属の薄
膜層6と、を備える。金属ベース材2は、Fe,Ni,
Ti,Cu,Alの単体、またはこれらの何れかをベー
スとする合金(例えば、ステンレス鋼)からなる厚さ約
0.01mm〜数mmの金属板である。また、薄膜層6
は、Au,Ag,Pt,Pdの単体、またはこれらの何
れかをベースとする合金、あるいは上記貴金属の2種以
上からなる合金を、メッキ、スクリーン印刷、PVD処
理(真空蒸着法、スパッタリング法、イオンプレーティ
ング法など)、またはCVD処理することにより、金属
ベース材2の表・裏面4,5に被覆したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1A shows a cross section of the corrosion-resistant metal member 1 of the present invention, and includes a metal base material 2 and a thin film layer 6 of a noble metal coated on front and back surfaces 4 and 5 as shown in the drawing. The metal base material 2 is made of Fe, Ni,
It is a metal plate having a thickness of about 0.01 mm to several mm made of a simple substance of Ti, Cu, or Al, or an alloy (for example, stainless steel) based on any of them. The thin film layer 6
Is a plating, screen printing, PVD treatment (vacuum deposition method, sputtering method, etc.) of Au, Ag, Pt, Pd alone or an alloy based on any of them, or an alloy composed of two or more of the above-mentioned noble metals. The front and back surfaces 4 and 5 of the metal base material 2 are coated by an ion plating method or the like or by a CVD process.

【0014】更に、薄膜層6は、1〜100nmの厚み
で且つ予め5%以上の圧縮加工を受けた緻密な組織を有
すると共に、腐食試験を施した状態での引き剥がし試験
における剥離量が50%以下、好ましくは10%以下と
なる密着力を有している。引き剥がし試験は、JIS
Z 0237に準拠したもので、耐食性部材1をpH2
の沸騰硫酸溶液(雰囲気)中に168時間保持する腐食試
験を施した後で、超純水で洗浄し且つアセトン置換して
乾燥した後、直ちに図1(B)に示すように、薄膜層6の
表面に貼り付けた粘着テープ8を表・裏面4,5に沿っ
て平行に引き剥がして行う。そして、引き剥がした粘着
テープ8に移行した薄膜層6の剥離量(剥離面積の比率)
が50%以下、好ましくは10%以下となるものが望ま
しい。
Further, the thin film layer 6 has a dense structure having a thickness of 1 to 100 nm, which has been subjected to a compression processing of 5% or more in advance, and has a peeling amount of 50 in a peeling test in a state where a corrosion test is performed. %, Preferably 10% or less. The peeling test is JIS
Z 0237-compliant, corrosion resistant member 1 with pH 2
After performing a corrosion test for 168 hours in a boiling sulfuric acid solution (atmosphere), the membrane was washed with ultrapure water, replaced with acetone, and dried, and immediately, as shown in FIG. The adhesive tape 8 stuck on the front surface is peeled off in parallel along the front and back surfaces 4 and 5. Then, the amount of peeling of the thin film layer 6 transferred to the peeled adhesive tape 8 (ratio of the peeling area)
Is desirably 50% or less, preferably 10% or less.

【0015】図1(C)は、本発明の燃料電池用金属セパ
レータ10の要部に示す。係るセパレータ10は、図示
のように、例えばステンレス鋼(SUS304L)製で且
つ前記耐食性金属部材1を後述する方法により、断面が
連続する凹凸形状に成形したものであり、その表面12
と裏面16とに平行な複数の凹溝からなる流路14,1
8およびこれらの間に位置する凸条13,17を有す
る。図1(D)に拡大して示すように、流路14,18を
含む表面12と裏面16とには、1〜100nmの厚み
で且つ予め5%以上の圧縮加工を受けた緻密な組織を有
する前記貴金属の薄膜層6が均一に被覆され、且つ前述
した密着力を備えている。このため、係るセパレータ1
0は、高い耐食性および低い接触電気抵抗を有すると共
に、その表・裏面12,16に形成した複数の流路1
4,18中に沿って燃料ガスまたは酸化性ガスを流すこ
とができる。従って、複数の上記セパレータ10を厚み
方向に沿って、電解質膜などを間に挟みながら積層する
ことにより、高耐食性および低い接触電気抵抗を有する
固体高分子形燃料電池を、低コストで実現することが可
能となる。
FIG. 1C shows a main part of a metal separator 10 for a fuel cell according to the present invention. As shown in the figure, the separator 10 is made of, for example, stainless steel (SUS304L) and is formed by shaping the corrosion-resistant metal member 1 into a concavo-convex shape having a continuous cross section by a method described later.
Flow path 14, 1 comprising a plurality of concave grooves parallel to
8 and ridges 13 and 17 located between them. As shown enlarged in FIG. 1 (D), a dense structure having a thickness of 1 to 100 nm and having been subjected to a compression process of 5% or more in advance is formed on the front surface 12 and the back surface 16 including the flow paths 14 and 18. The thin film layer 6 of the noble metal is uniformly coated and has the above-mentioned adhesion. Therefore, such a separator 1
No. 0 has high corrosion resistance and low contact electric resistance, and has a plurality of flow paths 1 formed on the front and back surfaces 12 and 16 thereof.
A fuel gas or an oxidizing gas can flow along the insides 4 and 18. Therefore, a polymer electrolyte fuel cell having high corrosion resistance and low contact electric resistance can be realized at low cost by laminating the plurality of separators 10 along the thickness direction while sandwiching an electrolyte membrane or the like. Becomes possible.

【0016】図2(A),(B)は、前記耐食性金属部材1
の主な製造工程を示す。先ず、図2(A)に示すように、
例えばステンレス鋼(SUS304L)からなる金属ベー
ス材2の表・裏面4,5に対し、電気メッキを施すこと
により、厚みが約100nm以下の貴金属(例えば、A
u)のメッキ層(薄膜層)6を被覆する。次に、図2(B)
に示すように、メッキ層6,6を有する金属ベース材2
を、一対の平ローラR,Rの間に、全厚さの5%以上の
圧下率(圧縮率)で通過させるクラッド圧延(圧縮加工)を
行う。この結果、ポアなどのない緻密な組織を有し且つ
腐食後における引き剥がし試験の剥離量が50%以下
(好ましくは10%以下)となる密着力を有する貴金属の
薄膜層6,6を、金属ベース材2の表・裏面4,5に被
覆した耐食性金属部材1を得ることができる。尚、上記
圧下率は、望ましくは10%以上、より望ましくは30
%以上で、且つその上限は90%である。また、圧縮加
工には、例えばプレス機またはホットプレスを用いても
良い。
FIGS. 2A and 2B show the corrosion-resistant metal member 1.
The main manufacturing steps are shown below. First, as shown in FIG.
For example, by performing electroplating on the front and back surfaces 4 and 5 of the metal base material 2 made of stainless steel (SUS304L), a noble metal (for example, A
u) of the plating layer (thin film layer) 6. Next, FIG.
As shown in FIG. 1, a metal base material 2 having plating layers 6 and 6
Is carried out between a pair of flat rollers R at a rolling reduction (compression ratio) of 5% or more of the total thickness. As a result, it has a dense structure without pores and the amount of peeling in a peeling test after corrosion is 50% or less.
It is possible to obtain the corrosion-resistant metal member 1 in which the front and back surfaces 4 and 5 of the metal base material 2 are coated with the thin film layers 6 and 6 of a noble metal having an adhesion force (preferably 10% or less). The rolling reduction is preferably 10% or more, more preferably 30%.
% And the upper limit is 90%. Further, for the compression processing, for example, a press machine or a hot press may be used.

【0017】図2(C),(D)は、上記耐食性金属部材1
を波板状の粗成形した後に、仕上げプレス加工して得ら
れた前記図1(C),(D)と同様な燃料電池用金属セパレ
ータ10′を示す。係るセパレータ10′の表・裏面1
2,16の各周縁を除いた位置には、断面ほぼ矩形で且
つ平行な流路14,18が形成されている。図2(D)に
示すように、流路14,18を含む表・裏面12,16
には、1〜100nmの厚みで且つ前記クラッド圧延
(圧縮加工)を受けた緻密な組織を有し、前述した密着力
を備えた貴金属の薄膜層6がほぼ均一に被覆されてい
る。また、図2(E),(F)は、上記耐食性金属部材1を
上記粗成形した後、異なる金型を用いて仕上げプレス加
工して得た燃料電池用金属セパレータ11を示し、その
表・裏面12,16の各周縁を除いた位置には、断面が
ほぼ半円形で且つ平行な複数の流路14,18が形成さ
れている。尚、凸条17は積層を容易にするため、平坦
な面に成形されている。
FIGS. 2C and 2D show the corrosion-resistant metal member 1.
A metal separator 10 ′ for a fuel cell similar to that shown in FIGS. 1C and 1D obtained by subjecting the same to a corrugated rough forming and finish press working is shown. Front / back surface 1 of such separator 10 '
At positions other than the respective peripheral edges of the channels 2 and 16, parallel flow channels 14 and 18 having a substantially rectangular cross section are formed. As shown in FIG. 2 (D), front and back surfaces 12 and 16 including flow paths 14 and 18 are provided.
Has a thickness of 1 to 100 nm and the clad rolling
The thin film layer 6 of a noble metal having a dense structure subjected to (compression processing) and having the above-mentioned adhesive force is almost uniformly covered. FIGS. 2 (E) and 2 (F) show the fuel cell metal separator 11 obtained by subjecting the corrosion-resistant metal member 1 to the above-described rough molding and then performing a final press working using a different mold. A plurality of flow paths 14 and 18 having a substantially semicircular cross section and being parallel are formed at positions except for the peripheral edges of the back surfaces 12 and 16. The ridge 17 is formed on a flat surface to facilitate lamination.

【0018】図3(A),(B)は、一対の前記セパレータ
10を用いた応用形態の燃料電池用金属セパレータ20
を示す。図3(A),(B)に示すように、前記図2(A),
(B)で示した工程などを経て表・裏面12,16に貴金
属の薄膜層6を被覆したセパレータ10a,10bを、
互いに直交した状態で厚さ方向に積層する。次いで、互
いに面接触する凸条同士でロウ付けまたは舐め付け溶接
などにより固着する。この結果、図3(A),(B)に示す
ように、単位セパレータ10aにおける断面ほぼ台形で
互いに平行な複数の流路14a,14aと、単位セパレ
ータ10bにおける断面ほぼ台形で互いに平行な複数の
流路14b,14bとが平面視で互いに直交するクロス
フロー形の燃料電池用金属セパレータ20が得られる。
FIGS. 3A and 3B show a metal separator 20 for a fuel cell according to an applied embodiment using a pair of separators 10.
Is shown. As shown in FIGS. 3A and 3B, FIG.
The separators 10a and 10b having the front and back surfaces 12 and 16 coated with the thin film layer 6 of a noble metal through the process shown in FIG.
The layers are stacked in the thickness direction so as to be orthogonal to each other. Next, the ridges that are in surface contact with each other are fixed by brazing or licking welding. As a result, as shown in FIGS. 3A and 3B, a plurality of channels 14a, 14a having a substantially trapezoidal cross section in the unit separator 10a and a plurality of parallel channels having a substantially trapezoidal cross section in the unit separator 10b. A cross-flow type fuel cell metal separator 20 in which the flow paths 14b and 14b are orthogonal to each other in plan view is obtained.

【0019】[0019]

【実施例】以下において、本発明の具体的な実施例を比
較例と併せて説明する。表1に示すように、ステンレス
鋼(SUS304L)からなり厚さ1mmの金属ベース材
2を複数用意した。各金属ベース材2の表面に、表1に
示す厚みでメッキによりAuの薄膜層6を被覆した。こ
れらを表1に示す圧下率(圧縮率)でクラッド圧延(圧縮
加工)して、実施例1〜7の耐食性金属部材1を得た。
EXAMPLES Specific examples of the present invention will be described below together with comparative examples. As shown in Table 1, a plurality of 1 mm thick metal base materials 2 made of stainless steel (SUS304L) were prepared. The surface of each metal base material 2 was coated with a thin film layer 6 of Au by plating with a thickness shown in Table 1. These were clad-rolled (compressed) at the rolling reduction (compression rate) shown in Table 1 to obtain the corrosion-resistant metal members 1 of Examples 1 to 7.

【0020】一方、比較例1〜6の金属ベース材2に
は、上記圧延を行わなかった。各例の圧延後におけるA
uの薄膜層6の厚みを表1に示す。尚、係る薄膜層6の
厚みは、蛍光X線式膜厚測定法(JIS H8501)に
基づいて測定した。実施例1〜7の耐食性金属部材1お
よび比較例1〜6の金属ベース材2から、40mm×5
0mmの試験片を個別に切り出し、各例の試験片を、p
H2の硫酸を環流しながら沸騰させた溶液(雰囲気)中に
168時間にわたり個別に保持する腐食試験を行った。
係る溶液中に各例の試験片から溶出した金属イオンを、
原子吸光光度法により測定し、その結果を表1に示し
た。
On the other hand, the above-mentioned rolling was not performed on the metal base materials 2 of Comparative Examples 1 to 6. A after rolling in each case
Table 1 shows the thickness of the thin film layer 6 of u. The thickness of the thin film layer 6 was measured based on a fluorescent X-ray film thickness measurement method (JIS H8501). From the corrosion-resistant metal member 1 of Examples 1 to 7 and the metal base material 2 of Comparative Examples 1 to 6, 40 mm × 5
0 mm test pieces were individually cut out, and the test pieces of each example were p
A corrosion test was conducted in which each was kept individually for 168 hours in a solution (atmosphere) boiled while refluxing sulfuric acid of H2.
Metal ions eluted from the test piece of each example in such a solution,
The measurement was performed by the atomic absorption spectrophotometry, and the results are shown in Table 1.

【0021】また、腐食試験後における各例の試験片に
対し、引き剥がし試験をJIS Z0237に準拠して
行った。即ち、各例の試験片を超純水で洗浄し且つアセ
トン置換で乾燥した後、直ちに前記図1(B)で示したよ
うに、各例の試験片の薄膜層6の表面に貼り付けた粘着
テープ8を、その表面に沿って引き剥がした。尚、粘着
テープ8は、JIS Z 1522に規定された長さ50
mm×幅18mmのセロファンテープで、その粘着力は
1.08N/cm以上である。各例の試験片からテープ
8に移行した薄膜層6の剥離量(面積比)を測定し、これ
を各例毎の剥離量として表1に示した。この際、剥離量
が10%未満を○(良好)、10〜15%の範囲を△(や
や不良)、15%超を×(不良)として表1に示した。
Further, the test piece of each example after the corrosion test was subjected to a peeling test in accordance with JIS Z0237. That is, the test piece of each example was washed with ultrapure water and dried by replacing with acetone, and then immediately attached to the surface of the thin film layer 6 of the test piece of each example, as shown in FIG. 1B. The adhesive tape 8 was peeled off along its surface. The adhesive tape 8 has a length 50 stipulated in JIS Z 1522.
It is a cellophane tape having a size of 18 mm × 18 mm, and its adhesive strength is 1.08 N / cm or more. The peeling amount (area ratio) of the thin film layer 6 transferred from the test piece of each example to the tape 8 was measured, and this was shown in Table 1 as the peeling amount for each example. At this time, Table 1 shows that the amount of peeling was less than 10% as ((good), 10 to 15% as Δ (somewhat poor), and 15% or more as × (poor).

【0022】[0022]

【表1】 [Table 1]

【0023】実施例1〜7の前記耐食性金属部材1およ
び比較例1〜6のAuメッキ層付き金属ベース材2か
ら、厚さ1mm×直径16mmの試験片を別途個別に切
り出して、接触電気抵抗を測定した。即ち、各例の試験
片の表・裏面をカーボンペーパーで挟んで、荷重245
N/cmを負荷しつつ、印加電流100mAを流した
際における電圧を測定すると共に、係る電圧から接触抵
抗値を算出した。これらについても表1に示した。表1
によれば、実施例1〜7では、何れも溶出した金属イオ
ンは0.01mg/リットル以下と少なかつたのに対し、比
較例1〜5では特にFeイオンで高くなった。但し、比
較例6は実施例1〜7と同様であったが、これはAuを
500nmと著しく厚くメッキしたためである。
From the corrosion-resistant metal member 1 of Examples 1 to 7 and the metal base material 2 with an Au plating layer of Comparative Examples 1 to 6, test pieces having a thickness of 1 mm and a diameter of 16 mm were separately cut out separately to obtain a contact electric resistance. Was measured. That is, the front and back surfaces of the test piece of each example were sandwiched by carbon paper, and the load was 245.
The voltage when applying an applied current of 100 mA while applying N / cm 2 was measured, and the contact resistance value was calculated from the voltage. These are also shown in Table 1. Table 1
According to the results, in Examples 1 to 7, the amount of eluted metal ions was as small as 0.01 mg / liter or less, whereas in Comparative Examples 1 to 5, the content was particularly high in Fe ions. However, Comparative Example 6 was the same as Examples 1 to 7, but this was because Au was plated to an extremely large thickness of 500 nm.

【0024】また、表1によれば、実施例1,2の剥離
量は10%以下で、実施例3〜7の剥離量は0%であ
り、圧下率が小さいとわずかに低下した。従って、実施
例1〜7全体では、Auの薄膜層6は高い密着力を有し
ていた。即ち、実施例1〜7のAuの薄膜層6は圧下率
に応じて、ピンホールなどのない緻密な組織となった。
これに対し、比較例1,2の剥離量は100%、比較例
3では約75%、比較例4では約45%、比較例5では
約10%であり、比較例6のみ剥離量が0%であった。
比較例1〜5は、Auメッキしたたままのため、その厚
みに応じてAuの薄膜層6が剥離し、比較例6はコスト
高になる過大な厚みのメッキ膜としたため、剥離を生じ
なかった。
According to Table 1, the peeling amount of Examples 1 and 2 was 10% or less, and the peeling amount of Examples 3 to 7 was 0%. Therefore, in all of Examples 1 to 7, the Au thin film layer 6 had high adhesion. That is, the Au thin film layers 6 of Examples 1 to 7 had a dense structure without pinholes or the like according to the rolling reduction.
On the other hand, the peel amounts of Comparative Examples 1 and 2 are 100%, about 75% in Comparative Example 3, about 45% in Comparative Example 4, and about 10% in Comparative Example 5, and the peel amount of Comparative Example 6 is 0%. %Met.
In Comparative Examples 1 to 5, the Au thin film layer 6 was peeled off according to the thickness because Au plating was left as it was, and Comparative Example 6 was an excessively thick plated film that would increase the cost, so that peeling did not occur. Was.

【0025】更に、実施例1〜7では、接触電気抵抗は
全て10mΩ・cm以下であるに対し、比較例1〜5
では10mΩ・cmよりも高くなった。即ち、実施例
1〜7は、Auの薄膜層6が50nm以下と薄いにも拘
わらず、純金レベルの低い接触抵抗になったのに対し、
比較例1〜6は、そのAuメッキ層の厚みと接触抵抗と
が反比例し、400nm以上の厚みで実施例1〜7のレ
ベルに到達していた。以上の結果から、実施例1〜7の
耐食性金属部材1は、高い耐食性、高い密着力のAu薄
膜層6、および低い接触電気抵抗を保有していることが
確認されると共に、本発明の効果も裏付けられたことが
容易に理解できよう。
Further, in Examples 1 to 7, the contact electric resistances were all 10 mΩ · cm 2 or less, while Comparative Examples 1 to 5
In this case, it was higher than 10 mΩ · cm 2 . That is, in Examples 1 to 7, although the Au thin film layer 6 was as thin as 50 nm or less, the contact resistance was as low as pure gold.
In Comparative Examples 1 to 6, the thickness of the Au plating layer was inversely proportional to the contact resistance, and reached the level of Examples 1 to 7 at a thickness of 400 nm or more. From the above results, it is confirmed that the corrosion-resistant metal members 1 of Examples 1 to 7 have high corrosion resistance, a high adhesion Au thin film layer 6, and low contact electric resistance, and the effect of the present invention. It can be easily understood that this was also supported.

【0026】[0026]

【表2】 [Table 2]

【0027】表2は、Au、Pd、Pt、またはAu−
Co合金を、メッキまたは真空蒸着により、厚さ1mm
のステンレス鋼(SUS430,SUS304,SUS3
04L,SUS316L,SUSXM7)、Ni−Cr系
合金、純Ti、または純Alからなる金属ベース材2に
被覆した他は前記表1の各例と同じくして得た実施例8
〜20および比較例7,8の耐食性金属部材1を示す。
各例の耐食性金属部材1から、前記2種類のサイズの試
験片をそれぞれ個別に切り出し、前記と同じ腐食試験し
た際の溶出金属イオン、引き剥がし試験による剥離量、
および接触電気抵抗試験で測定した結果を示す。表2に
よれば、実施例8〜20は、前記同様に溶出金属イオン
が少なく、剥離量は全て0%で、且つ接触抵抗も全て1
0mΩ・cm以下であった。これに対し、比較例7
は、溶出金属イオンが多く、剥離量が100%で且つ接
触抵抗も89.6mΩ・cmと高くなった。即ち、比
較例7は、Auを薄く蒸着したままでピンホールやポア
を内包しているため、上記のような結果となった。
Table 2 shows that Au, Pd, Pt, or Au-
Co alloy, 1mm thick by plating or vacuum evaporation
Stainless steel (SUS430, SUS304, SUS3
Example 8 obtained in the same manner as in each example of Table 1 above, except that the metal base material 2 was made of 04L, SUS316L, SUSXM7), a Ni—Cr alloy, pure Ti, or pure Al.
20 to 20 and Comparative Examples 7 and 8 are shown.
From the corrosion-resistant metal member 1 of each example, test pieces of the two kinds of sizes were individually cut out, and elution metal ions at the time of the same corrosion test as above, the amount of peeling by the peeling test,
5 shows the results measured by a contact electric resistance test. According to Table 2, in Examples 8 to 20, as in the above, the amount of eluted metal ions was small, the peeling amount was all 0%, and the contact resistance was all 1
It was 0 mΩ · cm 2 or less. On the other hand, Comparative Example 7
Has a large amount of eluted metal ions, the peeling amount is 100%, and the contact resistance is as high as 89.6 mΩ · cm 2 . That is, in Comparative Example 7, the pinholes and pores were included while Au was thinly vapor-deposited.

【0028】また、比較例8は、上記と同様に溶出金属
イオンが多い反面、剥離量が0%と低く且つ接触抵抗は
約37.0mΩ・cmと高くなった。即ち、比較例8
は、5nmの薄いAu蒸着層を更に90%の高い圧下率
で圧延して、0.5nmの極く薄肉としたため、局部的
に金属ベース材2の表面(生地)が露出し、接触抵抗が増
加し且つ溶出金属イオンも増えたものと思われる。以上
のように、Auなどの薄膜層6を被覆した実施例8〜2
0においても、その耐食性金属部材1は、高い耐食性、
高い密着力のAuなどの薄膜層6、および低い接触電気
抵抗を保有していることが確認されると共に、本発明の
効果も裏付けられたことも容易に理解できよう。
In Comparative Example 8, as in the above case, the amount of metal ions eluted was large, but the peeling amount was as low as 0% and the contact resistance was as high as about 37.0 mΩ · cm 2 . That is, Comparative Example 8
Since the 5 nm thin Au vapor-deposited layer was further rolled at a high rolling reduction of 90% to a very thin thickness of 0.5 nm, the surface (fabric) of the metal base material 2 was locally exposed, and the contact resistance was reduced. It seems that the number of metal ions increased and the number of eluted metal ions also increased. As described above, Examples 8 to 2 in which the thin film layer 6 of Au or the like was covered
0, the corrosion-resistant metal member 1 has high corrosion resistance,
It is confirmed that the thin film layer 6 made of Au or the like having a high adhesion force has a low contact electric resistance, and that the effect of the present invention is supported.

【0029】本発明は以上に説明した実施の形態および
実施例に限定されるものではない。例えば、前記金属ベ
ース材は、前記平板の形態に限らず、断面ほぼアングル
形、チャンネル形、断面波形などの形状のものも含まれ
得る。また、前記金属ベース材は、異種金属または合金
からなる板材を互いに積層した複合板や形材同士を互い
に積層した複合部材とすることもできる。更に、本発明
の耐食性金属部材の用途には、前記セパレータに限ら
ず、各種の電気・電子材料、化学装置や化学プラントの
構成部材、海洋プラント部品、建築用または内装用構成
部材、あるいは種々の装飾用品も含まれる。
The present invention is not limited to the embodiments and examples described above. For example, the metal base material is not limited to the shape of the flat plate, and may include a shape having a substantially cross-sectional shape such as an angle shape, a channel shape, and a cross-sectional waveform. Further, the metal base material may be a composite plate in which plate materials made of different metals or alloys are laminated on each other, or a composite member in which profiles are laminated on each other. Further, the use of the corrosion-resistant metal member of the present invention is not limited to the separator, but includes various electric and electronic materials, components of a chemical device or a chemical plant, components of a marine plant, components of a building or interior, or various components. Decoration items are also included.

【0030】[0030]

【発明の効果】以上に説明した本発明の耐食性金属部材
(請求項1)によれば、表・裏面に位置する貴金属の薄膜
層は、高い密着力により金属ベース材に被覆されている
ため、高耐食性および低い接触電気抵抗を発揮すると共
に、量産性にも適している。また、請求項2の耐食性金
属部材によれば、従来に比べて緻密な組織で且つ薄くな
るため、高耐食性を発揮せしめ且つ低コストとすること
が可能となる。更に、請求項3の耐食性金属部材によれ
ば、金属ベース材の表面に貴金属の薄膜層を、高い密着
力で且つピンホールやポアなどがない緻密な組織にして
被覆した耐食性金属部材とすることができる。
The corrosion-resistant metal member of the present invention described above.
According to claim 1, the noble metal thin film layer located on the front and back surfaces is coated with the metal base material with high adhesion, so that it exhibits high corrosion resistance and low contact electric resistance, and is suitable for mass production. Are also suitable. Further, according to the corrosion-resistant metal member of the second aspect, since it has a denser structure and is thinner than the conventional one, it is possible to exhibit high corrosion resistance and reduce the cost. Further, according to the corrosion-resistant metal member of the third aspect, a thin metal layer of a noble metal is coated on the surface of the metal base material in a dense structure with high adhesion and no pinholes or pores, thereby forming a corrosion-resistant metal member. Can be.

【0031】一方、本発明の燃料電池用金属セパレータ
(請求項6)によれば、貴金属の薄膜層は、高い密着力で
金属ベース材の表・裏面に被覆されているため、高耐食
性および低い接触抵抗を併有すると共に、量産性にも適
した燃料電池用金属セパレータとなる。また、請求項9
の燃料電池用金属セパレータによれば、金属ベース材の
表・裏面に、貴金属の薄膜層を高い密着力および高い耐
食性を伴い且つ緻密な組織にして被覆した上記セパレー
タとすることができる。
On the other hand, the metal separator for a fuel cell of the present invention
According to claim 6, since the thin film layer of the noble metal is coated on the front and back surfaces of the metal base material with high adhesion, it has both high corrosion resistance and low contact resistance and is suitable for mass production. It becomes a metal separator for fuel cells. Claim 9
According to the metal separator for a fuel cell described above, it is possible to obtain the above-mentioned separator in which a thin film layer of a noble metal is coated on the front and back surfaces of the metal base material in a dense structure with high adhesion and high corrosion resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本発明の耐食性金属部材の概略断面図、
(B)はその引き剥がし試験を示す概略図、(C)は本発明
の燃料電池用金属セパレータの要部を示す概略図、(D)
は(C)中の一点鎖線部分Dを示す部分拡大図。
FIG. 1A is a schematic sectional view of a corrosion-resistant metal member of the present invention,
(B) is a schematic diagram showing the peeling test, (C) is a schematic diagram showing a main part of the metal separator for a fuel cell of the present invention, (D)
3 is a partially enlarged view showing a dashed-dotted line portion D in (C).

【図2】(A),(B)は本発明の耐食性金属部材の製造工
程を示す概略図、(C),(E)は上記金属部材を成形して
得られた燃料電池用金属セパレータを示す斜視図、
(D),(F)は(C),(E)中のD−D線またはF−F線に
沿った視角の拡大断面図。
2 (A) and 2 (B) are schematic views showing a process for manufacturing a corrosion-resistant metal member of the present invention, and FIGS. 2 (C) and 2 (E) show a metal separator for a fuel cell obtained by molding the metal member. Perspective view,
(D), (F) is an enlarged sectional view of the viewing angle along the DD line or the FF line in (C), (E).

【図3】(A),(B)は応用形態の燃料電池用金属セパレ
ータの斜視図または側面図。
FIGS. 3A and 3B are perspective views or side views of a fuel cell metal separator according to an applied embodiment.

【符号の説明】[Explanation of symbols]

1………………………………………………耐食性金属部
材 2………………………………………………金属ベース材 4………………………………………………表面 5………………………………………………裏面 6………………………………………………Auの薄膜層
(貴金属の薄膜層) 10,10a,10b,10′,11,20…燃料電池用金
属セパレータ 14,18……………………………………流路
1. Corrosion-resistant metal member 2. Metal base material 4. ……………………… Front 5 …………………………………… Back side 6 …………………………………… ...... Au thin film layer
(Noble metal thin film layer) 10, 10a, 10b, 10 ', 11, 20: metal separator for fuel cell 14, 18, ..., ..., ..., ..., flow path

フロントページの続き (72)発明者 鈴木 良剛 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社技術開発研究所内 (72)発明者 新川 雅樹 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社技術開発研究所内 (72)発明者 金田 安司 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社技術開発研究所内 Fターム(参考) 4K029 AA02 BA02 BA04 BA05 BA13 BA22 BC00 BD00 GA00 4K030 BA01 CA02 DA08 LA01 LA11 5G307 BA07 BB01 BB02 BB03 BB04 BB05 BC01 BC02 BC10 5H026 AA06 BB02 BB04 CC05 CX04 EE02 EE08 HH00 HH03 HH05Continuing from the front page (72) Ryogo Suzuki, Inventor Ryogo Suzuki 2--30, Datong-cho, Minami-ku, Nagoya-shi, Aichi Prefecture Inside the Technology Development Laboratory, Daido Steel Co., Ltd. Address Daido Special Steel Co., Ltd., Technology Development Laboratory (72) Inventor Yasushi Kaneda 2-30, Datong-cho, Minami-ku, Nagoya-shi, Aichi F-term in the Technology Development Laboratory, Daido Special Steel Co., Ltd. 4K029 AA02 BA02 BA04 BA05 BA13 BA22 BC00 BD00 GA00 4K030 BA01 CA02 DA08 LA01 LA11 5G307 BA07 BB01 BB02 BB03 BB04 BB05 BC01 BC02 BC10 5H026 AA06 BB02 BB04 CC05 CX04 EE02 EE08 HH00 HH03 HH05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】金属ベース材と、係る金属ベース材の表面
および裏面の少なくとも一方に被覆した貴金属の薄膜層
とからなり、上記金属ベース材と貴金属の薄膜層との密
着力が、腐食試験後の引き剥がし試験における剥離量で
50%以下である、ことを特徴とする耐食性金属部材。
1. A metal base material, and a noble metal thin film layer coated on at least one of the front surface and the back surface of the metal base material, and the adhesion between the metal base material and the noble metal thin film layer is determined after a corrosion test. A corrosion resistant metal member having a peel amount of 50% or less in a peel test.
【請求項2】前記貴金属の薄膜層は、1nm以上で且つ
100nm以下の厚みで且つ緻密な組織である、ことを
特徴とする請求項1に記載の耐食性金属部材。
2. The corrosion-resistant metal member according to claim 1, wherein the thin film layer of the noble metal has a dense structure with a thickness of 1 nm or more and 100 nm or less.
【請求項3】前記金属ベース材の表面および裏面の少な
くとも一方に被覆された前記貴金属の薄膜層は、両者の
合計厚みを5%以上圧縮する圧縮加工が施されている、
ことを特徴とする請求項1または2に記載の耐食性金属
部材。
3. The precious metal thin film layer coated on at least one of the front surface and the back surface of the metal base material has been subjected to compression processing for compressing the total thickness of both by 5% or more.
The corrosion-resistant metal member according to claim 1 or 2, wherein:
【請求項4】前記貴金属の薄膜層は、Au,Ag,P
t,Pdの単体、またはこれらの何れかをベースとする
合金、あるいは上記の2種以上からなる合金を、メッ
キ、スクリーン印刷、PVD処理、またはCVD処理す
ることにより、前記金属ベース材に被覆されたものであ
る、 ことを特徴とする請求項1乃至3の何れか一項に記載の
耐食性金属部材。
4. The thin film layer of noble metal is made of Au, Ag, P
The metal base material is coated on the metal base material by plating, screen printing, PVD treatment, or CVD treatment with a simple substance of t or Pd, or an alloy based on any of these, or an alloy composed of two or more of the above. The corrosion-resistant metal member according to any one of claims 1 to 3, wherein:
【請求項5】前記金属ベース材は、Fe,Ni,Ti,
Cu,Alの単体、またはこれらの何れかをベースとす
る合金からなる、 ことを特徴とする請求項1乃至4の何れか一項に記載の
耐食性金属部材。
5. The method according to claim 1, wherein the metal base material is Fe, Ni, Ti,
The corrosion-resistant metal member according to any one of claims 1 to 4, wherein the metal member is made of a simple substance of Cu or Al, or an alloy based on any of them.
【請求項6】金属ベース材と、係る金属ベース材の表面
および裏面の少なくとも一方に被覆した貴金属の薄膜層
とからなり、上記金属ベース材と貴金属の薄膜層との密
着力が、腐食試験後の引き剥がし試験における剥離量で
50%以下である、ことを特徴とする燃料電池用金属セ
パレータ。
6. A metal base material and a noble metal thin film layer coated on at least one of the front surface and the back surface of the metal base material, and the adhesion between the metal base material and the noble metal thin film layer is determined after the corrosion test. A metal separator for a fuel cell, wherein the amount of peeling in a peeling test is 50% or less.
【請求項7】前記貴金属の薄膜層は、1nm以上で且つ
100nm以下の厚みで且つ緻密な組織である、 ことを特徴とする請求項6に記載の燃料電池用金属セパ
レータ。
7. The fuel cell metal separator according to claim 6, wherein the noble metal thin film layer has a dense structure with a thickness of 1 nm or more and 100 nm or less.
【請求項8】前記貴金属の薄膜層が被覆される前記金属
ベース材の表面および裏面の少なくとも一方には、燃料
ガスまたは酸化性ガスを流すための流路が形成されてい
る、 ことを特徴とする請求項6または7に記載の燃料電池用
金属セパレータ。
8. A flow path for flowing a fuel gas or an oxidizing gas is formed on at least one of a front surface and a back surface of the metal base material covered with the thin film layer of the noble metal. The metal separator for a fuel cell according to claim 6 or 7, wherein:
【請求項9】前記金属ベース材の表面および裏面の少な
くとも一方に被覆された前記貴金属の薄膜層は、両者の
合計厚みを5%以上圧縮する圧縮加工が施されている、
ことを特徴とする請求項6乃至8の何れか一項に記載の
燃料電池用金属セパレータ。
9. The precious metal thin film layer coated on at least one of the front surface and the back surface of the metal base material has been subjected to compression processing for compressing the total thickness of both by 5% or more.
The fuel cell metal separator according to any one of claims 6 to 8, wherein:
【請求項10】前記貴金属の薄膜層は、Au,Ag,P
t,Pdの単体、またはこれらの何れかをベースとする
合金、あるいは上記の2種以上からなる合金を、メッ
キ、スクリーン印刷、PVD処理、またはCVD処理す
ることにより、前記金属ベース材に被覆されたものであ
る、ことを特徴とする請求項6乃至9の何れか一項に記
載の燃料電池用金属セパレータ。
10. The thin film layer of noble metal is made of Au, Ag, P
The metal base material is coated on the metal base material by plating, screen printing, PVD treatment, or CVD treatment with a simple substance of t or Pd, or an alloy based on any of these, or an alloy composed of two or more of the above. The metal separator for a fuel cell according to any one of claims 6 to 9, wherein:
【請求項11】前記金属ベース材は、Fe,Ni,T
i,Cu,Alの単体、またはこれらの何れかをベース
とする合金からなる、ことを特徴とする請求項6乃至1
0の何れか一項に記載の燃料電池用金属セパレータ。
11. The metal base material is made of Fe, Ni, T
2. A method according to claim 1, wherein the material is made of a simple substance of i, Cu, or Al, or an alloy based on any of them.
0. The metal separator for a fuel cell according to any one of 0.
JP2001173920A 2001-02-28 2001-06-08 Corrosion resistant metal member and metal separator for fuel cell using the member Pending JP2002367434A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001173920A JP2002367434A (en) 2001-06-08 2001-06-08 Corrosion resistant metal member and metal separator for fuel cell using the member
CA2373344A CA2373344C (en) 2001-02-28 2002-02-26 Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
EP02004655A EP1237215A3 (en) 2001-02-28 2002-02-28 Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
US10/084,434 US6699593B2 (en) 2001-02-28 2002-02-28 Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001173920A JP2002367434A (en) 2001-06-08 2001-06-08 Corrosion resistant metal member and metal separator for fuel cell using the member

Publications (1)

Publication Number Publication Date
JP2002367434A true JP2002367434A (en) 2002-12-20

Family

ID=19015288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001173920A Pending JP2002367434A (en) 2001-02-28 2001-06-08 Corrosion resistant metal member and metal separator for fuel cell using the member

Country Status (1)

Country Link
JP (1) JP2002367434A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288540A (en) * 2003-03-24 2004-10-14 Equos Research Co Ltd Separator
JP2005093095A (en) * 2003-09-12 2005-04-07 Toyota Motor Corp Fuel cell
JP2005142074A (en) * 2003-11-07 2005-06-02 Daido Steel Co Ltd Corrosion-resistant conductive member
JP2006278172A (en) * 2005-03-29 2006-10-12 Nikko Kinzoku Kk Separator material for fuel sell
JP2007311081A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Fuel cell stack, and its manufacturing method
JP2008066282A (en) * 2006-08-09 2008-03-21 Daido Steel Co Ltd Metallic separator for fuel cell and fuel cell using this
WO2008041560A1 (en) * 2006-09-29 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Method for producing separator for fuel cell, separator for fuel cell, and fuel cell
JP2008123958A (en) * 2006-11-15 2008-05-29 Nissan Motor Co Ltd Fuel cell
WO2008126525A1 (en) * 2007-04-09 2008-10-23 Kabushiki Kaisha Kobe Seiko Sho Metallic separator for fuel cell and process for producing the metallic separator
WO2009041135A1 (en) * 2007-09-25 2009-04-02 Nippon Mining & Metals Co., Ltd. Fuel cell separator material and fuel cell stack
WO2009054488A1 (en) * 2007-10-24 2009-04-30 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for producing the same
JP2009238691A (en) * 2008-03-28 2009-10-15 Nippon Mining & Metals Co Ltd Separator material of fuel cell, separator of fuel cell using the same, fuel cell stack, and method for manufacturing separator material of fuel cell
JP2010045038A (en) * 2006-09-29 2010-02-25 Kobe Steel Ltd Fuel cell and separator therefor
WO2010061694A1 (en) * 2008-11-28 2010-06-03 日鉱金属株式会社 Fuel cell separator material, fuel cell separator using same, and fuel cell stack
WO2012090780A1 (en) * 2010-12-29 2012-07-05 三洋電機株式会社 Solar cell and solar cell module
US8586262B2 (en) 2009-04-15 2013-11-19 Toyota Jidosha Kabushiki Kaisha Titanium-based material, method of manufacturing titanium-based material, and fuel cell separator
JP2016006915A (en) * 2015-10-15 2016-01-14 パナソニックIpマネジメント株式会社 Solar cell and solar cell module
US9806351B2 (en) 2011-08-09 2017-10-31 Jx Nippon Mining & Metals Corporation Material fuel cell separator, fuel cell separator using same, fuel cell stack, and method of producing fuel cell separator material
CN108284699A (en) * 2017-01-09 2018-07-17 蓝思科技(长沙)有限公司 The PVD silk-screens pierced process and a kind of glass panel product of a kind of glass panel
CN113097495A (en) * 2019-12-23 2021-07-09 大连大学 Preparation method of Au-Ni-Pt alloy modified anode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068129A (en) * 1999-08-30 2001-03-16 Aisin Seiki Co Ltd Separator for fuel cell, manufacture thereof and fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068129A (en) * 1999-08-30 2001-03-16 Aisin Seiki Co Ltd Separator for fuel cell, manufacture thereof and fuel cell

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288540A (en) * 2003-03-24 2004-10-14 Equos Research Co Ltd Separator
JP4586331B2 (en) * 2003-03-24 2010-11-24 株式会社エクォス・リサーチ Separator
JP2005093095A (en) * 2003-09-12 2005-04-07 Toyota Motor Corp Fuel cell
JP2005142074A (en) * 2003-11-07 2005-06-02 Daido Steel Co Ltd Corrosion-resistant conductive member
JP2006278172A (en) * 2005-03-29 2006-10-12 Nikko Kinzoku Kk Separator material for fuel sell
JP2007311081A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Fuel cell stack, and its manufacturing method
JP2008066282A (en) * 2006-08-09 2008-03-21 Daido Steel Co Ltd Metallic separator for fuel cell and fuel cell using this
JP4551429B2 (en) * 2006-09-29 2010-09-29 株式会社神戸製鋼所 Method for manufacturing fuel cell separator, fuel cell separator and fuel cell
JP2008210773A (en) * 2006-09-29 2008-09-11 Kobe Steel Ltd Manufacturing method for separator of fuel cell, separator of fuel cell, and fuel cell
JP2010045038A (en) * 2006-09-29 2010-02-25 Kobe Steel Ltd Fuel cell and separator therefor
WO2008041560A1 (en) * 2006-09-29 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Method for producing separator for fuel cell, separator for fuel cell, and fuel cell
JP2008123958A (en) * 2006-11-15 2008-05-29 Nissan Motor Co Ltd Fuel cell
WO2008126525A1 (en) * 2007-04-09 2008-10-23 Kabushiki Kaisha Kobe Seiko Sho Metallic separator for fuel cell and process for producing the metallic separator
US8298723B2 (en) 2007-04-09 2012-10-30 Kobe Steel, Ltd. Metal separator for fuel cell and manufacturing method thereof
WO2009041135A1 (en) * 2007-09-25 2009-04-02 Nippon Mining & Metals Co., Ltd. Fuel cell separator material and fuel cell stack
JP5143842B2 (en) * 2007-09-25 2013-02-13 Jx日鉱日石金属株式会社 Fuel cell separator material and fuel cell stack
JPWO2009041135A1 (en) * 2007-09-25 2011-01-20 日鉱金属株式会社 Fuel cell separator material and fuel cell stack
WO2009054488A1 (en) * 2007-10-24 2009-04-30 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for producing the same
JP2009104932A (en) * 2007-10-24 2009-05-14 Toyota Motor Corp Fuel cell separator and its manufacturing method
JP2009238691A (en) * 2008-03-28 2009-10-15 Nippon Mining & Metals Co Ltd Separator material of fuel cell, separator of fuel cell using the same, fuel cell stack, and method for manufacturing separator material of fuel cell
JPWO2010061694A1 (en) * 2008-11-28 2012-04-26 Jx日鉱日石金属株式会社 Fuel cell separator material, fuel cell separator using the same, and fuel cell stack
US9123920B2 (en) 2008-11-28 2015-09-01 Jx Nippon Mining & Metals Corporation Fuel cell separator material, fuel cell separator using same, and fuel cell stack
JP5313264B2 (en) * 2008-11-28 2013-10-09 Jx日鉱日石金属株式会社 Fuel cell separator material, fuel cell separator using the same, and fuel cell stack
CN102227841A (en) * 2008-11-28 2011-10-26 Jx日矿日石金属株式会社 Fuel cell separator material, fuel cell separator using same, and fuel cell stack
WO2010061694A1 (en) * 2008-11-28 2010-06-03 日鉱金属株式会社 Fuel cell separator material, fuel cell separator using same, and fuel cell stack
US8586262B2 (en) 2009-04-15 2013-11-19 Toyota Jidosha Kabushiki Kaisha Titanium-based material, method of manufacturing titanium-based material, and fuel cell separator
JP2012142452A (en) * 2010-12-29 2012-07-26 Sanyo Electric Co Ltd Solar cell and solar cell module
WO2012090780A1 (en) * 2010-12-29 2012-07-05 三洋電機株式会社 Solar cell and solar cell module
US9425340B2 (en) 2010-12-29 2016-08-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell and solar cell module
US9806351B2 (en) 2011-08-09 2017-10-31 Jx Nippon Mining & Metals Corporation Material fuel cell separator, fuel cell separator using same, fuel cell stack, and method of producing fuel cell separator material
JP2016006915A (en) * 2015-10-15 2016-01-14 パナソニックIpマネジメント株式会社 Solar cell and solar cell module
CN108284699A (en) * 2017-01-09 2018-07-17 蓝思科技(长沙)有限公司 The PVD silk-screens pierced process and a kind of glass panel product of a kind of glass panel
CN108284699B (en) * 2017-01-09 2019-12-03 蓝思科技(长沙)有限公司 A kind of the PVD silk-screen pierced process and a kind of glass panel product of glass panel
CN113097495A (en) * 2019-12-23 2021-07-09 大连大学 Preparation method of Au-Ni-Pt alloy modified anode
CN113097495B (en) * 2019-12-23 2022-09-23 大连大学 Preparation method of Au-Ni-Pt alloy modified anode

Similar Documents

Publication Publication Date Title
JP2002367434A (en) Corrosion resistant metal member and metal separator for fuel cell using the member
US6699593B2 (en) Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
JP5152537B2 (en) Solid polymer fuel cell material and method for producing the same, metal member for fuel cell and fuel cell using the same
CN101123313B (en) Metallic bipolar plate for fuel cells, and fuel cell comprising the same
KR101301815B1 (en) Fuel cell separator material, fuel cell separator using same, fuel cell stack, and method for producing fuel cell separator material
KR20140043463A (en) Separator material for fuel cells, separator for fuel cells using same, fuel cell stack using same, and method for producing separator material for fuel cells
US20090263678A1 (en) Metal material with electric contact layer and manufacturing method of the same
JP2009295346A (en) Metal material with electrical contact layer, and its manufacturing method
JP2009295343A (en) Plate material for metal separator, method for manufacturing same, and metal separator for fuel cell
JP4234597B2 (en) Manufacturing method of fuel cell separator
JP2004134276A (en) Material for solid polymer type fuel cell, and its manufacturing method
JP5072019B2 (en) Fuel cell separator material and fuel cell separator
JP2002254180A (en) High corrosion resistivity material and manufacturing method therefor
TW201222937A (en) Separator material for fuel cell, separator for fuel cell using the same, fuel cell stack, and producing method of fuel cell separator material
JP2003331859A (en) Separator for fuel cell, its manufacturing method, and fuel cell using separator for fuel cell
JP5291368B2 (en) Fuel cell separator material, fuel cell separator using the same, fuel cell stack, and method for producing fuel cell separator material
JP5419271B2 (en) FUEL CELL SEPARATOR MATERIAL, FUEL CELL SEPARATOR USING THE SAME, FUEL CELL STACK, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR MATERIAL
CA2955125C (en) Metallic material, and conductive component including the same
JP5677758B2 (en) Fuel cell separator material, fuel cell separator and fuel cell stack using the same, and method for producing fuel cell separator material
JP4585760B2 (en) Method for forming noble metal thin film of polymer electrolyte fuel cell separator
TWI447989B (en) A separator for a fuel cell, a separator for a fuel cell and a fuel cell stack for use thereof, and a method for manufacturing a separator material for a fuel cell
JP2011249148A (en) Fuel cell separator material, fuel cell separator using the same, fuel cell stack, and method of manufacturing fuel cell separator material
JP2011175901A (en) Separator material for fuel cell, separator for fuel cell using the same, and fuel cell stack
Chen et al. Engineered Metallic Strip For Fuel Cell Applications
JP2009266536A (en) Metal material with electrical contact layer and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406