JPH04370664A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH04370664A
JPH04370664A JP3174466A JP17446691A JPH04370664A JP H04370664 A JPH04370664 A JP H04370664A JP 3174466 A JP3174466 A JP 3174466A JP 17446691 A JP17446691 A JP 17446691A JP H04370664 A JPH04370664 A JP H04370664A
Authority
JP
Japan
Prior art keywords
flow path
fuel gas
gas flow
passage
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3174466A
Other languages
Japanese (ja)
Other versions
JP3055227B2 (en
Inventor
Hajime Saito
一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP3174466A priority Critical patent/JP3055227B2/en
Publication of JPH04370664A publication Critical patent/JPH04370664A/en
Application granted granted Critical
Publication of JP3055227B2 publication Critical patent/JP3055227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent drop of the power generation efficiency and deterioration of the battery performance by allowing the fuel gas and oxidating agent gas to flow uniformly in a fuel gas passage and an oxidating agent gas passage. CONSTITUTION:An electrolyte plate 1 is pinched by an anode and a cathode, and a passage 26 for flowing of the fuel gas 19 is provided on the counter plate 1 side about the anode while a passage 27 for flowing of oxidating agent gas 20 is furnished on the counter plate 1 side about the cathode. The passage 26 is so formed that its section area is increment from the incoming side toward the outgoing side, while the passage 27 is so arranged that its section area is decremental from the input side toward the output side.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、燃料電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fuel cells.

【0002】0002

【従来の技術】以下、従来の燃料電池を図6〜図11を
用いて説明する。
2. Description of the Related Art A conventional fuel cell will be explained below with reference to FIGS. 6 to 11.

【0003】図8〜図10に示すように、例えば炭酸リ
チウムや炭酸カリウムなどの炭酸塩を多孔質材に浸み込
ませたり、上記炭酸塩を保持材と一緒にプレス成型した
矩形状の電解質板1を設け、該電解質板1をアノード2
(正極)とカソード3(負極)で挟み、アノード2とカ
ソード3をパンチによって多数の孔を穿孔されたパンチ
プレート4,5で挟み、パンチプレート4,5を燃料ガ
ス流路6及び酸化剤ガス流路7用のスペースを確保する
ための波板8,9で挟んで、基本単位であるセル10を
構成し、該セル10を、図6に示すように、電解質板1
と平行なセンタープレート11を介して多層に積層する
ことによりスタック12を構成する。
As shown in FIGS. 8 to 10, a rectangular electrolyte is produced by impregnating a porous material with a carbonate such as lithium carbonate or potassium carbonate, or by press-molding the carbonate together with a holding material. A plate 1 is provided, and the electrolyte plate 1 is connected to an anode 2.
(positive electrode) and a cathode 3 (negative electrode), and the anode 2 and cathode 3 are sandwiched between punch plates 4 and 5, each having a large number of holes punched therein. A cell 10, which is a basic unit, is constructed by sandwiching the corrugated plates 8 and 9 to secure a space for the flow path 7, and as shown in FIG.
A stack 12 is constructed by laminating multiple layers with a center plate 11 parallel to the center plate 11 interposed therebetween.

【0004】前記アノード2とカソード3並びにパンチ
プレート4,5は、電解質板1よりも小さく形成されて
、図7に平面形状を示すような、枠状のマスクプレート
13,14に収容されており、マスクプレート13,1
4の外縁部がセンタープレート11の外縁部に接合され
て燃料ガス流路6及び酸化剤ガス流路7をシールしてい
る。
The anode 2, cathode 3, and punch plates 4 and 5 are housed in frame-shaped mask plates 13 and 14, which are formed smaller than the electrolyte plate 1 and whose planar shape is shown in FIG. , mask plate 13,1
The outer edge of the center plate 4 is joined to the outer edge of the center plate 11 to seal the fuel gas flow path 6 and the oxidant gas flow path 7.

【0005】上記構造のスタック12には、各層のセル
10における燃料ガス流路6及び酸化剤ガス流路7の一
端側に、図7〜図9に示すように、電解質板1とセンタ
ープレート11及びマスクプレート13,14を上下に
貫通し、燃料ガス流路6と連通される燃料ガス供給路1
5が、又、酸化剤ガス流路7と連通される酸化剤ガス供
給路16が交互に形成されている。
In the stack 12 having the above structure, an electrolyte plate 1 and a center plate 11 are provided at one end side of the fuel gas passage 6 and the oxidizing gas passage 7 in the cells 10 of each layer, as shown in FIGS. 7 to 9. and a fuel gas supply path 1 that vertically penetrates the mask plates 13 and 14 and communicates with the fuel gas flow path 6.
Oxidizing gas supply passages 16 communicating with the oxidizing gas passages 7 are alternately formed.

【0006】同様に、各層のセル10における燃料ガス
流路6及び酸化剤ガス流路7の他端側に、図7〜図9に
示すように、電解質板1とセンタープレート11及びマ
スクプレート13,14を上下に貫通し、燃料ガス流路
6と連通される燃料ガス排出路17が、又、酸化剤ガス
流路7と連通される酸化剤ガス排出路18が交互に形成
されている。
Similarly, as shown in FIGS. 7 to 9, an electrolyte plate 1, a center plate 11, and a mask plate 13 are provided on the other end sides of the fuel gas flow path 6 and the oxidizing gas flow path 7 in the cells 10 of each layer. , 14 and are alternately formed with fuel gas discharge passages 17 communicating with the fuel gas passage 6 and oxidizing gas discharge passages 18 communicating with the oxidizing gas passage 7.

【0007】又、燃料ガス流路6及び酸化剤ガス流路7
の流路断面積は、図11に示すように、一端側から他端
側へかけて一定の大きさとなっている。
[0007] Also, the fuel gas flow path 6 and the oxidant gas flow path 7
As shown in FIG. 11, the cross-sectional area of the flow path is constant from one end to the other end.

【0008】尚、図中19は水素と一酸化炭素を主成分
とする燃料ガス、20は酸素と二酸化炭素を主成分とす
る酸化剤ガス、21はスタック12の下側に形成された
燃料ガス供給口、22はスタック12の下側に形成され
た酸化剤ガス供給口、23はスタック12の下側に形成
された燃料ガス排出口、24はスタック12の下側に形
成された酸化剤ガス排出口である。
In the figure, 19 is a fuel gas whose main components are hydrogen and carbon monoxide, 20 is an oxidant gas whose main components are oxygen and carbon dioxide, and 21 is a fuel gas formed below the stack 12. A supply port, 22 is an oxidant gas supply port formed on the lower side of the stack 12, 23 is a fuel gas discharge port formed on the lower side of the stack 12, and 24 is an oxidant gas formed on the lower side of the stack 12. It is an outlet.

【0009】そして、スタック12下側の燃料ガス供給
口21から燃料ガス供給路15へ供給された燃料ガス1
9は、各層のセル10における燃料ガス流路6へ分配さ
れ、各層の燃料ガス流路6でマスクプレート13の孔を
通してアノード2に接触し、アノード2で燃料ガス19
中の水素の一部が炭酸イオンと反応して水(蒸気)と二
酸化炭素を発生した後、各層のセル10における燃料ガ
ス流路6から燃料ガス排出路17へ集められて、スタッ
ク12下側の燃料ガス排出口23から排出され、又、ス
タック12下側の酸化剤ガス供給口22から酸化剤ガス
供給路16へ供給された酸化剤ガス20は、各層のセル
10における酸化剤ガス流路7へ分配され、各層の酸化
剤ガス流路7でマスクプレート14の孔を通してカソー
ド3に接触し、カソード3で酸化剤ガス20中の酸素と
二酸化炭素の一部がカソード3に接触して炭酸イオンを
発生した後、各層のセル10における酸化剤ガス流路7
から酸化剤ガス排出路18へ集められて、スタック12
下側の酸化剤ガス排出口24から排出され、この時、ア
ノード2における燃料ガス19の反応とカソード3にお
ける酸化剤ガス20の反応によりアノード2とカソード
3の間に生じた電位差によって発電が行われる。
The fuel gas 1 is supplied from the fuel gas supply port 21 on the lower side of the stack 12 to the fuel gas supply path 15.
9 is distributed to the fuel gas passages 6 in the cells 10 of each layer, contacts the anode 2 through the holes in the mask plate 13 in the fuel gas passages 6 of each layer, and the fuel gas 19 at the anode 2
After some of the hydrogen inside reacts with carbonate ions to generate water (steam) and carbon dioxide, it is collected from the fuel gas flow path 6 in the cells 10 of each layer to the fuel gas discharge path 17, and is discharged to the lower side of the stack 12. The oxidizing gas 20 discharged from the fuel gas outlet 23 of the stack 12 and supplied to the oxidizing gas supply path 16 from the oxidizing gas supply port 22 on the lower side of the stack 12 flows through the oxidizing gas flow path in the cells 10 of each layer. The oxidizing gas flow path 7 of each layer contacts the cathode 3 through the hole in the mask plate 14, and at the cathode 3, part of the oxygen and carbon dioxide in the oxidizing gas 20 contacts the cathode 3 and becomes carbonic acid. After generating ions, the oxidizing gas flow path 7 in the cells 10 of each layer
The oxidant gas is collected from
The oxidizing gas is discharged from the lower oxidizing gas outlet 24, and at this time, electricity is generated by the potential difference generated between the anode 2 and the cathode 3 due to the reaction of the fuel gas 19 at the anode 2 and the reaction of the oxidizing gas 20 at the cathode 3. be exposed.

【0010】0010

【発明が解決しようとする課題】しかしながら、上記従
来の燃料電池には、以下のような問題があった。
[Problems to be Solved by the Invention] However, the above conventional fuel cells have the following problems.

【0011】即ち、アノード2における反応は水素と炭
酸イオンから蒸気と二酸化炭素が発生する体積増加反応
であり、又、カソード3における反応は酸素と二酸化炭
素から炭酸イオンが発生するという体積減少反応である
にも拘らず、燃料ガス流路6及び酸化剤ガス流路7の流
路断面積を、図11に示すように、一端側から他端側へ
かけて一定の大きさとしていたので、燃料ガス流路6で
は一端側から他端側へ進むに従い燃料ガス19の圧力が
増加することとなり、反対に酸化剤ガス流路7では一端
側から他端側へ進むに従い酸化剤ガス20の圧力が減少
することとなってしまう。
That is, the reaction at the anode 2 is a volume increase reaction in which steam and carbon dioxide are generated from hydrogen and carbonate ions, and the reaction at the cathode 3 is a volume decrease reaction in which carbonate ions are generated from oxygen and carbon dioxide. Despite this, the cross-sectional area of the fuel gas flow path 6 and the oxidizing gas flow path 7 was set to a constant size from one end to the other end as shown in FIG. In the gas flow path 6, the pressure of the fuel gas 19 increases as it progresses from one end to the other, while in the oxidant gas flow path 7, the pressure of the oxidant gas 20 increases as it progresses from one end to the other end. This will result in a decrease.

【0012】よって、燃料ガス流路6及び酸化剤ガス流
路7内部における燃料ガス19及び酸化剤ガス20の流
れが不均一となり、発電効率の低下や電池性能の劣化の
原因となっていた。
[0012] Therefore, the flow of the fuel gas 19 and the oxidant gas 20 within the fuel gas flow path 6 and the oxidant gas flow path 7 becomes non-uniform, causing a decrease in power generation efficiency and deterioration of battery performance.

【0013】本発明は、上述の実情に鑑み、燃料ガス流
路及び酸化剤ガス流路内部に燃料ガス及び酸化剤ガスを
均一に流すことにより、発電効率の低下や電池性能の劣
化を防止し得るようにした燃料電池を提供することを目
的とするものである。
In view of the above-mentioned circumstances, the present invention prevents a decrease in power generation efficiency and deterioration of battery performance by uniformly flowing fuel gas and oxidant gas inside the fuel gas flow path and the oxidant gas flow path. The object of the present invention is to provide a fuel cell which can obtain the following characteristics.

【0014】[0014]

【課題を解決するための手段】本発明は、電解質板をア
ノードとカソードで挟み、アノードの反電解質板側に燃
料ガスが流通可能な燃料ガス流路を設けると共に、カソ
ードの反電解質板側に酸化剤ガスが流通可能な酸化剤ガ
ス流路を設け、燃料ガス流路を入側から出側へ進むに従
い流路断面積が増加するように形成し、且つ、酸化剤ガ
ス流路を入側から出側へ進むに従い流路断面積が減少す
るように形成したことを特徴とする燃料電池にかかるも
のである。
[Means for Solving the Problems] The present invention has an electrolyte plate sandwiched between an anode and a cathode, and a fuel gas passage through which fuel gas can flow is provided on the side of the anode opposite to the electrolyte plate, and a fuel gas passage is provided on the side of the cathode opposite to the electrolyte plate. An oxidant gas flow path through which the oxidant gas can flow is provided, and the fuel gas flow path is formed so that the cross-sectional area of the flow path increases as it progresses from the inlet side to the outlet side. The present invention relates to a fuel cell characterized in that the cross-sectional area of the flow path decreases as it progresses toward the outlet side.

【0015】[0015]

【作用】本発明によれば、アノードにおける燃料ガスの
反応は体積増加反応であり、カソードにおける酸化剤ガ
スの反応は体積減少反応であるのに対応し、燃料ガス流
路を入側から出側へ進むに従い流路断面積が増加するよ
うに形成し、且つ、酸化剤ガス流路を入側から出側へ進
むに従い流路断面積が減少するように形成したことによ
って、燃料ガス流路内の燃料ガスの圧力及び酸化剤ガス
流路内の酸化剤ガスの圧力が一定となり、燃料ガス流路
内に燃料ガスが又酸化剤ガス流路内に酸化剤ガスが均等
に流れるようになる。
[Operation] According to the present invention, the reaction of the fuel gas at the anode is a volume increase reaction, and the reaction of the oxidant gas at the cathode is a volume decrease reaction. By forming the oxidizing gas flow path so that the flow path cross-sectional area increases as it progresses from the inlet side to the outlet side, the oxidant gas flow path is formed so that the flow path cross-sectional area decreases as it progresses from the inlet side to the outlet side. The pressure of the fuel gas and the pressure of the oxidant gas in the oxidant gas flow path become constant, and the fuel gas and the oxidant gas flow uniformly in the fuel gas flow path and in the oxidant gas flow path, respectively.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0017】図1〜図4は、本発明の一実施例である。FIGS. 1 to 4 show one embodiment of the present invention.

【0018】又、図中、図6〜図11と同一の構成部分
については同一の符号を付すことにより説明を省略する
ものとし、以下、本発明に特有の構成についてのみ説明
して行く。
Further, in the drawings, the same components as those in FIGS. 6 to 11 are given the same reference numerals, and a description thereof will be omitted, and only the structures unique to the present invention will be described below.

【0019】センタープレート25を電解質板1に対し
て斜めに配置することにより、燃料ガス流路26を燃料
ガス供給路15側から燃料ガス排出路17側へ進むに従
い内部を流れる流体の体積増加に応じて流路断面積が増
加する形状とし、且つ、酸化剤ガス流路27を酸化剤ガ
ス供給路16側から酸化剤ガス排出路18側へ進むに従
い内部を流れる流体の体積減少に応じて流路断面積が減
少する形状とする。
By arranging the center plate 25 diagonally with respect to the electrolyte plate 1, the volume of the fluid flowing inside the fuel gas passage 26 increases as it advances from the fuel gas supply passage 15 side to the fuel gas discharge passage 17 side. The oxidant gas flow path 27 has a shape in which the cross-sectional area of the flow path increases accordingly, and the flow rate decreases as the oxidant gas flow path 27 progresses from the oxidant gas supply path 16 side to the oxidant gas discharge path 18 side. Shape that reduces the cross-sectional area of the road.

【0020】次に、作動について説明する。Next, the operation will be explained.

【0021】燃料電池が発電を行う過程については図6
〜図11と同様なので説明を省略する。
FIG. 6 shows the process by which the fuel cell generates electricity.
- Since it is similar to FIG. 11, the explanation will be omitted.

【0022】アノード2における反応は水素と炭酸イオ
ンから蒸気と二酸化炭素が発生する体積増加反応であり
、又、カソード3における反応は酸素と二酸化炭素から
炭酸イオンが発生するという体積減少反応であるが、本
発明では、センタープレート25を電解質板1に対して
斜めに配置することにより、燃料ガス流路26を燃料ガ
ス供給路15側から燃料ガス排出路17側へ進むに従い
内部を流れる流体の体積増加に応じて流路断面積が増加
する形状とし、且つ、酸化剤ガス流路27を酸化剤ガス
供給路16側から酸化剤ガス排出路18側へ進むに従い
内部を流れる流体の体積減少に応じて流路断面積が減少
する形状としたので、燃料ガス流路26では燃料ガス供
給路15側から燃料ガス排出路17側まで燃料ガス19
の圧力が一定となり、又、酸化剤ガス流路27では酸化
剤ガス供給路16側から酸化剤ガス排出路18側まで酸
化剤ガス20の圧力が一定となり、よって、燃料ガス流
路26及び酸化剤ガス流路27内部における燃料ガス1
9及び酸化剤ガス20の流れが均一となり、発電効率の
低下や電池性能の劣化が防止される。
The reaction at the anode 2 is a volume increase reaction in which steam and carbon dioxide are generated from hydrogen and carbonate ions, and the reaction at the cathode 3 is a volume decrease reaction in which carbonate ions are generated from oxygen and carbon dioxide. In the present invention, by arranging the center plate 25 diagonally with respect to the electrolyte plate 1, the volume of fluid flowing inside the fuel gas flow path 26 as it progresses from the fuel gas supply path 15 side to the fuel gas discharge path 17 side is reduced. The oxidant gas flow path 27 has a shape in which the cross-sectional area increases as the oxidant gas increases, and as the oxidant gas flow path 27 progresses from the oxidant gas supply path 16 side to the oxidant gas discharge path 18 side, the volume of the fluid flowing therein decreases. Since the cross-sectional area of the flow path is reduced, the fuel gas 19 flows from the fuel gas supply path 15 side to the fuel gas discharge path 17 side in the fuel gas flow path 26.
The pressure of the oxidizing gas 20 is constant in the oxidizing gas flow path 27 from the oxidizing gas supply path 16 side to the oxidizing gas discharge path 18 side. Fuel gas 1 inside agent gas flow path 27
9 and the oxidant gas 20 become uniform, thereby preventing a decrease in power generation efficiency and deterioration of battery performance.

【0023】図5は本発明の他の実施例であり、電解質
板1とセンタープレート25に対して斜めに配置した以
外は前記実施例のものと同様の構成を備えており、同様
の作用効果を得ることができ、しかもスタック12を矩
型状にすることができるので、製造上及び設置上、前記
実施例のものよりも有利である。
FIG. 5 shows another embodiment of the present invention, which has the same structure as the embodiment described above except that the electrolyte plate 1 and the center plate 25 are arranged diagonally, and has the same effects. Moreover, since the stack 12 can be made into a rectangular shape, it is more advantageous than the previous embodiment in terms of manufacturing and installation.

【0024】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

【0025】[0025]

【発明の効果】以上説明したように、本発明の燃料電池
によれば、燃料ガス流路及び酸化剤ガス流路内部に燃料
ガス及び酸化剤ガスを均一に流すことができるので、発
電効率の低下や電池性能の劣化を防止し得るという優れ
た効果を奏し得る。
Effects of the Invention As explained above, according to the fuel cell of the present invention, the fuel gas and the oxidant gas can be uniformly flowed inside the fuel gas flow path and the oxidant gas flow path, so that the power generation efficiency can be improved. It is possible to achieve an excellent effect of preventing the battery from decreasing or deteriorating the battery performance.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の全体側面図である。FIG. 1 is an overall side view of an embodiment of the present invention.

【図2】本発明にかかる図8と同様の図である。FIG. 2 is a diagram similar to FIG. 8 according to the invention;

【図3】本発明にかかる図9と同様の図である。FIG. 3 is a diagram similar to FIG. 9 according to the invention;

【図4】図1の燃料ガス流路及び酸化剤ガス流路の状態
を示す概略側面図である。
4 is a schematic side view showing the state of the fuel gas flow path and the oxidant gas flow path in FIG. 1. FIG.

【図5】本発明の他の実施例の全体側面図である。FIG. 5 is an overall side view of another embodiment of the present invention.

【図6】従来例の全体側面図である。FIG. 6 is an overall side view of a conventional example.

【図7】図6のマスクプレートの概略平面図である。FIG. 7 is a schematic plan view of the mask plate of FIG. 6;

【図8】図7のVIII−VIII矢視図である。FIG. 8 is a view taken along arrows VIII-VIII in FIG. 7;

【図9】図8のIX−IX矢視図である。FIG. 9 is a view taken along the line IX-IX in FIG. 8;

【図10】図8・図9のX−X矢視図である。FIG. 10 is a view taken along the line XX in FIGS. 8 and 9. FIG.

【図11】図6の燃料ガス流路及び酸化剤ガス流路の状
態を示す概略側面図である。
11 is a schematic side view showing the state of the fuel gas flow path and the oxidant gas flow path in FIG. 6. FIG.

【符号の説明】[Explanation of symbols]

1 電解質板 2 アノード 3 カソード 19 燃料ガス 20 酸化剤ガス 26 燃料ガス流路 27 酸化剤ガス流路 1 Electrolyte plate 2 Anode 3 Cathode 19 Fuel gas 20 Oxidizing gas 26 Fuel gas flow path 27 Oxidizing gas flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電解質板をアノードとカソードで挟み
、アノードの反電解質板側に燃料ガスが流通可能な燃料
ガス流路を設けると共に、カソードの反電解質板側に酸
化剤ガスが流通可能な酸化剤ガス流路を設け、燃料ガス
流路を入側から出側へ進むに従い流路断面積が増加する
ように形成し、且つ、酸化剤ガス流路を入側から出側へ
進むに従い流路断面積が減少するように形成したことを
特徴とする燃料電池。
Claim 1: An electrolyte plate is sandwiched between an anode and a cathode, and a fuel gas flow path is provided on the side of the anode opposite to the electrolyte plate through which fuel gas can flow, and an oxidizer gas passage is provided on the side of the cathode opposite to the electrolyte plate through which oxidant gas can flow. The oxidant gas flow path is formed such that the cross-sectional area of the fuel gas flow path increases as it progresses from the inlet side to the outlet side, and the flow path increases as the oxidant gas flow path progresses from the inlet side to the outlet side. A fuel cell characterized by being formed to have a reduced cross-sectional area.
JP3174466A 1991-06-19 1991-06-19 Fuel cell Expired - Fee Related JP3055227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174466A JP3055227B2 (en) 1991-06-19 1991-06-19 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174466A JP3055227B2 (en) 1991-06-19 1991-06-19 Fuel cell

Publications (2)

Publication Number Publication Date
JPH04370664A true JPH04370664A (en) 1992-12-24
JP3055227B2 JP3055227B2 (en) 2000-06-26

Family

ID=15978980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174466A Expired - Fee Related JP3055227B2 (en) 1991-06-19 1991-06-19 Fuel cell

Country Status (1)

Country Link
JP (1) JP3055227B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333515A2 (en) * 2002-01-15 2003-08-06 H2-Interpower Brennstoffzellensysteme GmbH Elongated fuel cell having cross channels for gas supply
WO2003094269A3 (en) * 2002-05-03 2004-04-29 Powerdisc Dev Corp Ltd Fuel cell plates and assemblies
US9644277B2 (en) 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
US10062913B2 (en) 2012-08-14 2018-08-28 Loop Energy Inc. Fuel cell components, stacks and modular fuel cell systems
US10686199B2 (en) 2012-08-14 2020-06-16 Loop Energy Inc. Fuel cell flow channels and flow fields
US10930942B2 (en) 2016-03-22 2021-02-23 Loop Energy Inc. Fuel cell flow field design for thermal management

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333515A2 (en) * 2002-01-15 2003-08-06 H2-Interpower Brennstoffzellensysteme GmbH Elongated fuel cell having cross channels for gas supply
EP1333515A3 (en) * 2002-01-15 2007-01-03 PowerAvenue Corporation Elongated fuel cell having cross channels for gas supply
WO2003094269A3 (en) * 2002-05-03 2004-04-29 Powerdisc Dev Corp Ltd Fuel cell plates and assemblies
US9644277B2 (en) 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
US10062913B2 (en) 2012-08-14 2018-08-28 Loop Energy Inc. Fuel cell components, stacks and modular fuel cell systems
US10686199B2 (en) 2012-08-14 2020-06-16 Loop Energy Inc. Fuel cell flow channels and flow fields
US10734661B2 (en) 2012-08-14 2020-08-04 Loop Energy Inc. Fuel cell components, stacks and modular fuel cell systems
US11060195B2 (en) 2012-08-14 2021-07-13 Loop Energy Inc. Reactant flow channels for electrolyzer applications
US11489175B2 (en) 2012-08-14 2022-11-01 Loop Energy Inc. Fuel cell flow channels and flow fields
US10930942B2 (en) 2016-03-22 2021-02-23 Loop Energy Inc. Fuel cell flow field design for thermal management
US11901591B2 (en) 2016-03-22 2024-02-13 Loop Energy Inc. Fuel cell flow field design for thermal management

Also Published As

Publication number Publication date
JP3055227B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7569301B2 (en) Fuel cell
US7022430B2 (en) Compact fuel cell with improved fluid supply
JP6263638B2 (en) Assembly method and arrangement for cell system
JP2008293758A (en) Fuel cell
JP2009009837A (en) Fuel cell
JPH04355061A (en) Fuel cell
JP2006236612A (en) Fuel cell
JP5144226B2 (en) Fuel cell
JP2009043665A (en) Fuel cell
JPH04370664A (en) Fuel cell
JPS63119166A (en) Fuel battery
JPS62163264A (en) Separator for fuel cell
JP2005108506A (en) Fuel cell
JP4109569B2 (en) Fuel cell
JP2011171115A (en) Fuel cell
JP3258378B2 (en) Fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JP4390513B2 (en) Fuel cell
JP3355861B2 (en) Fuel cell
JP2006210212A (en) Polymer electrolyte fuel cell
JP3265782B2 (en) Fuel cell separator
JPH02253564A (en) Molten carbonate fuel cell
JPH02253563A (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees