JPH02253564A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH02253564A
JPH02253564A JP1071994A JP7199489A JPH02253564A JP H02253564 A JPH02253564 A JP H02253564A JP 1071994 A JP1071994 A JP 1071994A JP 7199489 A JP7199489 A JP 7199489A JP H02253564 A JPH02253564 A JP H02253564A
Authority
JP
Japan
Prior art keywords
gas
gas flow
fuel
flow path
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1071994A
Other languages
Japanese (ja)
Inventor
Tooru Kaiji
海治 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1071994A priority Critical patent/JPH02253564A/en
Publication of JPH02253564A publication Critical patent/JPH02253564A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To stabilize flow rate even when pressure is applied to gas to make temperature distribution in a unit cell uniform by installing a partition in the passage of fuel gas or oxidizing gas formed in a separator so as to be capable of its U-shaped turning and by forming both passages in the same direction. CONSTITUTION:Oxidizing gas goes in a passage 12b formed in a cathode side separator 12 from an inlet P1 and goes out through a passage 12c by making U-shaped turn so as to come in contact with a cathode 5b to an outlet P2. Fuel gas goes in a passage 11b formed in an anode side separator 11 from an inlet Q1 and goes out through a passage 12 by making U-shaped turn so as to come in contact with an anode 5a to an outlet Q2. The cross section of the passage is about half that of conventional one and its length is double that of conventional one. Gas flow rate is increased even when pressure is applied to reaction gas and cell output is also increased. By installing parallel flow part in a unit cell, temperature distribution in the plane direction is made small and uniform.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は溶融炭酸塩型燃料電池に関するものである。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to molten carbonate fuel cells.

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換するものとして燃料電池が知られてい
る。この燃料電池は、通常、電解質層を挟んで、燃料極
(以下、アノードと称す)及び酸化剤極(以下、カソー
ドと称す)の一対の電極を配置すると共に、アノードに
燃料ガスを、また、カソードに酸化剤ガスをそれぞれ供
給しくこの時に起こる電気化学的反応を利用して上記電
極間から電気エネルギーを取り出すようにしたものであ
り、上記燃料ガスと酸化剤ガスが供給されている限り、
高い変換効率で電気エネルギーを取り出すことができる
ものである。
(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually includes a pair of electrodes, a fuel electrode (hereinafter referred to as anode) and an oxidizer electrode (hereinafter referred to as cathode), with an electrolyte layer in between, and a fuel gas is supplied to the anode. Oxidizing gas is supplied to each cathode, and electrical energy is extracted from between the electrodes by utilizing the electrochemical reaction that occurs at this time.As long as the fuel gas and oxidizing gas are supplied,
Electrical energy can be extracted with high conversion efficiency.

この様な燃料電池としては種々のものがあるが、リン酸
水溶液を電解質としたリン酸型燃料電池に次いで実用化
が期待されているものとして、溶融炭酸塩型燃料電池が
ある。この溶融炭酸塩型燃料電池は、溶融した炭酸塩を
電解質として保持した電解質層を挟んで、アノード及び
カソードの一対の電極を配置して成り、リン酸型燃料電
池、固体電解質型燃料電池などに比べて電池反応が起こ
りやすく、発電効率が高い上、高価な貴金属触媒を必要
としないなどの特徴を有している。
Although there are various types of such fuel cells, molten carbonate fuel cells are expected to be put into practical use next to phosphoric acid fuel cells using an aqueous phosphoric acid solution as an electrolyte. This molten carbonate fuel cell consists of a pair of electrodes, an anode and a cathode, sandwiching an electrolyte layer holding molten carbonate as an electrolyte. In comparison, battery reactions occur more easily, power generation efficiency is higher, and expensive precious metal catalysts are not required.

ところで、この様な溶融炭酸塩型燃料電池を用いて高出
力の発電プラントを構成するためには、複数の単位電池
を直列に積層して燃料電池本体を構成し、各単位電池の
加算出力を得るようにしなければならない。
By the way, in order to construct a high-output power generation plant using such a molten carbonate fuel cell, the fuel cell body is constructed by stacking multiple unit cells in series, and the summed output of each unit cell is I have to try to get it.

第9図に従来の溶融炭酸塩型燃料電池の構成例を示した
。即ち、各単位電池3は、一対の多孔質電極板5a、5
bと、これらの間に介在させたアルカリ炭酸塩から成る
電解質層2とセパレータ4とから構成されている。また
、前記セパレータ4には、画電極に燃料ガスあるいは酸
化剤ガスを供給するためのガス流路6a、6bが形成さ
れている。
FIG. 9 shows an example of the configuration of a conventional molten carbonate fuel cell. That is, each unit battery 3 has a pair of porous electrode plates 5a, 5.
b, an electrolyte layer 2 made of an alkali carbonate interposed therebetween, and a separator 4. Further, the separator 4 is formed with gas passages 6a and 6b for supplying fuel gas or oxidant gas to the picture electrode.

この様に構成された単位電池3を複数個積層して燃料電
池本体1が構成され、その4つの側面に、反応ガスの分
配、回収機能を有するマニホールド8a〜8dが配設さ
れている。このマニホールド8の内の一つに設けられた
酸化剤ガス人口P1から酸化剤ガスを供給すると共に、
隣接するマニホールドに設けられた燃料ガス人口Q+か
ら燃料ガスを供給し、燃料電池本体1内で両反応ガスを
電気化学的に反応させて直流出力を得た後、それぞれと
対向するマニホールドに設けられた酸化剤ガス出口P2
及び燃料ガス出口Q2から外部に排出するように構成さ
れている。即ち、燃料ガスは燃料ガス人口QIが設けら
れたマニホールド8aに入り、ガス流路6aを通って、
単位電池3の1辺分だけの長さをアノード5aと接触し
ながら燃料ガス出口Q2が設けられたマニホールド8C
へ排出される。一方、酸化剤ガスは酸化剤ガス入口P1
が設けられたマニホールド8dに入り、ガス流路6bを
通って、カソード5bと接触しながら酸化剤ガス出口P
2が設けられたマニホールド8bへ排出される。
A fuel cell main body 1 is constructed by stacking a plurality of unit cells 3 configured in this manner, and manifolds 8a to 8d having functions of distributing and collecting reactive gases are arranged on four sides of the fuel cell main body 1. While supplying an oxidizing gas from an oxidizing gas population P1 provided in one of the manifolds 8,
Fuel gas is supplied from the fuel gas population Q+ provided in the adjacent manifold, and both reaction gases are electrochemically reacted in the fuel cell main body 1 to obtain a DC output. Oxidizing gas outlet P2
and is configured to be discharged to the outside from a fuel gas outlet Q2. That is, the fuel gas enters the manifold 8a provided with the fuel gas population QI, passes through the gas flow path 6a,
A manifold 8C in which a fuel gas outlet Q2 is provided while the length of one side of the unit cell 3 is in contact with the anode 5a.
is discharged to. On the other hand, the oxidizing gas is oxidizing gas inlet P1
enters the manifold 8d in which the
2 is discharged to the manifold 8b provided with the following.

(発明が解決しようとする課題) しかしながら、上述した様な構成を有する従来の溶融炭
酸塩型燃料電池においては、以下に述べる様な解決すべ
き課題があった。即ち、溶融炭酸塩型燃料電池の作動温
度である650℃で燃料ガス及び酸化剤ガスを流す際に
、両ガスがガス流路6a、6b内を通過する時の流速は
、その流量及び体積が一定であるため、燃料ガス及び酸
化剤ガスの圧力が常圧の時に比べて、加圧した時の方が
小さくなる。
(Problems to be Solved by the Invention) However, in the conventional molten carbonate fuel cell having the configuration as described above, there were problems to be solved as described below. That is, when flowing fuel gas and oxidant gas at 650° C., which is the operating temperature of a molten carbonate fuel cell, the flow rate when both gases pass through the gas flow paths 6a and 6b is determined by the flow rate and volume. Since the pressures of the fuel gas and oxidant gas are constant, the pressures of the fuel gas and oxidizing gas are smaller when the pressures are pressurized than when they are at normal pressures.

この様にガス流路における流速が小さくなると、レイノ
ルズ数も小さくなり、ガス流によるガスの乱流性が落ち
、電極中への反応ガスの拡散性が悪くなる。その結果、
電池出力が低下するという欠点があった。
When the flow velocity in the gas flow path decreases in this way, the Reynolds number also decreases, the turbulence of the gas due to the gas flow decreases, and the diffusivity of the reaction gas into the electrode deteriorates. the result,
The drawback was that the battery output decreased.

そこで、ガス流路6a、6bの断面積を小さくすること
が考えられるが、その加工寸法には限界があるため、ガ
ス圧力の増加によるガス流速の低下を防止することはで
きなかった。
Therefore, reducing the cross-sectional area of the gas channels 6a and 6b has been considered, but since there is a limit to the processing dimensions, it has not been possible to prevent the gas flow rate from decreasing due to an increase in gas pressure.

また、燃料ガス流路6aと酸化剤ガス流路6bとが直交
して設けられているため、単位電池3内の温度差が大き
く、反応条件が均一でないため、電池性能が低下すると
いった欠点もあった。
Furthermore, since the fuel gas flow path 6a and the oxidant gas flow path 6b are provided perpendicularly to each other, there is a large temperature difference within the unit cell 3, and the reaction conditions are not uniform, resulting in a disadvantage that the cell performance deteriorates. there were.

本発明は、以上の欠点を解消するために提案されたもの
で、その目的は、反応ガスを加圧した場合においても安
定した流速が得られ、また、単位電池内における温度を
均一化することができる、信頼性の高い溶融炭酸塩型燃
料電池を提供することにある。
The present invention was proposed to eliminate the above-mentioned drawbacks, and its purpose is to obtain a stable flow rate even when the reaction gas is pressurized, and to equalize the temperature within the unit cell. The purpose of the present invention is to provide a highly reliable molten carbonate fuel cell that can perform the following steps.

[発明の構成] (課題を解決するための手段) 本発明は、溶融した炭酸塩を電解質とした電解質層を挟
んで、燃料極及び酸化剤極の一対の電極を配置して成る
単位電池を、反応ガス流路の一部を構成するセパレータ
を介して複数積層して積層電池を構成し、前記燃料極に
は燃料ガスを、酸化剤極には酸化剤ガスを供給して成る
溶融炭酸塩型燃料電池において、セパレータに形成され
る燃料ガス流路または酸化剤ガス流路の少なくとも一方
に仕切り板を配設して、ガス流路を2分割し、その内部
を流れる反応ガスがUターンできるように構成し、また
、前記燃料ガス流路と酸化剤ガス流路とを同一方向に形
成したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a unit cell comprising a pair of electrodes, a fuel electrode and an oxidizer electrode, sandwiching an electrolyte layer containing a molten carbonate as an electrolyte. A molten carbonate formed by laminating a plurality of layers through separators that constitute part of a reaction gas flow path to constitute a stacked battery, and supplying a fuel gas to the fuel electrode and an oxidizing agent gas to the oxidizing agent electrode. In a type fuel cell, a partition plate is provided in at least one of the fuel gas flow path or the oxidant gas flow path formed in the separator to divide the gas flow path into two, and the reactant gas flowing inside the partition plate can make a U-turn. The present invention is characterized in that the fuel gas flow path and the oxidant gas flow path are formed in the same direction.

(作用) 本発明の溶融炭酸塩型燃料電池によれば、セパレータに
形成される燃料ガス流路または酸化剤ガス流路の少なく
とも一方に仕切り板を配設して、ガス流路を2分割した
ので、ガス流路の断面積が従来の約半分となり、内部を
流れる反応ガスの流速を速くすることができる。
(Function) According to the molten carbonate fuel cell of the present invention, a partition plate is disposed in at least one of the fuel gas flow path and the oxidant gas flow path formed in the separator to divide the gas flow path into two. Therefore, the cross-sectional area of the gas flow path is about half that of the conventional one, and the flow rate of the reaction gas flowing inside can be increased.

また、燃料ガス流路及び酸化剤ガス流路を同一方向に形
成したことにより、両ガス流路内の燃料ガス及び酸化剤
ガスの流れを並行流あるいは対向流とすることができ、
単位電池内の温度を均一化することができる。
Furthermore, by forming the fuel gas flow path and the oxidant gas flow path in the same direction, the flow of the fuel gas and the oxidant gas in both gas flow paths can be made into parallel flows or counterflows,
The temperature within the unit battery can be made uniform.

(実施例) 以下、本発明の一実施例を第1図に基づいて具体的に説
明する。なお、第9図に示した従来型と同一の部材には
同一の符号を付して、説明は省略する。
(Example) Hereinafter, an example of the present invention will be specifically described based on FIG. Note that the same members as those of the conventional type shown in FIG. 9 are given the same reference numerals, and explanations thereof will be omitted.

本実施例においては、第1図に示した様に、電解質層2
を挟んで一対の多孔質電極であるアノード5a及びカソ
ード5bが配設され、画電極に反応ガスを供給するため
のガス流路が形成されたアノード側セパレータ11及び
カソード側セパレータ12が、各電極5a、5bと接し
て配設されている。また、これらのセパレータ11.1
2には、それぞれその中央部に仕切り板11 a * 
 128が設けられ、この仕切り板11 a +  1
2 Bを挟んでそれぞれ2つのガス流路11b、lie
及び12b、12cが形成されている。なお、アノード
側セパレータ11に形成されたガス流路11b、11c
と、カソード側セパレータ12に形成されたガス流路1
2b、12cとは、互いに平行になるように配設されて
いる。また、本実施例においては、燃料ガス入口部Q1
と酸化剤ガス入口部P1とが反対側に設けられ、対向配
置されたガス流路内のガス流の方向が同一となるように
構成されている。
In this embodiment, as shown in FIG.
An anode 5a and a cathode 5b, which are a pair of porous electrodes, are arranged on both sides of the electrode, and an anode-side separator 11 and a cathode-side separator 12, each of which has a gas flow path for supplying a reaction gas to the picture electrode, are placed between each electrode. 5a and 5b. Also, these separators 11.1
2, each has a partition plate 11a* in the center thereof.
128 is provided, and this partition plate 11 a + 1
Two gas flow paths 11b and lie with 2 B in between, respectively.
and 12b, 12c are formed. Note that the gas channels 11b and 11c formed in the anode side separator 11
and a gas flow path 1 formed in the cathode side separator 12.
2b and 12c are arranged parallel to each other. In addition, in this embodiment, the fuel gas inlet portion Q1
and the oxidizing gas inlet portion P1 are provided on opposite sides, and the directions of gas flows in the opposing gas flow paths are the same.

この様な構成を有する本実施例の溶融炭酸塩型燃料電池
においては、酸化剤ガス入口P!より供給された酸化剤
ガスは、カソード側セパレータ12に形成された一方の
ガス流路12bを通り、カソード5bと接触しながら反
対側に出て、そこでUターンし、他方のガス流路12c
を通って、酸化剤ガス出口P2へと排出される。一方、
燃料ガス人口Q1より供給された燃料ガスは、アノード
側セパレータ11に形成された一方のガス流路11bを
通り、アノード5aと接触しながら反対側に出て、そこ
でUターンし、他方のガス流路11Cを通って、酸化剤
ガス出口Q2へと排出される。
In the molten carbonate fuel cell of this embodiment having such a configuration, the oxidant gas inlet P! The oxidant gas supplied from the cathode side separator 12 passes through one gas flow path 12b formed in the cathode side separator 12, comes out to the opposite side while contacting the cathode 5b, makes a U-turn there, and passes through the other gas flow path 12c.
The oxygen-containing gas is discharged through the oxygen-containing gas outlet P2. on the other hand,
The fuel gas supplied from the fuel gas population Q1 passes through one gas flow path 11b formed in the anode-side separator 11, comes out to the other side while contacting the anode 5a, makes a U-turn there, and enters the other gas flow. The oxidizing gas is discharged through the passage 11C to the oxidant gas outlet Q2.

この様に、ガス流路が仕切り板11 a *  12 
aで仕切られているため、ガス流路の断面積は従来の約
半分、長さはUターンしているため約2倍となるので、
ガス流速は従来に比べて大きくなる。
In this way, the gas flow path is connected to the partition plate 11a*12
Since it is partitioned by a, the cross-sectional area of the gas flow path is about half of the conventional one, and the length is about twice as long as it is U-turned.
The gas flow rate is higher than before.

その結果、電極中への反応ガスの拡散性が良好となり、
電池出力も増大する。
As a result, the diffusion of the reaction gas into the electrode is improved,
Battery output also increases.

また、アノード側セパレータ11に形成されるガス流路
11b、llcと、カソード側セパレータ12に形成さ
れるガス流路12b、12cとが互いに平行となるよう
に形成されているため、それぞれの反応ガスの流れる方
向が同一の並行流となる。この様な並行流は、従来の直
交流に比べて、単位電池内の平面方向の温度差分布を小
さくすることができる。
Furthermore, since the gas flow paths 11b and llc formed in the anode side separator 11 and the gas flow paths 12b and 12c formed in the cathode side separator 12 are formed parallel to each other, each reaction gas They become parallel flows with the same flow direction. Such parallel flow can reduce the temperature difference distribution in the planar direction within the unit cell, compared to the conventional cross flow.

この様に、本実施例によれば、燃料ガス及び酸化剤ガス
をUターンさせることにより、ガス流速を速くすること
ができるので、電池出力が増大し、燃料電池の高性能化
を実現することができる。また、単位電池内に並行流部
を設けることにより、単位電池内の温度の均一化が可能
となる。
In this way, according to this embodiment, by making a U-turn in the fuel gas and oxidant gas, the gas flow rate can be increased, so the cell output can be increased and the performance of the fuel cell can be improved. I can do it. Further, by providing a parallel flow section within the unit battery, it is possible to equalize the temperature within the unit battery.

なお、本発明は上述した実施例に限定されるものではな
く、第2図に示した様に、燃料ガス入口部Q1と酸化剤
ガス入口部P1とが同一側に設けられ、対向配置された
ガス流路内のガス流の方向が同一となるように構成され
ている。また、第3図及び第4図に示した様に、燃料ガ
スと酸化剤ガスが対向流となるように構成しても良い。
Note that the present invention is not limited to the above-mentioned embodiment, and as shown in FIG. The direction of gas flow within the gas flow path is configured to be the same. Further, as shown in FIGS. 3 and 4, the fuel gas and the oxidizing gas may be configured to flow in opposite directions.

さらに、第5図乃至第8図に示した様に、燃料ガスある
いは酸化剤ガスの一方のみをUターンさせ、他方は直進
させて、燃料ガスと酸化剤ガスが並行流あるいは対向流
になるように構成しても良い。この様に反応ガスを一方
向に流す場合には、必ずしもガス流路に仕切り板を設け
る必要はない。また、第2図乃至第8図に示したいずれ
の場合においても、酸化剤ガスと燃料ガスの流速を大き
くし、単位電池内の温度差を小さくすることができる。
Furthermore, as shown in Figures 5 to 8, only one of the fuel gas or the oxidizing gas is made to make a U-turn, while the other is made to go straight, so that the fuel gas and the oxidizing gas flow in parallel or in opposite directions. It may be configured as follows. When the reaction gas is made to flow in one direction in this manner, it is not necessarily necessary to provide a partition plate in the gas flow path. Furthermore, in any of the cases shown in FIGS. 2 to 8, it is possible to increase the flow rate of the oxidizing gas and the fuel gas and to reduce the temperature difference within the unit cell.

[発明の効果] 以上述べた様に、本発明によれば、セパレータに形成さ
れる燃料ガス流路または酸化剤ガス流路の少なくとも一
方に仕切り板を配設して、ガス流路を2分割し、その内
部を流れる反応ガスがUターンできるように構成し、ま
た、前記燃料ガス流路と酸化剤ガス流路とを同一方向に
形成するという簡単な手段によって、反応ガスを加圧し
た場合においても安定した流速が得られ、また、単位電
池内における温度を均一化することができる、信頼性の
高い溶融炭酸塩型燃料電池を提供することができる。
[Effects of the Invention] As described above, according to the present invention, a partition plate is disposed in at least one of the fuel gas flow path and the oxidant gas flow path formed in the separator to divide the gas flow path into two. However, when the reaction gas is pressurized by a simple means of configuring the reaction gas flowing therein to make a U-turn, and forming the fuel gas flow path and the oxidant gas flow path in the same direction. It is possible to provide a highly reliable molten carbonate fuel cell that can obtain a stable flow rate even in the case of a unit cell, and also can equalize the temperature within the unit cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溶融炭酸塩型燃料電池を構成する単位
電池の一実施例を示す斜視図、第2図乃至第8図は本発
明の他の実施例を示す斜視図、第9図は従来の溶融炭酸
塩型燃料電池を構成する単位電池の一例を示す斜視図で
ある。 1・・・燃料電池本体、2・・・電解質層、3・・・単
位電池、4・・・セパレータ、5a・・・アノード、5
b・・・カソード、5a、5b・・・ガス流路、8・・
・マニホールド、11・・・アノード側セパレータ、l
la・・・仕切り板、llb、llc・・・ガス流路、
12・・・カソード側セパレータ、12a・・・仕切り
板、12b、12C・・・ガス流路。
FIG. 1 is a perspective view showing one embodiment of a unit cell constituting a molten carbonate fuel cell of the present invention, FIGS. 2 to 8 are perspective views showing other embodiments of the present invention, and FIG. 9 FIG. 1 is a perspective view showing an example of a unit cell constituting a conventional molten carbonate fuel cell. DESCRIPTION OF SYMBOLS 1... Fuel cell main body, 2... Electrolyte layer, 3... Unit cell, 4... Separator, 5a... Anode, 5
b...Cathode, 5a, 5b...Gas flow path, 8...
・Manifold, 11...Anode side separator, l
la... partition plate, llb, llc... gas flow path,
12... Cathode side separator, 12a... Partition plate, 12b, 12C... Gas flow path.

Claims (1)

【特許請求の範囲】 溶融した炭酸塩を電解質とした電解質層を挟んで、燃料
極及び酸化剤極の一対の電極を配置して成る単位電池を
、反応ガス流路の一部を構成するセパレータを介して複
数積層して積層電池を構成し、前記燃料極には燃料ガス
を、酸化剤極には酸化剤ガスを供給して成る溶融炭酸塩
型燃料電池において、 前記セパレータに形成される燃料ガス流路または酸化剤
ガス流路の少なくとも一方に仕切り板を配設して、ガス
流路を2分割し、その内部を流れる反応ガスがUターン
できるように構成し、また、前記燃料ガス流路と酸化剤
ガス流路とを同一方向に形成したことを特徴とする溶融
炭酸塩型燃料電池。
[Scope of Claims] A unit cell comprising a pair of electrodes, a fuel electrode and an oxidizer electrode, sandwiching an electrolyte layer containing molten carbonate as an electrolyte, is provided by a separator that forms part of a reaction gas flow path. In a molten carbonate fuel cell, in which a plurality of layers are stacked together to form a stacked battery, a fuel gas is supplied to the fuel electrode, and an oxidant gas is supplied to the oxidizer electrode, the fuel formed on the separator is A partition plate is disposed in at least one of the gas flow path or the oxidizing gas flow path to divide the gas flow path into two, and the reactant gas flowing inside the partition plate is configured to make a U-turn. A molten carbonate fuel cell characterized in that a channel and an oxidant gas flow channel are formed in the same direction.
JP1071994A 1989-03-27 1989-03-27 Molten carbonate fuel cell Pending JPH02253564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1071994A JPH02253564A (en) 1989-03-27 1989-03-27 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1071994A JPH02253564A (en) 1989-03-27 1989-03-27 Molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH02253564A true JPH02253564A (en) 1990-10-12

Family

ID=13476537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1071994A Pending JPH02253564A (en) 1989-03-27 1989-03-27 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH02253564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028132A1 (en) * 2000-06-14 2003-04-03 Mitsubishi Heavy Industries, Ltd. Fuel cell device and method of cooling fuel cell
KR100645190B1 (en) * 2005-10-07 2006-11-10 두산중공업 주식회사 Molten carbonate fuel cell provided with directed internal steam reforming type separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028132A1 (en) * 2000-06-14 2003-04-03 Mitsubishi Heavy Industries, Ltd. Fuel cell device and method of cooling fuel cell
KR100645190B1 (en) * 2005-10-07 2006-11-10 두산중공업 주식회사 Molten carbonate fuel cell provided with directed internal steam reforming type separator

Similar Documents

Publication Publication Date Title
US7569301B2 (en) Fuel cell
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7867666B2 (en) Fuel cell with triangular buffers for reactant gas and coolant
JP3530054B2 (en) Fuel cell
RU2262160C2 (en) Fuel cell bank using solid polymeric electrolyte, fuel cell battery, and fuel cell bank operating process
JP2006508496A (en) Fuel cell flow field plate
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JPH03105865A (en) Inside reformed type fuel cell and power plant using it
KR20160136588A (en) Bipolar plate for fuel cell
JP2005005196A (en) Fuel cell system
JP2000082482A (en) Gas separator for fuel cell and the fuel cell, and gas distributing method for fuel cell
JP4031952B2 (en) Fuel cell
JP2003092129A (en) Fuel cell stack and method of supplying reaction gas
JPS63119166A (en) Fuel battery
US7745062B2 (en) Fuel cell having coolant inlet and outlet buffers on a first and second side
JP3258378B2 (en) Fuel cell
CA2499861C (en) Fuel cell
US6969564B2 (en) Fuel cell stack
JPH02253564A (en) Molten carbonate fuel cell
JPH02253563A (en) Molten carbonate fuel cell
JPH04370664A (en) Fuel cell
CN216288531U (en) Power generation unit cell of fuel cell stack
JP2003157864A (en) Fuel cell stack
JPS6160547B2 (en)
JP4228895B2 (en) Solid oxide fuel cell