JPS6240831B2 - - Google Patents

Info

Publication number
JPS6240831B2
JPS6240831B2 JP57038362A JP3836282A JPS6240831B2 JP S6240831 B2 JPS6240831 B2 JP S6240831B2 JP 57038362 A JP57038362 A JP 57038362A JP 3836282 A JP3836282 A JP 3836282A JP S6240831 B2 JPS6240831 B2 JP S6240831B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
air
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57038362A
Other languages
Japanese (ja)
Other versions
JPS58155669A (en
Inventor
Kyoshi Kamitsuji
Atsuo Watanabe
Takeshi Yasuhara
Tomoyoshi Kamoshita
Hiroyuki Tajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Kansai Denryoku KK filed Critical Fuji Electric Co Ltd
Priority to JP57038362A priority Critical patent/JPS58155669A/en
Publication of JPS58155669A publication Critical patent/JPS58155669A/en
Publication of JPS6240831B2 publication Critical patent/JPS6240831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は燃料ガスと酸化剤ガス(一般には空気
ガスが用いられるので以下空気ガスと称す)とを
反応ガスとして発電を行う燃料電池、とくに空気
ガスと燃料ガスとを供給する溝を異なる面に互い
に非連通状態で直交するよう配設してなるバイポ
ーラプレートならびに該バイポーラプレート間に
挾持された燃料電極と電解液含浸マトリツクスと
空気電極とからなる燃料電池セルを複数個積重ね
て燃料電池スタツクとなし、これをケース内に載
置してなる燃料電池における反応ガスの給排装置
に関する。 従来のこの種の燃料電池においては、燃料ガス
給排用と空気ガス給排用のマニホルドを燃料電池
スタツクの側面にパツキンを介して吻合させ、反
応ガスの漏洩を極力防止するためにスタツク側面
の平坦度を上げかつ弾力性に富むゴムパツキンを
使用するなどの措置を講じていたが、マニホルド
を用いると、反応ガスの各セルへの均等分配、吻
合位置合わせないしはシール機構に特別の工夫を
する必要があり、極力マニホルドの使用を避ける
構造の採用が望まれていた。 そこで本発明は反応ガスの給排装置としてマニ
ホルドを使用せず、しかも簡単で組立容易な構造
のものを提供することを目的とするものである。 この目的は、本発明によれば、冒頭に述べた様
式の燃料電池において、燃料電池スタツクの空気
ガス流路と平行な側壁とケース内壁との間に空気
の流通を実質的に阻止する仕切部材を設けてケー
ス内空間を二分し、空気ガスを一方の空間から燃
料電池スタツクの各バイポーラプレートの空気供
給溝を通して他方の空間に送り込み、一方、燃料
ガスは燃料電池スタツク内部を空気供給溝と連通
しない位置において貫通する給排路を介して給排
するように構成することによつて達成される。 本発明の好適な実施態様によれば、上記仕切部
材は燃料電池スタツクの側壁に設けた溝に喰い込
むように配置するのがよく、かくすれば仕切部材
が燃料電池スタツクの保持部材を兼用する効果が
得られる。 また本発明の他の好適な実施態様によれば、燃
料電池スタツクはその頂部とケース内壁との間に
空気の流通を阻止する断熱材を有するのがよく、
かくすれば反応用の空気ガスの無駄な側路をなく
すことができる効果が得られる。 本発明の他の特徴ないしは実施態様は以下に述
べる本発明の実施例の説明において明らかにす
る。 第1図は本発明の実施例の一部切欠斜視図であ
り、本発明の原理構造を説明するためのものであ
る。 第1図において、1はケースであり実施例では
ほぼ直方体の形状をなしている。ケース1はその
内部の説明のためにハツチングを付した部分で切
り欠かれて示されている。は燃料電池スタツク
(以下単にスタツクという)で、ケース1の架台
3の上に載置され、バイポーラプレート4とバイ
ポーラプレート間に挾持された燃料電極、電解液
含浸マトリツクスおよび空気電極のサンドイツチ
体5とから成る燃料電池セル6を複数個種重ねた
ものから構成されている。より厳密に云えば燃料
電池セルは一つのバイポーラプレートの下面と上
記サンドイツチ体と他のバイポーラプレートの上
面とでセルとしての機能を発揮することになる。 燃料電池スタツクは最下部に絶縁板7を、頂
部に端板8を備えており、種重ねられた状態で端
板8と架台7との間をボルト(図示せず)で固定
するようになつている。9はバイポーラプレート
の上面に設けられた空気供給溝で、図では簡単の
ために1枚につき4個の溝が示されているが、実
際には数多くの溝が設けられている。 10a,10bは本発明の特徴である仕切部材
で、絶縁材にて作られスタツクの空気ガス流路
である空気供給溝9と平行な側壁とケース内壁1
1との間に設けられている。12はケース1に固
着され仕切部材10aを保持する断面コ字状の保
持部材である。仕切部材10bに対応する保持部
材は図示されていない。13は断熱材で、スタツ
の頂部とケース1の上部内壁との間に充填さ
れ、空気の流通を阻止する役割を果す。14は空
気ガス供給口、15は空気ガス排出口、16は燃
料ガス供給口、17は燃料ガス排出口である。 第1図の構成から明らかなように、ケース1の
内部空間は仕切部材10a,10bにより(厳密
にはさらにスタツクと断熱材13により)二つ
の空間に二分されているので、空気ガスは一方の
空間に開口された空気供給口14からスタツク
のバイポーラプレート4の空気供給溝9を通して
他方の空間に開口された空気排出口15へ送り込
まれることになる。 一方、燃料ガスは燃料ガス供給口16からスタ
ツク内部に設けられた貫通孔を経て各バイポーラ
プレートの燃料ガス供給溝に送られ、最終的には
端板8の排出口18から一部破断して示された管
19を介して燃料ガス排出口17へ戻される。 この燃料ガス給排機構は第2図に示すスタツク
の要部展開図に現われている。 第2図において、第1図と同一の部分は同一の
符号を付してある。端板8には仕切部材10a,
10bが喰い込む溝8a,8bと、保持部材12
が入り込む溝8c,8dとが切られている。また
バイポーラプレート4,4ならびに絶縁板7には
仕切部材10bが喰い込む溝4b,10bが切ら
れている。ここでは仕切部材10aに対する溝4
a等は図示されていない。 21は燃料電極、22は電解液含浸マトリツク
ス、23は空気電極で、これらが二つのバイポー
ラプレート4,4に挾持されて燃料電池セル6を
形成する。 24は集電板で、これに対応するものが端板8
の下に絶縁板を挾んで設けられるが、図では主と
して燃料ガスの給排機構を説明するために図示を
省略している。 燃料ガスは第1図の燃料ガス供給口16から絶
縁板7の貫通孔7c、集電板24の孔24c、バ
イポーラプレート4の貫通孔4cのごとく、スタ
ツクとして組立てられた場合に一つの貫通孔を形
成する各孔部を通して送り込まれ、各バイポーラ
プレート4の燃料ガス供給溝25に導かれる。 第3図はバイポーラプレート4を第2図に示す
位置イとこれの鏡像位置ロとに分けて示すもの
で、貫通孔4cから燃料ガス供給溝25に導かれ
た燃料ガスは他端において非貫通孔26に到達
し、Uターンして再び他の燃料ガス供給溝27を
介して逆戻りし貫通孔4dに到る。かかる燃料ガ
スの通流がバイポーラプレート毎に行なわれ、最
終的には第2図の端板8の排出部8eに集められ
て排出口18から第1図に一部を示す管19を介
して燃料ガス排出口17より排出される。 このように、本発明においては燃料ガスはスタ
ツクの内部を空気供給溝と連通しない位置で貫
通する給排路を介して給排するようにしているた
め、従来のようなマニホルドによる給排が不要と
なり、また空気ガスは圧力損失の少ないケース内
部空間そのものを給排空間として活用しているの
で、同様にマニホルドによる給排が不要となる利
点を有する。 また組立にあたつても、ケース1の頂部を開口
可能にしておいて、仕切板10a,10bを案内
板として絶縁板7、集電板24………の順に下か
ら積上げていくだけで容易にスタツクを形成する
ことができ、簡単で組立容易な構造とすることが
できる。 また燃料電池は比較的高温状態で運転される必
要があるが、空気ガスの流通阻止用の断熱材13
を設ける場合には発生熱の損失を少なくできる効
果がある。 なお、本発明の技術的思想の範囲内において、
上述した実施例は種々の変形が可能である。 たとえば燃料ガスの供給路を第3図では非貫通
孔26によりバイポーラプレート毎に閉ループで
戻るように構成しているが、これは貫通孔4cの
ようにスタツク内部全体を貫通させるようにして
全体としてUターン構成とすることも可能であ
る。また燃料ガスの供給路は本質的にはスタツク
内部を貫通する貫通孔によればよいから、図示構
成と異なる流路構成とすることも本発明の範囲内
である。 また、仕切部材の構成も板状ではなく奥行方向
に幅を持つた部材を用いたりないしはケース内壁
を内側に突出させて仕切作用を行なわせるなど
種々の変形が可能である。 本発明は水素ガスと空気ガスとを用いたりん酸
型の燃料電池に用いて好適なるものであるが、冒
頭に述べた様式の燃料電池であれば他の型のもの
にも適用可能である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell that generates electricity using a fuel gas and an oxidizing gas (hereinafter referred to as air gas because air gas is generally used) as a reaction gas. A plurality of bipolar plates each having supply grooves disposed on different surfaces so as to be perpendicular to each other in a non-communicating state, and a plurality of fuel cells each consisting of a fuel electrode, an electrolyte-impregnated matrix, and an air electrode sandwiched between the bipolar plates. The present invention relates to a reactant gas supply/discharge device for a fuel cell in which fuel cells are stacked to form a fuel cell stack and placed in a case. In conventional fuel cells of this type, the manifolds for fuel gas supply and discharge and air gas supply and discharge are anastomosed to the side of the fuel cell stack via gaskets, and in order to prevent reaction gas leakage as much as possible, Measures were taken to improve flatness and use highly elastic rubber gaskets, but using a manifold requires special measures to distribute the reaction gas evenly to each cell, align the anastomosis, or seal the mechanism. Therefore, it was desired to adopt a structure that avoids the use of manifolds as much as possible. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a reaction gas supply/discharge device that does not use a manifold and has a simple structure that is easy to assemble. This object, according to the invention, is to provide a fuel cell of the type mentioned at the outset, with a partition member that substantially prevents the flow of air between the side wall parallel to the air gas flow path of the fuel cell stack and the inner wall of the case. The interior space of the case is divided into two parts, and air gas is sent from one space to the other space through the air supply grooves of each bipolar plate of the fuel cell stack, while the fuel gas communicates with the air supply grooves inside the fuel cell stack. This is achieved by configuring the system to supply and discharge water through a supply and discharge path that penetrates the water at locations where the water is not in use. According to a preferred embodiment of the present invention, the partition member is preferably arranged so as to fit into a groove provided in the side wall of the fuel cell stack, so that the partition member also serves as a holding member for the fuel cell stack. Effects can be obtained. According to another preferred embodiment of the invention, the fuel cell stack may include a heat insulator that prevents air flow between the top of the stack and the inner wall of the case.
In this way, an effect can be obtained in which unnecessary bypass of reaction air gas can be eliminated. Other features and embodiments of the invention will become apparent in the following description of embodiments of the invention. FIG. 1 is a partially cutaway perspective view of an embodiment of the present invention, and is for explaining the principle structure of the present invention. In FIG. 1, reference numeral 1 denotes a case, which in the embodiment has a substantially rectangular parallelepiped shape. Case 1 is shown cut away at the hatched area for the purpose of explaining its interior. Reference numeral 2 denotes a fuel cell stack (hereinafter simply referred to as the stack), which is placed on the pedestal 3 of the case 1, and includes a sandwich body 5 of a fuel electrode, an electrolyte-impregnated matrix, and an air electrode, which are sandwiched between bipolar plates 4 and 4. It is constructed by stacking a plurality of fuel cells 6 consisting of the following. To be more precise, the fuel cell functions as a cell using the lower surface of one bipolar plate, the above-mentioned sandwich structure, and the upper surface of another bipolar plate. The fuel cell stack 2 is equipped with an insulating plate 7 at the bottom and an end plate 8 at the top, and the end plate 8 and the frame 7 are fixed with bolts (not shown) in a stacked state. It's summery. Reference numeral 9 denotes air supply grooves provided on the upper surface of the bipolar plate. In the figure, four grooves are shown per plate for simplicity, but in reality, a large number of grooves are provided. 10a and 10b are partition members that are a feature of the present invention, and are made of an insulating material and have side walls parallel to the air supply groove 9, which is the air gas flow path of the stack 2 , and the case inner wall 1.
1. A holding member 12 is fixed to the case 1 and has a U-shaped cross section and holds the partition member 10a. A holding member corresponding to the partition member 10b is not shown. A heat insulating material 13 is filled between the top of the stack 2 and the upper inner wall of the case 1, and serves to prevent air from circulating. 14 is an air gas supply port, 15 is an air gas discharge port, 16 is a fuel gas supply port, and 17 is a fuel gas discharge port. As is clear from the configuration shown in FIG. 1, the internal space of the case 1 is divided into two spaces by the partition members 10a and 10b (strictly speaking, by the stack 2 and the heat insulating material 13), so air gas flows from one side to the other. The air supply port 14 opened in the space of the stack 2
The air is sent through the air supply groove 9 of the bipolar plate 4 to the air outlet 15 opened in the other space. On the other hand, the fuel gas is sent from the fuel gas supply port 16 through the through hole provided inside the stack to the fuel gas supply groove of each bipolar plate, and is finally partially broken off from the discharge port 18 of the end plate 8. It is returned to the fuel gas outlet 17 via the indicated pipe 19. This fuel gas supply and discharge mechanism is shown in the exploded view of the main parts of the stack shown in FIG. In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals. The end plate 8 has a partition member 10a,
Grooves 8a and 8b into which 10b bites, and holding member 12
Grooves 8c and 8d are cut into which the material enters. Furthermore, grooves 4b, 10b are cut into the bipolar plates 4, 4 and the insulating plate 7, into which the partition member 10b is inserted. Here, the groove 4 for the partition member 10a
a etc. are not shown. 21 is a fuel electrode, 22 is an electrolyte-impregnated matrix, and 23 is an air electrode, which are sandwiched between two bipolar plates 4, 4 to form a fuel cell 6. 24 is a current collector plate, and the corresponding one is the end plate 8.
Although an insulating plate is provided under the fuel gas, illustration thereof is omitted in order to mainly explain the fuel gas supply and discharge mechanism. The fuel gas is supplied from the fuel gas supply port 16 to the through hole 7c of the insulating plate 7, the hole 24c of the current collecting plate 24, and the through hole 4c of the bipolar plate 4 in one through hole when assembled as a stack, as shown in FIG. The fuel gas is fed through the holes forming the fuel gas and guided to the fuel gas supply grooves 25 of each bipolar plate 4. FIG. 3 shows the bipolar plate 4 in a position A and a mirror image position B shown in FIG. It reaches the hole 26, makes a U-turn, returns again via another fuel gas supply groove 27, and reaches the through hole 4d. This flow of fuel gas is performed for each bipolar plate, and is finally collected at the discharge portion 8e of the end plate 8 in FIG. The fuel gas is discharged from the fuel gas discharge port 17. In this way, in the present invention, the fuel gas is supplied and discharged through the supply and discharge passage that penetrates the inside of the stack 2 at a position that does not communicate with the air supply groove, so that supply and discharge using a manifold as in the past is not possible. Moreover, since the internal space of the case itself, which has little pressure loss, is utilized as the supply/discharge space, there is also an advantage that supply/discharge using a manifold is not necessary. Also, during assembly, the top of the case 1 can be opened, and the partition plates 10a and 10b are used as guide plates to stack the insulating plates 7, current collector plates 24, etc. from the bottom in this order. A stack can be formed, and the structure can be simple and easy to assemble. In addition, fuel cells need to be operated at relatively high temperatures, but the heat insulating material 13 for preventing the flow of air gas
This has the effect of reducing the loss of generated heat. Note that within the scope of the technical idea of the present invention,
The embodiments described above can be modified in various ways. For example, in FIG. 3, the fuel gas supply path is configured to return to each bipolar plate in a closed loop using non-through holes 26, but this is done by penetrating the entire inside of the stack like the through hole 4c, so that the fuel gas as a whole A U-turn configuration is also possible. In addition, since the fuel gas supply path may essentially be a through hole penetrating the inside of the stack, it is within the scope of the present invention to have a flow path configuration different from that shown in the drawings. Furthermore, the structure of the partition member can be modified in various ways, such as using a member having a width in the depth direction instead of a plate shape, or making the inner wall of the case protrude inward to perform a partitioning effect. Although the present invention is suitable for use in phosphoric acid fuel cells that use hydrogen gas and air gas, it is also applicable to other types of fuel cells as long as they are of the type described at the beginning. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の一部切欠斜視図、第
2図はその要部展開図、第3図イ,ロはバイポー
ラプレートの斜視図およびその鏡面図である。 1……ケース、……燃料電池スタツク、4…
…バイポーラプレート、6……燃料電池セル、1
0a,10b……仕切部材、13……断熱材。
FIG. 1 is a partially cutaway perspective view of an embodiment of the present invention, FIG. 2 is an exploded view of its essential parts, and FIGS. 3A and 3B are a perspective view and a mirror view of a bipolar plate. 1... Case, 2 ... Fuel cell stack, 4...
...Bipolar plate, 6...Fuel cell, 1
0a, 10b...Partition member, 13...Insulating material.

Claims (1)

【特許請求の範囲】 1 空気ガスと燃料ガスとを供給する溝を異なる
面に互いに非連通状態で直交するよう配設してな
るバイポーラプレートならびに該バイポーラプレ
ート間に挾持された燃料電極と電解液含浸マトリ
ツクスと空気電極とからなる燃料電池セルを複数
個種重ねて燃料電池スタツクとなし、これをケー
ス内に載置してなる燃料電池において、燃料電池
スタツクの空気ガス流路と平行な側壁とケース内
壁との間に、空気の流通を実質的に阻止する仕切
部材を設けてケース内空間を二分し、空気ガスを
一方の空間から燃料電池スタツクの各バイポーラ
プレートの空気供給溝を通して他方の空間に送り
込み、一方、燃料ガスは燃料電池スタツク内部を
空気供給溝と連通しない位置において貫通する給
排路を介して給排するようにしたことを特徴とす
る燃料電池の反応ガス給排装置。 2 特許請求の範囲第1項記載の装置において、
仕切部材を燃料電池スタツクの当該側壁に設けた
溝に喰い込ませて燃料電池スタツクの保持部材と
兼用させたことを特徴とする燃料電池の反応ガス
給排装置。 3 特許請求の範囲第1項記載の装置において、
燃料電池スタツクはその頂部とケース内壁との間
に空気の流通を阻止する断熱材を有することを特
徴とする燃料電池の反応ガス給排装置。
[Claims] 1. A bipolar plate in which grooves for supplying air gas and fuel gas are disposed on different surfaces so as to be perpendicular to each other in a non-communicating state, and a fuel electrode and an electrolyte sandwiched between the bipolar plates. In a fuel cell in which a plurality of fuel cells each consisting of an impregnated matrix and an air electrode are stacked together to form a fuel cell stack, and this is placed in a case, a side wall parallel to the air gas flow path of the fuel cell stack is A partition member that substantially prevents air flow is provided between the inner wall of the case and the inner space of the case is divided into two parts, and air gas is passed from one space to the other space through the air supply grooves of each bipolar plate of the fuel cell stack. 1. A reaction gas supply and discharge device for a fuel cell, characterized in that fuel gas is supplied and discharged through a supply and discharge passage that penetrates the inside of a fuel cell stack at a position that does not communicate with an air supply groove. 2. In the device according to claim 1,
1. A reactant gas supply and discharge device for a fuel cell, characterized in that a partition member is inserted into a groove provided in the side wall of a fuel cell stack so as to serve also as a holding member for the fuel cell stack. 3. In the device according to claim 1,
1. A reactant gas supply/discharge device for a fuel cell, wherein the fuel cell stack has a heat insulating material for preventing air flow between the top of the fuel cell stack and the inner wall of the case.
JP57038362A 1982-03-11 1982-03-11 Reaction-gas supplying and exhausting device provided in fuel cell Granted JPS58155669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038362A JPS58155669A (en) 1982-03-11 1982-03-11 Reaction-gas supplying and exhausting device provided in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038362A JPS58155669A (en) 1982-03-11 1982-03-11 Reaction-gas supplying and exhausting device provided in fuel cell

Publications (2)

Publication Number Publication Date
JPS58155669A JPS58155669A (en) 1983-09-16
JPS6240831B2 true JPS6240831B2 (en) 1987-08-31

Family

ID=12523165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038362A Granted JPS58155669A (en) 1982-03-11 1982-03-11 Reaction-gas supplying and exhausting device provided in fuel cell

Country Status (1)

Country Link
JP (1) JPS58155669A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246569A (en) * 1984-05-22 1985-12-06 Agency Of Ind Science & Technol Fuel cell
JPS60254568A (en) * 1984-05-30 1985-12-16 Fuji Electric Corp Res & Dev Ltd Fuel cell
JPH0775166B2 (en) * 1984-12-21 1995-08-09 株式会社東芝 Molten carbonate fuel cell
JPH0615408Y2 (en) * 1986-08-18 1994-04-20 石川島播磨重工業株式会社 Fuel cell
JPH0754709B2 (en) * 1989-06-16 1995-06-07 大阪瓦斯株式会社 Fuel cell
GB2250130B (en) * 1990-11-23 1995-02-22 Vickers Shipbuilding & Eng Application of fuel cells to power generation systems
JPH04127965U (en) * 1991-05-13 1992-11-20 三洋電機株式会社 shielded fuel cell
DE69224116T2 (en) * 1991-09-03 1998-08-20 Sanyo Electric Co Solid oxide fuel cell system
JP5194502B2 (en) * 2007-03-19 2013-05-08 トヨタ自動車株式会社 Fuel cell stack and manufacturing method and inspection method thereof
KR100875579B1 (en) 2007-10-10 2008-12-23 주식회사 효성 Fuel cell stack assembling device
EP3145017A4 (en) * 2014-05-13 2017-03-22 Sumitomo Precision Products Co., Ltd. Fuel cell

Also Published As

Publication number Publication date
JPS58155669A (en) 1983-09-16

Similar Documents

Publication Publication Date Title
EP0343679B1 (en) Water and heat management for solid polymer fuel cell stack
EP1147568B1 (en) Volume efficient layered manifold assembly for electrochemical fuel cell stacks
EP0807323B1 (en) Edge manifold assembly for an electrochemical fuel cell stack
US6878477B2 (en) Fuel cell flow field plate
US20050042497A1 (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
JPH0131270B2 (en)
JP2001506399A (en) Integrated Reactant and Coolant Fluid Region Layer for Fuel Cell with Membrane Electrode Assembly
EP0627778B1 (en) Fuel cell system and fuel cells therefor
JP4424863B2 (en) Fuel cell
JPS6240831B2 (en)
EP0706229B1 (en) Multi-layered fuel cell assembly
JP3459300B2 (en) Polymer electrolyte fuel cell
EP0568991B1 (en) Solid-electrolyte fuel cell system
US4873155A (en) Fuel cell manifolds
JP4642975B2 (en) Polymer electrolyte fuel cell system
JPS60151972A (en) Layer-built fuel cell
JPH0613099A (en) Fuel cell
JPS58163181A (en) Layer-built fuel cell
JP3056355B2 (en) Solid polymer electrolyte fuel cell
JPH0782874B2 (en) Fuel cell
JP3519987B2 (en) Fuel cell stack
JPH0143818Y2 (en)
JPH0752653B2 (en) Lower holder for fuel cell
JPH0727564Y2 (en) Fuel cell
JPH0414854Y2 (en)