JPH01246767A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH01246767A
JPH01246767A JP63074968A JP7496888A JPH01246767A JP H01246767 A JPH01246767 A JP H01246767A JP 63074968 A JP63074968 A JP 63074968A JP 7496888 A JP7496888 A JP 7496888A JP H01246767 A JPH01246767 A JP H01246767A
Authority
JP
Japan
Prior art keywords
cooling
cooling plate
fuel cell
stack
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63074968A
Other languages
Japanese (ja)
Inventor
Takashi Ouchi
崇 大内
Toshio Hirota
広田 俊夫
Tomoyoshi Kamoshita
友義 鴨下
Takashi Ujiie
氏家 孝
Atsutomo Ooyama
大山 敦智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63074968A priority Critical patent/JPH01246767A/en
Publication of JPH01246767A publication Critical patent/JPH01246767A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide uniform temp. distribution of a stack and enhance the output characteristic by forming refrigerant passages for a cooling plate in such a construction as intruding through one edge of a four edge polygon and exhausting through the other three edges. CONSTITUTION:The refrigerant intruding a cooling plate 11 for fuel cell stack in the direction shown by the arrow is exhausted in three directions along refrigerant passages furnished radially. Thereby the refrigerant after passing the refrigerant passages to get high temp through heat exchange passes the three edges and raises the temp. of the ends. This decreases the difference between the center of the temp. distribution in the stack and the end part to lead to enhancement of the output characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は天然ガス、メタノール等の炭化水素系の原料を
改質して得た水素リッチな改質ガスを燃料として発電を
行う燃料電池、特にその冷却構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel cell that generates electricity using hydrogen-rich reformed gas obtained by reforming hydrocarbon raw materials such as natural gas and methanol; Especially regarding its cooling structure.

〔従来の技術〕[Conventional technology]

周知のように燃料電池は、電解質層とこの電解質層を挟
んで対向する燃料極と空気極との一対の電極とからなる
単電池を多数積層してスタックを構成し、このスタック
の各単電池毎に燃料極側に前記した水素リッチな改質ガ
スを、空気極側に酸化剤としての空気ないし酸素を供給
することにより電気化学反応によって発電する電池であ
る。
As is well known, a fuel cell consists of a stack consisting of a large number of single cells stacked together, each consisting of an electrolyte layer and a pair of electrodes, a fuel electrode and an air electrode, facing each other with the electrolyte layer in between. This is a battery that generates electricity through an electrochemical reaction by supplying the above-mentioned hydrogen-rich reformed gas to the fuel electrode side and supplying air or oxygen as an oxidizing agent to the air electrode side.

ところでこの種の燃料電池は、その運転温度が高い程、
高い出力特性が得られるが、反面、燃料電池本体を含む
、電池構成部材の耐蝕性の面から運転温度をあまり高く
することができない、一般には運転温度は200℃以下
に制限して運転を行うようにしており、かつこの運転温
度範囲内で実用的な発電が可能なように、燃料極、空気
極の各電極での電気化学反応を促進するため、通常は電
極に例えば白金等の貴金属の触媒を添加している。
By the way, the higher the operating temperature of this type of fuel cell, the higher the
Although high output characteristics can be obtained, on the other hand, the operating temperature cannot be made too high due to the corrosion resistance of the battery components, including the fuel cell itself.Generally, the operating temperature is limited to 200℃ or less. In order to enable practical power generation within this operating temperature range, noble metals such as platinum are usually added to the electrodes to promote electrochemical reactions at the fuel and air electrodes. A catalyst is added.

りん酸型燃料電池の燃料である水素は、通常天然ガスな
どの炭化水素系の原料、またはメタノールなどのアルコ
ール系の原料を改質して作る。この改質により得られた
水素リッチな改質ガスは、水素、二酸化炭素およびその
他の微量成分からなる、前記微量成分として一酸化炭素
を含むが、この成分は電極の触媒の活性を低下させる毒
性(触媒への被毒作用)を有する。この被毒作用は第1
0図のグラフに示すように、燃料電池の温度が低い場合
、あるいは−酸化炭素の濃度が高い場合特に強くなる。
Hydrogen, the fuel for phosphoric acid fuel cells, is usually produced by reforming hydrocarbon-based raw materials such as natural gas or alcohol-based raw materials such as methanol. The hydrogen-rich reformed gas obtained by this reforming is composed of hydrogen, carbon dioxide, and other trace components, including carbon monoxide as the trace component, which is toxic and reduces the activity of the electrode catalyst. (poisoning effect on catalyst). This poisoning effect is the first
As shown in the graph of Figure 0, this effect becomes particularly strong when the temperature of the fuel cell is low or when the concentration of -carbon oxide is high.

したがって上限が200°Cという制限において、でき
るだけ電池の温度を高くすることが望ましい、    
          ′一方、燃料電池は運転時には電
気化学反応に伴う発熱があることから、電池を前記した
運転温度以下に抑えるには発生熱を系外へ除去するため
の強制冷却が必要となる。この場合の冷却方式としては
反応ガスとしての空気を過剰に供給し、電池内部の発生
熱を余剰空気と一緒に系外に排熱する方法もあるが、こ
の方法ではりん酸等の電解質の飛散逸出量が多くなる欠
点がある。このために反応ガス通路と独立してスタック
内に配置した冷却板ないしはセパレート板に水あるいは
空気等の冷却媒体を専用に供給する冷却通路を形成し、
この冷却通路を通じてその一方の開口端から冷却媒体を
導入し・他方の開口端から排出して燃料電池の冷却を行
う水冷方式や空気冷却方式が多く採用されている。
Therefore, given the upper limit of 200°C, it is desirable to keep the battery temperature as high as possible.
'On the other hand, since fuel cells generate heat due to electrochemical reactions during operation, forced cooling is required to remove the generated heat from the system in order to keep the battery below the above-mentioned operating temperature. In this case, one cooling method is to supply excess air as a reaction gas and exhaust the heat generated inside the battery to the outside of the system together with the excess air. The disadvantage is that the amount of escape is large. For this purpose, a cooling passage is formed to exclusively supply a cooling medium such as water or air to a cooling plate or a separate plate arranged in the stack independently of the reaction gas passage.
A water-cooling method or an air-cooling method is often used in which a cooling medium is introduced from one open end of the cooling passage and discharged from the other open end to cool the fuel cell.

第7図はスタック内で複数個の単電池lごとに配置され
た冷却板7を配した従来例を説明する断面図である。単
電池1はマトリックスla、燃料極1b、空気極1c、
燃料極用リブ付セパレーク2、空気極用リプ付セパレー
タ4とで構成されている。燃料極用リプ付セパレータ2
には燃料ガス通路3が設けられて、燃料ガスが燃料極1
bに供給される。同様に空気極用リブ付セパレータ4に
は空気用通路5が設けられて、酸化剤ガスとして空気が
空気極1cに供給されて、単電池内の発電が行われる。
FIG. 7 is a sectional view illustrating a conventional example in which cooling plates 7 are arranged for each of a plurality of single cells l in a stack. The unit cell 1 includes a matrix la, a fuel electrode 1b, an air electrode 1c,
It is composed of a ribbed separator 2 for the fuel electrode and a ribbed separator 4 for the air electrode. Separator with lip for fuel electrode 2
A fuel gas passage 3 is provided in the fuel electrode 1, and the fuel gas is supplied to the fuel electrode 1.
b. Similarly, an air passage 5 is provided in the ribbed separator 4 for the air electrode, and air is supplied as an oxidizing gas to the air electrode 1c, thereby generating electricity within the unit cell.

第8図は従来の冷却板7を示す斜視図で、冷却媒体通路
6は四辺形の一辺より対辺へ直線状に設けられていて、
冷却媒体は一方の入口から他方の出口へ直線的に冷却板
7内を通過する。
FIG. 8 is a perspective view showing a conventional cooling plate 7, in which the cooling medium passage 6 is provided in a straight line from one side of a quadrilateral to the opposite side,
The cooling medium passes linearly through the cooling plate 7 from one inlet to the other outlet.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記のような従来の冷却板を有する燃料電池
においては下記のような問題があった。
However, the conventional fuel cell having a cooling plate as described above has the following problems.

媒体通路入口より供給された低温の冷却媒体はスタック
から熱を奪って次第に温度が高くなる。この結果第9図
の冷却板面内温度分布図に示すごとく、冷却媒体の通流
方向に沿って冷却媒体入口側に近い面域の温度が低く、
逆に出口側に近い面域では温度が高くなるような温度分
布を示す、ここでの図示は°スタックの温度を最高で2
00°C以内に抑えるように冷却している場合の各部の
温度分布を表わしている。
The low-temperature cooling medium supplied from the medium passage entrance absorbs heat from the stack, and its temperature gradually increases. As a result, as shown in the in-plane temperature distribution diagram of the cooling plate in Fig. 9, the temperature in the area near the cooling medium inlet side along the flow direction of the cooling medium is low;
On the contrary, the temperature distribution shows a temperature distribution where the temperature is higher in the area near the exit side.
It shows the temperature distribution of each part when cooling is kept within 00°C.

冷却板7の冷却媒体通路6と直角方向の温度分布は第9
図に示すごとく、両端部では中央部にくらべて温度が低
くなっている。これは両端部側に燃料供給用のマニホー
ルドがあり、これがスタックからの熱をうばい、さらに
マニホールドから外部への放熱が大きいことに起因して
いる。この両端部の温度を下げさせないために、従来か
ら、l)マニホールドの側面をさらに断熱材で覆う、2
)冷却板7の冷却媒体通路6と直角方向の両端部の通路
をふさぎ、冷却媒体を通さないなどの対策がとられて来
た。しかし、1)の対策では、断熱材を多量に要するた
め燃料電池スタックの外形寸法が大きくなり、また2)
の対策では燃料電池の発熱量が変化した場合の温度制御
が困難であるという欠点があった。
The temperature distribution of the cooling plate 7 in the direction perpendicular to the cooling medium passage 6 is as follows.
As shown in the figure, the temperature is lower at both ends than in the center. This is because there are fuel supply manifolds on both ends, which absorb heat from the stack, and furthermore, there is a large amount of heat radiated from the manifolds to the outside. In order to prevent the temperature at both ends from dropping, conventional methods include l) covering the sides of the manifold with an insulating material;
) Countermeasures have been taken, such as blocking the passages at both ends of the cooling plate 7 in a direction perpendicular to the cooling medium passage 6 to prevent passage of the cooling medium. However, countermeasure 1) requires a large amount of insulation material, which increases the external dimensions of the fuel cell stack, and 2)
The disadvantage of this measure is that it is difficult to control the temperature when the amount of heat generated by the fuel cell changes.

そのほか燃料電池を冷状態たとえば40℃程度から起動
する場合、前述した一酸化炭素の触媒への被毒作用を低
減するためにスタックを140°C位まで昇温する必要
があり、このため外部から熱媒体を前記冷却媒体通路6
に供給することにより達成できる。この際の燃料電池ス
タックの温度分布も中心部が高くなり、両端部が低く、
前記運転時と同様の傾向を示す、このように、燃料電池
のスタックに配置された従来の冷却板にあっては、面内
温度分布が、中心部にくらべて端部が低くなるという問
題点があった。
In addition, when starting a fuel cell from a cold state, for example around 40°C, it is necessary to heat the stack to around 140°C in order to reduce the aforementioned poisoning effect of carbon monoxide on the catalyst. The heat medium is passed through the cooling medium passage 6.
This can be achieved by supplying The temperature distribution of the fuel cell stack at this time is also high at the center and low at both ends.
The problem with conventional cooling plates placed in fuel cell stacks, which shows the same tendency as during operation, is that the in-plane temperature distribution is lower at the ends than at the center. was there.

本発明はこの点にかんがみ、前記冷却板の冷却媒体通路
の構造をかえて、燃料電池スタックの温度分布が、中心
部と端部で差が大きくならないように改善し、燃料改質
ガスに含まれる−酸化炭素による電極触媒の被毒作用を
できる限り低く抑えて燃料電池の出力特性を高く維持で
きるようにすることを目的とする。
In view of this point, the present invention changes the structure of the cooling medium passage of the cooling plate to improve the temperature distribution of the fuel cell stack so that the difference between the center and the ends does not become large, and the temperature distribution is The purpose of the present invention is to suppress the poisoning effect of carbon oxide on an electrode catalyst as low as possible, thereby maintaining high output characteristics of a fuel cell.

[課題を解決するための手段〕 上記課題を解決するために、この発明によれば、燃料改
質ガス及び酸化剤用空気を供給する反応ガス通路を形成
した単電池を複数個積層してスタックを形成し、このス
タックに対して冷却媒体を専用に通流させる冷却媒体通
路を備えた冷却板を配置してなる燃料電池において、前
記冷却板はその四辺を形成する一辺より冷却媒体を供給
し、冷却板内に形成される冷却媒体通路を経て他の三辺
より前記冷却媒体を排出するように構成されたものとす
る。
[Means for Solving the Problems] In order to solve the above problems, according to the present invention, a plurality of unit cells each having a reaction gas passage for supplying fuel reforming gas and oxidizer air are stacked and stacked. In a fuel cell in which a cooling plate is arranged, the cooling plate is provided with a cooling medium passage that exclusively flows a cooling medium to the stack, and the cooling plate supplies the cooling medium from one of its four sides. , the cooling medium is discharged from the other three sides via cooling medium passages formed in the cooling plate.

〔作用〕[Effect]

本発明の構成によれば、燃料電池スタックに使用される
冷却板の冷却媒体通路の構造を四辺形の一辺の入口から
冷却媒体が入って、他の三辺より冷却媒体が排出される
ごとく形成したので、スタックの中心部での熱交換で高
温になった冷却媒体が三方向に出ることになって、中心
部にくらべ端部の温度が低下するのを防ぐ。
According to the configuration of the present invention, the structure of the cooling medium passage of the cooling plate used in the fuel cell stack is formed so that the cooling medium enters from the entrance on one side of the quadrilateral and is discharged from the other three sides. Therefore, the cooling medium that has become high in temperature due to heat exchange at the center of the stack exits in three directions, which prevents the temperature at the ends from lowering compared to the center.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明の実施例を示した燃料電池スタック用冷
却板11の斜視図で、矢印の方向から入った冷却媒体が
放射状に設けられた冷却媒体通路にそって、三方向から
排出されるようになっている。
FIG. 1 is a perspective view of a cooling plate 11 for a fuel cell stack showing an embodiment of the present invention, in which cooling medium enters from the direction of the arrow and is discharged from three directions along cooling medium passages provided radially. It has become so.

第2図は本発明の異なる実施例を示した冷却板12の斜
視図で、冷却媒体通路が直交して設けられているので、
矢印の方向から入った冷却媒体が直進と左右に分れて三
方向から排出されるようになっている。
FIG. 2 is a perspective view of a cooling plate 12 showing a different embodiment of the present invention.
The cooling medium enters from the direction of the arrow and is discharged from three directions, one straight and one left and right.

第3図は本発明のさらに異なる実施例を示した冷却板1
3の斜視図で、冷却媒体が矢印の方向より入り直進して
充分に熱せられたあとで前・右・左と分れるように冷却
媒体通路が設けられているので、右・左と分れた冷却媒
体で端部の冷却板の温度の低下を防ぐようになっている
FIG. 3 shows a cooling plate 1 showing a further different embodiment of the present invention.
In the perspective view of 3, the cooling medium enters from the direction of the arrow and goes straight, and after being sufficiently heated, it separates into the front, right, and left, so it separates into the right and left. The cooling medium used to prevent the temperature of the cooling plate at the end from decreasing.

第4図は冷却板11及び12の面内温度分布を示し、冷
却媒体通路を通り熱交換で高温となった冷却媒体が、三
辺の端部を通ることにより従来にくらべ端部の温度が上
がった状態を示す。
Figure 4 shows the in-plane temperature distribution of the cooling plates 11 and 12. The cooling medium, which has become high in temperature due to heat exchange through the cooling medium passage, passes through the edges of the three sides, so the temperature at the edges is lower than in the past. Indicates a raised state.

第5図は冷却板13の面内温度分布を示し、冷却媒体が
中央の高温部を通過した後に端部に流れるので、端部の
温度がさらに上った状態を示す。
FIG. 5 shows the in-plane temperature distribution of the cooling plate 13, and shows a state in which the temperature at the ends has further increased because the cooling medium flows to the ends after passing through the central high temperature section.

第6図は本発明になる冷却板11が組込まれた燃料電池
スタックの組立断面を示した斜視図で、冷却板11に代
って12又は13を差し代えてもまったく同じ構成とす
ることができる。
FIG. 6 is a perspective view showing an assembled cross section of a fuel cell stack incorporating the cooling plate 11 according to the present invention, and even if cooling plate 11 is replaced with 12 or 13, the same structure can be obtained. can.

燃料改質ガスは入口用ヘッダー10aより冷却板11が
配置されている箇所で分割されている燃料改質ガス入口
用マニホールド8aに入りスタック内の各単電池1を通
過し燃料改質ガス出口用マニホールド8bに排出されて
、出口用ヘッダー10bによって外部へ導かれる。
The fuel reformed gas enters the fuel reformed gas inlet manifold 8a, which is divided at the location where the cooling plate 11 is arranged, from the inlet header 10a, passes through each unit cell 1 in the stack, and passes through the fuel reformed gas outlet. It is discharged into the manifold 8b and guided to the outside by the outlet header 10b.

酸化剤ガスと冷却媒体となる空気は共通マニホールド9
aによって、スタック内各単電池1及び冷却板11に供
給されるが、酸化剤ガスとなる空気はスタック内各車電
池を通過して前記燃料改質ガスと各単電池内゛で電気化
学反応をおこして電気を発生したあと、酸化剤ガス排出
用マニホールド9bに集められる。一方冷却板に入った
空気は冷却媒体として冷却板内通路を通り、熱交換して
三方向に排出される。この際前記したごとく、本発明に
よる実施例による冷却板11.12あるいは13を配し
たことで冷却板中心部と外辺端部との温度差が大きくな
らないように、ひいては燃料電池スタックの面方向温度
分布の高低差を少くすることができる。
The oxidant gas and the air that serves as the cooling medium are shared by a common manifold 9.
A is supplied to each cell 1 and cooling plate 11 in the stack, but the air that becomes the oxidizing gas passes through each car battery in the stack and undergoes an electrochemical reaction with the reformed fuel gas in each cell. After generating electricity, it is collected in the oxidant gas discharge manifold 9b. On the other hand, the air that has entered the cooling plate passes through the cooling plate passages as a cooling medium, exchanges heat, and is discharged in three directions. At this time, as mentioned above, by disposing the cooling plates 11, 12 or 13 according to the embodiment of the present invention, the temperature difference between the center part of the cooling plate and the outer edge part does not become large, and furthermore, the temperature difference in the surface direction of the fuel cell stack is It is possible to reduce the height difference in temperature distribution.

〔発明の効果〕〔Effect of the invention〕

この発明によれば一燃料電池のスタックに備えられる冷
却板に、冷却媒体を冷却板の一辺から供給し、残る三辺
より排出するように冷却通路を形成することにより、ス
タック内面内温度分布で低い面域が減少することになり
、これにより燃料電池の運転温度を200℃程度におさ
えるように強制冷却を行う燃料電池において、燃料改質
ガスに含まれる一酸化炭素による電極触媒の被毒の影響
を低く抑えて燃料電池の出力特性向上を図ることができ
る。
According to this invention, a cooling passage is formed in a cooling plate provided in a fuel cell stack so that a cooling medium is supplied from one side of the cooling plate and discharged from the remaining three sides, thereby improving the temperature distribution inside the stack. This results in a decrease in the low surface area, which reduces the possibility of poisoning of the electrode catalyst by carbon monoxide contained in the reformed fuel gas in fuel cells that use forced cooling to keep the operating temperature of the fuel cell at about 200°C. It is possible to improve the output characteristics of the fuel cell while keeping the influence low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の詳細な説明するための燃料電池ス
タックに配置される冷却板の斜視図、第2図は、この発
明の異なる実施例を説明するための同じく冷却板の斜視
図、第3図はこの発明のさらに異なる実施例を説明する
ための同じく冷却板の斜視図、第4図は第1図及び第2
図で説明した冷却板をスタック内に配置した場合の面内
温度分布図、第5図は第3図で説明した冷却板をスタッ
ク内に配置した場合の面内温度分布図、第6図は本発明
になる冷却板が組込まれた燃料電池スタックの組立断面
を示した斜視図、第7図は燃料電池スタック内で従来の
構成になる冷却板7が配置されていることを説明する断
面図、第8図は従来の冷却板を示す斜視図、第9図は第
8図に示す従来の冷却板の面内温度分布図、第10図は
一酸化炭素が燃料電池の電極触媒を被毒する状態を示す
グラフである。 1°・°単電池、8a・・・燃料改質ガス入口用マニホ
ールド、8b・・・燃料改質ガス出口用マニホールド、
9a・・・共通マニホールド、9b・・・酸化剤ガス排
出用マニホールド、loa・・・入口用ヘッダー、10
b・・・出口用ヘッダー、7 、 IL 12.13・
・・冷却板。 ジ 152 記 戸 第 3 関 第 4 図 ? 釘 葛 5 口 第 6 図 炉 758 図 合 合1叩櫨体 ¥39 図 だ新電池の5縫 → L10図
FIG. 1 is a perspective view of a cooling plate disposed in a fuel cell stack for explaining the present invention in detail, and FIG. 2 is a perspective view of the same cooling plate for explaining different embodiments of the present invention. FIG. 3 is a perspective view of the same cooling plate for explaining still another embodiment of the present invention, and FIG.
Figure 5 is an in-plane temperature distribution diagram when the cooling plate explained in Figure 3 is placed in the stack. Figure 6 is an in-plane temperature distribution diagram when the cooling plate explained in Figure 3 is placed in the stack. A perspective view showing an assembled cross section of a fuel cell stack incorporating a cooling plate according to the present invention, and FIG. 7 is a sectional view illustrating the placement of a conventional cooling plate 7 in a fuel cell stack. , Fig. 8 is a perspective view showing a conventional cooling plate, Fig. 9 is an in-plane temperature distribution diagram of the conventional cooling plate shown in Fig. 8, and Fig. 10 shows carbon monoxide poisoning the electrode catalyst of a fuel cell. FIG. 1°·° single cell, 8a... manifold for fuel reformed gas inlet, 8b... manifold for fuel reformed gas outlet,
9a... Common manifold, 9b... Oxidizing gas discharge manifold, loa... Inlet header, 10
b...Exit header, 7, IL 12.13.
...Cooling plate. 152 Kido No. 3 Seki No. 4 Figure? Kugikuzu 5 Mouth No. 6 Illustration Furnace 758 Illustration Ai 1 Beating Body ¥39 Illustration New Battery 5th Stitch → L10 Diagram

Claims (1)

【特許請求の範囲】[Claims] 1)燃料改質ガス及び酸化剤用空気を供給する反応ガス
通路を形成した単電池を複数個積層してスタックを形成
し、このスタックに対して冷却媒体を専用に通流させる
冷却媒体通路を備えた冷却板を配置してなる燃料電池に
おいて、前記冷却板はその四辺を形成する一辺より冷却
媒体を供給し、冷却板内に形成される冷却媒体通路を経
て他の三辺より前記冷却媒体を排出するように構成され
たことを特徴とする燃料電池。
1) A stack is formed by stacking a plurality of single cells each having a reaction gas passage for supplying fuel reforming gas and oxidizer air, and a cooling medium passage is provided to exclusively flow a cooling medium to the stack. In a fuel cell equipped with a cooling plate, the cooling plate supplies a cooling medium from one of its four sides, and supplies the cooling medium from the other three sides through a cooling medium passage formed in the cooling plate. A fuel cell configured to emit.
JP63074968A 1988-03-29 1988-03-29 Fuel cell Pending JPH01246767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63074968A JPH01246767A (en) 1988-03-29 1988-03-29 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63074968A JPH01246767A (en) 1988-03-29 1988-03-29 Fuel cell

Publications (1)

Publication Number Publication Date
JPH01246767A true JPH01246767A (en) 1989-10-02

Family

ID=13562602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63074968A Pending JPH01246767A (en) 1988-03-29 1988-03-29 Fuel cell

Country Status (1)

Country Link
JP (1) JPH01246767A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098725A3 (en) * 2002-05-14 2004-12-09 Modine Mfg Co Method and apparatus for vaporizing fuel for a reformer fuel cell system
WO2007043636A1 (en) * 2005-10-11 2007-04-19 Toyota Jidosha Kabushiki Kaisha Gas separator for fuel cell and fuel cell
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
WO2003098725A3 (en) * 2002-05-14 2004-12-09 Modine Mfg Co Method and apparatus for vaporizing fuel for a reformer fuel cell system
WO2007043636A1 (en) * 2005-10-11 2007-04-19 Toyota Jidosha Kabushiki Kaisha Gas separator for fuel cell and fuel cell
JP2007109425A (en) * 2005-10-11 2007-04-26 Toyota Motor Corp Gas separator for fuel cell and fuel cell
US8518601B2 (en) 2005-10-11 2013-08-27 Toyota Jidosha Kabushiki Kaisha Gas separator for fuel cells and fuel cell equipped with gas separator
DE112006002851B4 (en) * 2005-10-11 2019-08-29 Toyota Jidosha Kabushiki Kaisha Gas separator for fuel cells and fuel cell

Similar Documents

Publication Publication Date Title
JP2876126B2 (en) Electrochemical battery power generation device and operation method thereof
JP3102969B2 (en) Internal reforming fuel cell device
US5100743A (en) Internal reforming type molten carbonate fuel cell
US7691511B2 (en) Fuel cell having coolant flow field wall
US20030129475A1 (en) Fuel cell
JP3098871B2 (en) Internal reforming fuel cell device and method of operating the same
KR102109057B1 (en) Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
JP6745920B2 (en) Bipolar plate with variable width in the reaction gas channel in the inlet region of the active region, fuel cell stack, fuel cell system with such bipolar plate, and vehicle
JP3319609B2 (en) Fuel cell
JP2510676B2 (en) Fuel cell
US7097929B2 (en) Molten carbonate fuel cell
JPH097624A (en) Solid electrolytic fuel cell
JPH01246767A (en) Fuel cell
JPH1167258A (en) Fuel cell
JP2928251B2 (en) Fuel cell with internal reforming
JP3575650B2 (en) Molten carbonate fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JP3355861B2 (en) Fuel cell
JP2009129701A (en) Fuel cell module
JPH06105625B2 (en) Molten carbonate fuel cell
JP2965290B2 (en) Molten carbonate fuel cell system
JP2865025B2 (en) Molten carbonate fuel cell
JPS63155561A (en) Fuel cell
JPH05258758A (en) Internally reformed type molten carbonate fuel battery
JP2603964B2 (en) Fuel cell