JPS63155561A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS63155561A
JPS63155561A JP61299851A JP29985186A JPS63155561A JP S63155561 A JPS63155561 A JP S63155561A JP 61299851 A JP61299851 A JP 61299851A JP 29985186 A JP29985186 A JP 29985186A JP S63155561 A JPS63155561 A JP S63155561A
Authority
JP
Japan
Prior art keywords
cooling
outlet
inlet
tube
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61299851A
Other languages
Japanese (ja)
Inventor
Katsunori Sakai
勝則 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61299851A priority Critical patent/JPS63155561A/en
Publication of JPS63155561A publication Critical patent/JPS63155561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To uniformize a temperature distribution over the surface of a cell, by providing such an arrangement as positioning a cooling tube for a coolant inlet on the inlet side of an oxidizer passage and positioning a cooling tube for a coolant outlet on the outlet side of the oxidizer passage. CONSTITUTION:A cooling effect is excellent in the vicinity of the inlet of an oxidizer passage because a coolant inlet tube 13 supplied with a coolant at comparatively lower temperature than that of an inlet tube 11 is disposed there. In addition, a cooling outlet tube 14 supplied, from a return tube 15, with a coolant having comparatively high temperature due to heat exchange carried out at the cooling inlet tube 13, is disposed in the vicinity of the outlet of the oxidizer passage. Then, since the temperature in the vicinity of the outlet of the oxidizer passage is comparatively low, sufficient cooling performance can be satisfied even at the cooling outlet tube 14 through which coolant having comparatively high temperature flows. According to the abovementioned reason, any local high temperature on the flat face of a cell can be suppressed so as to maintain the temperature on the surface of the cell at a uniform level.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は燃料電池の冷却に関し、特に電池表面の温度分
布の不均一を解消するようにした冷却板を有する燃料電
池に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to cooling of fuel cells, and particularly relates to a fuel cell having a cooling plate that eliminates uneven temperature distribution on the cell surface. .

(従来の技術) 従来、燃料の有しているエネルギーを直接電気エネルギ
ーに変換する装置として燃料電池が知られている。この
燃料電池は1通常電解質を含浸したマトリックスを挟ん
で一対の多孔質電極を配置するとともに、一方の電極背
面に水素等の流体燃料を接触させ、また他方の電極背面
に酸素等の流体酸化剤を接触させ、このときに起る電気
化学反応を利用して、上記電極間から電気エネルギーを
取り出す様にしたものであり、前記燃料と酸化剤が供給
されている限り高い効率で、電気エネルギーを取り出す
ことができろものである。
(Prior Art) Fuel cells are conventionally known as devices that directly convert energy contained in fuel into electrical energy. This fuel cell usually consists of a pair of porous electrodes sandwiching a matrix impregnated with an electrolyte, a fluid fuel such as hydrogen is brought into contact with the back of one electrode, and a fluid oxidant such as oxygen is brought into contact with the back of the other electrode. The system uses the electrochemical reaction that occurs at this time to extract electrical energy from between the electrodes, and as long as the fuel and oxidizer are supplied, electrical energy can be extracted with high efficiency. It is something that can be taken out.

第3図は、従来の単位セルの構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of a conventional unit cell.

第3図において単位セルは、電解質を含浸したマトリッ
クス1に接する面に触媒が塗布され、多孔質体で形成さ
れたアノード電極2及び下側に前記マトリックス1に接
する面に触媒が塗布され同じく多孔質体で形成されたカ
ソードffH4i3を配置して構成される。アノード電
極2及びカソード電極3は、夫々マトリックス1の反対
側に燃料が流れる燃料ガス流通路4及び酸化剤ガスが流
れる酸化剤ガス流通路5が、互いに直行する向きに設け
である。一般にリン酸型燃料電池においては、燃料ガス
は水素であり、酸化剤ガスは空気中の酸素である。燃料
電池は、単位セルより発生する電圧が1v以下と低いた
め、通常第4図に示す様に400〜500枚の単位セル
6を耐熱性及び耐リン酸性セパレータープレート7を介
して積層し高電圧を得るようにしである。上記電気化学
反応は。
In FIG. 3, the unit cell has an anode electrode 2 formed of a porous material with a catalyst coated on the surface in contact with the matrix 1 impregnated with an electrolyte, and a catalyst coated on the bottom surface in contact with the matrix 1, which is also porous. It is constructed by arranging a cathode ffH4i3 formed of a mass. In the anode electrode 2 and the cathode electrode 3, a fuel gas passage 4 through which fuel flows and an oxidant gas passage 5 through which oxidant gas flows are provided on opposite sides of the matrix 1, respectively, so as to be orthogonal to each other. Generally, in a phosphoric acid fuel cell, the fuel gas is hydrogen and the oxidant gas is oxygen in the air. In fuel cells, the voltage generated by a unit cell is as low as 1V or less, so 400 to 500 unit cells 6 are usually stacked together with heat-resistant and phosphoric acid-resistant separator plates 7 in between, as shown in FIG. 4, to generate a high voltage. This is how you get it. The above electrochemical reaction is.

発熱反応であるため、fi層に際しては、温度上昇を防
止するため数枚の単位セル毎に冷却板9を挿入し、燃料
電池より発生する熱を外部へ取り出すよう構成している
Since this is an exothermic reaction, a cooling plate 9 is inserted for every several unit cells in the FI layer to prevent a rise in temperature, and the heat generated by the fuel cell is taken out to the outside.

第5図に示すように冷却板9には通常圧縮成型グラファ
イト樹脂組成物で作られており、内部に絶縁処理を施し
た直径3IIE11程度の冷却管10が等間隔で複数本
埋め込まれている。冷媒として通常水が使用され、冷却
入口管11より導入され、冷媒出口管12より排出され
る。
As shown in FIG. 5, the cooling plate 9 is usually made of a compression-molded graphite resin composition, and a plurality of cooling pipes 10 each having a diameter of about 3IIE11 and subjected to insulation treatment are embedded therein at equal intervals. Water is usually used as a refrigerant, and is introduced through a cooling inlet pipe 11 and discharged through a refrigerant outlet pipe 12.

(発明が解決しようとする問題点) ところで、燃料ガスに含まれる水素、及び酸化剤ガスに
含まれる酸素は、それぞれ流通路4,5と通過中に、こ
のときに起る電気化学反応により連続的に消費される。
(Problems to be Solved by the Invention) By the way, the hydrogen contained in the fuel gas and the oxygen contained in the oxidizing gas are continuously caused by an electrochemical reaction occurring during the passage through the flow passages 4 and 5, respectively. consumed.

そのため流通路4,5の入口付近では、水素及び酸素分
圧が高くなり、流通路4,5の出口に近づくにつれて分
圧は小さくなる。この結果、電気化学反応は、分圧の高
い、流通路4,5の入口付近で生じやすくなり、セル平
面の電流密度分布も供給水素及び酸素入口付近に集中す
る傾向がある。これよりセル平面温度も、供給水素及び
W1素入口付近が高く、出口へ行くほど低くなる傾向に
ある。
Therefore, hydrogen and oxygen partial pressures become high near the entrances of the flow passages 4 and 5, and decrease as they approach the exits of the flow passages 4 and 5. As a result, electrochemical reactions tend to occur near the inlets of the flow paths 4 and 5 where the partial pressure is high, and the current density distribution on the cell plane also tends to concentrate near the inlets of supplied hydrogen and oxygen. From this, the cell plane temperature also tends to be high near the supply hydrogen and W1 element inlets, and to become lower toward the outlet.

第6図は、発明者らが、セル平面温度分布を測定した結
果を表わしたグラフである。これより通常の運転条件、
運転温度205℃酸素利用率UA=60%、水素利用率
80%において、酸素流通路に沿った温度の方が燃料流
通路に沿った温度分布より、傾斜が大きく、V入口口付
近と出口付近の温度差が10〜15℃程度生じているの
が現状であるこの局部的な高温は、fl!池を構成する
電極、マトリックス等の寿命に影響を及ぼすと共に電池
内での反応の不均一をもたらし電池の性能低下を生じる
FIG. 6 is a graph showing the results of measurements of cell plane temperature distribution by the inventors. Under normal operating conditions,
At an operating temperature of 205°C, oxygen utilization rate UA = 60%, and hydrogen utilization rate of 80%, the temperature distribution along the oxygen flow path has a larger slope than the temperature distribution along the fuel flow path, and the temperature distribution near the V inlet and near the outlet This local high temperature, which currently has a temperature difference of about 10 to 15 degrees Celsius, is caused by fl! This affects the life of the electrodes, matrix, etc. that make up the battery, and also causes non-uniform reactions within the battery, resulting in a decrease in battery performance.

本発明は、これらの点を考慮してなされたものであり、
電極表面の温度を一様に保ち得るような冷却板を備えた
燃料電池を提供することを目的とする。
The present invention has been made in consideration of these points,
An object of the present invention is to provide a fuel cell equipped with a cooling plate that can keep the temperature of the electrode surface uniform.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、前記冷却板には冷媒と導入
する複数の冷却管が埋設され、酸化剤流通路入口の方に
冷媒入口冷却管が位置し、酸化剤流通路出口の方に冷媒
出口冷却管が位置するよう配置したことを特徴とする。
(Means for solving the problem) In order to achieve the above object, a plurality of cooling pipes for introducing the refrigerant are embedded in the cooling plate, and the refrigerant inlet cooling pipe is located toward the entrance of the oxidizer flow path. , the refrigerant outlet cooling pipe is disposed toward the outlet of the oxidizer flow path.

(作用) 上記の如く構成することにより、酸化剤流通路人口付近
は比較的温度の低い冷却媒体により冷却される為、冷却
効果が優れている。これに対し酸化剤流通路出口付近は
温度の高い冷却媒体により冷却される為、冷却効果は悪
いが、このようにすることにより均一に冷却される。
(Function) With the above configuration, the vicinity of the oxidant flow path population is cooled by a cooling medium having a relatively low temperature, so that the cooling effect is excellent. On the other hand, the vicinity of the outlet of the oxidizer flow path is cooled by a high-temperature cooling medium, so the cooling effect is poor, but by doing so, it is uniformly cooled.

(実施例) (構成) 以下本発明を第1図に示す一実施例について説明する。(Example) (composition) The present invention will be described below with reference to an embodiment shown in FIG.

第1図において冷却板9に冷却入口管13及び冷却出口
管14が埋設され、冷却媒体は、人口管11より冷却入
口管13へ尋人されリターン管15を通り、冷却出口管
14を通過し、出口管12より排出される様に構成され
る。
In FIG. 1, a cooling inlet pipe 13 and a cooling outlet pipe 14 are embedded in the cooling plate 9, and the cooling medium is transferred from the artificial pipe 11 to the cooling inlet pipe 13, passes through the return pipe 15, and passes through the cooling outlet pipe 14. , and is configured to be discharged from the outlet pipe 12.

この時冷却入口管13及び冷却出口管14の埋設に当っ
ては、酸化剤流通方向と直交するような向きに配置され
る。
At this time, when embedding the cooling inlet pipe 13 and the cooling outlet pipe 14, they are arranged in a direction perpendicular to the oxidizing agent flow direction.

(作用) 次に上記の様に植成した本発明の燃料電池の冷却板9の
作用について説明する。酸化剤流通路入口付近は入口管
11より比較的温度の低い冷却媒体が供給される冷却入
口管13が配置されているため、冷却効果が優れている
(Function) Next, the function of the cooling plate 9 of the fuel cell of the present invention implanted as described above will be explained. A cooling inlet pipe 13 to which a cooling medium having a relatively lower temperature than the inlet pipe 11 is supplied is arranged near the inlet of the oxidant flow path, so that the cooling effect is excellent.

一方、酸化剤流通路出ロ付近は、冷却人口管13で熱交
換が行なわれた比較的温度の高い冷却媒体がリターン管
15より供給される冷却出口管14が配置されている。
On the other hand, near the outlet of the oxidizer flow path, a cooling outlet pipe 14 is arranged to which a relatively high temperature cooling medium, which has undergone heat exchange in the cooling manifold pipe 13, is supplied from a return pipe 15.

この時酸化剤流通路出口付近の温度は、比較的低いため
、比較的温度の高い冷却媒体が流れる冷却出口管14で
も十分冷却能力は満足できる。この様に酸化剤流入口付
近の冷却効果が向上したことで、電池平面の局部的な高
温を抑制でき、電池平面温度を一様に保つ事ができる。
At this time, the temperature near the outlet of the oxidizing agent flow path is relatively low, so that even the cooling outlet pipe 14 through which a relatively high temperature cooling medium flows can sufficiently satisfy the cooling capacity. By improving the cooling effect near the oxidizing agent inlet in this way, it is possible to suppress local high temperatures on the battery plane, and it is possible to maintain a uniform battery plane temperature.

(他の実施例) 次に本発明の他の実施例を第2図で説明する。(Other examples) Next, another embodiment of the present invention will be described with reference to FIG.

第2図(a)において冷却板9に冷却入口管13及び冷
却出口管14が埋設され、冷却媒体は入口管11より冷
却入口管13へ導入されリターン管15を通り冷却出口
管14を通過し出口管12より排出される様に構成され
る。この時冷却入口管13及び冷却出口管14の埋設に
あたっては、冷却入口’EF13及び冷却出口管14が
酸化剤流通方向と直交するような向きで、かつ冷却入口
管13が酸化剤入口に近づくにつれて。
In FIG. 2(a), a cooling inlet pipe 13 and a cooling outlet pipe 14 are embedded in the cooling plate 9, and the cooling medium is introduced from the inlet pipe 11 into the cooling inlet pipe 13, passes through the return pipe 15, and passes through the cooling outlet pipe 14. It is configured to be discharged from an outlet pipe 12. At this time, when burying the cooling inlet pipe 13 and the cooling outlet pipe 14, the cooling inlet 'EF13 and the cooling outlet pipe 14 should be oriented perpendicularly to the oxidizing agent flow direction, and the cooling inlet pipe 13 should be buried as it approaches the oxidizing agent inlet. .

冷却入口管13の相互間隔が密となる様に配置される。The cooling inlet pipes 13 are arranged so that they are closely spaced from each other.

これより、酸化剤入口付近の冷却板9単位面積あたりの
冷却管表面積が増加するため、一層酸化剤入口付近の冷
却効果は向上し、本実施例と同様な電池電池性能の向上
をもたらす事ができる。
As a result, the surface area of the cooling pipe per unit area of the cooling plate 9 near the oxidizer inlet increases, so the cooling effect near the oxidizer inlet is further improved, and the same improvement in battery performance as in this example can be achieved. can.

2番目の他の実施例を第2図(b)に示す。第2図(b
)において、冷却板9に冷却入口管13及び冷却出口管
14が埋設され、冷却媒体は入口管11より冷却入口管
13へ導入され、各個々の冷却管に設けられたリターン
管15を通り冷却出口管14を通過し、出口管12より
排出される様に構成される。
A second alternative embodiment is shown in FIG. 2(b). Figure 2 (b
), a cooling inlet pipe 13 and a cooling outlet pipe 14 are embedded in the cooling plate 9, and the cooling medium is introduced from the inlet pipe 11 to the cooling inlet pipe 13, passes through a return pipe 15 provided in each individual cooling pipe, and is cooled. It is configured to pass through the outlet pipe 14 and be discharged from the outlet pipe 12.

本実施例と同様に比較的温度の低い冷却媒体が供給され
る冷却入口管13付近が冷却効果が優れているため、電
池平面の温度を均一にする事ができるのに加え、冷却管
個々にリターン管が設けられているため、冷却管個々の
流量の不均一が小さくなり、より均一な冷却効果が得ら
れる。
As in this embodiment, the cooling effect is excellent near the cooling inlet pipe 13 where relatively low-temperature cooling medium is supplied. Since the return pipe is provided, non-uniformity in the flow rate of each cooling pipe is reduced, and a more uniform cooling effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は次の様な効果がある。 As explained above, the present invention has the following effects.

酸化剤流通路入口付近に冷却媒体の往路のみである冷却
入口管のみを配置し、冷却効果が向上する様に構成した
ので酸化剤流入口付近の局部的な高温を抑制でき、電池
表面の温度分布を一様にすることが可能であり、電池の
長寿命化が計れるとともに電池性能の向上が計れる効果
がある。
Only the cooling inlet pipe, which is the outgoing path for the cooling medium, is placed near the oxidizer flow path inlet to improve the cooling effect, so local high temperatures near the oxidizer inlet can be suppressed, and the temperature on the battery surface can be reduced. It is possible to make the distribution uniform, which has the effect of prolonging the life of the battery and improving battery performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷却板の一実施例を示す正面ヤ図、第
2図(a)及び(b)は本発明の冷却板の他の実施例を
示す上面図、第3図は単位セルの構成を示す斜視図、第
4図は燃料電池の構成を示す斜視図、第5図は従来の冷
却板を示す上面図、第6図は電池表面の温度分布を示す
図で、同図(a)は単位セルの表面の燃料と空気の流れ
を模式的に示す図、同図(b)は燃料流通方向の温度分
布を示す図、同図(c)は空気流通方向の温度分布を示
す図である。 9・・・冷却板     11・・・入口管12・・・
出口管     13・・・冷却入口管14・・・冷却
出口管   15・・・リターン管代理人 弁理士 則
 近 憲 佑 同  三俣弘文 第1図 第2図(α) ll 第5図 /り 第2図(b) 第 6 図(cL)
FIG. 1 is a front view showing one embodiment of the cooling plate of the present invention, FIGS. 2(a) and (b) are top views showing other embodiments of the cooling plate of the present invention, and FIG. 3 is a unit 4 is a perspective view showing the structure of a fuel cell, FIG. 5 is a top view showing a conventional cooling plate, and FIG. 6 is a diagram showing the temperature distribution on the cell surface. (a) is a diagram schematically showing the flow of fuel and air on the surface of a unit cell, (b) is a diagram showing the temperature distribution in the fuel flow direction, and (c) is a diagram showing the temperature distribution in the air flow direction. FIG. 9...Cooling plate 11...Inlet pipe 12...
Outlet pipe 13...Cooling inlet pipe 14...Cooling outlet pipe 15...Return management agent Patent attorney Noriyoshi Chika Noriyuki Hirofumi Mitsumata Figure 1 Figure 2 (α) ll Figure 5/Ri Figure 2 Figure (b) Figure 6 (cL)

Claims (1)

【特許請求の範囲】[Claims] (1)燃料が流通する燃料流通路及び、酸化剤が流通す
る酸化剤流通路を有する一対のガス拡散電極間に電解質
を保持するマトリックスを配してなる単位セルを複数個
積層して電池本体を形成し、前記電池本体の側面に、前
記ガス拡散電極へ燃料及び酸化剤を夫々供給及び排出す
るマニホールドを配置し、前記単位セルの間に冷却板を
挿入して構成される燃料電池において前記冷却板には冷
媒を導入する複数の冷却管が埋設され、酸化剤流通路入
口の方に冷媒入口冷却管が位置し、酸化剤流通路出口の
方に冷媒出口冷却管が位置するよう配置したことを特徴
とする燃料電池。
(1) A battery body made by stacking a plurality of unit cells each having a matrix for holding an electrolyte between a pair of gas diffusion electrodes having a fuel flow path through which fuel flows and an oxidizer flow path through which oxidant flows. , a manifold for supplying and discharging fuel and oxidant to and from the gas diffusion electrode, respectively, is arranged on the side surface of the cell body, and a cooling plate is inserted between the unit cells. Multiple cooling pipes for introducing refrigerant are embedded in the cooling plate, and the cooling pipes are arranged so that the refrigerant inlet cooling pipe is located at the entrance of the oxidizer flow path, and the refrigerant outlet cooling pipe is located at the exit of the oxidizer flow path. A fuel cell characterized by:
JP61299851A 1986-12-18 1986-12-18 Fuel cell Pending JPS63155561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299851A JPS63155561A (en) 1986-12-18 1986-12-18 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299851A JPS63155561A (en) 1986-12-18 1986-12-18 Fuel cell

Publications (1)

Publication Number Publication Date
JPS63155561A true JPS63155561A (en) 1988-06-28

Family

ID=17877711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299851A Pending JPS63155561A (en) 1986-12-18 1986-12-18 Fuel cell

Country Status (1)

Country Link
JP (1) JPS63155561A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418576U (en) * 1987-07-23 1989-01-30
JPH0315160A (en) * 1989-03-28 1991-01-23 Fuji Electric Co Ltd Fuel cell cooling unit
WO2006134867A1 (en) * 2005-06-13 2006-12-21 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2007141551A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell stack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418576U (en) * 1987-07-23 1989-01-30
JPH0315160A (en) * 1989-03-28 1991-01-23 Fuji Electric Co Ltd Fuel cell cooling unit
WO2006134867A1 (en) * 2005-06-13 2006-12-21 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2007141551A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell stack
JP4675757B2 (en) * 2005-11-16 2011-04-27 本田技研工業株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
TWI225718B (en) Solid polymer cell assembly
US6303245B1 (en) Fuel cell channeled distribution of hydration water
US7691511B2 (en) Fuel cell having coolant flow field wall
US20100068599A1 (en) Fuel cell stack
EP0831543A1 (en) Gas humidifying device for use with a fuel cell
JPS6016705B2 (en) Fuel cell device and its operation method
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JPH1055812A (en) Fuel cell
JPH0696782A (en) Internal reforming type fuel cell device and its operating method
JPH0238377Y2 (en)
JPH10308229A (en) Solid high polymer electrolyte type fuel cell
JPH08111230A (en) Operating method for solid high polymer type fuel cell
JPS63119166A (en) Fuel battery
JPS63155561A (en) Fuel cell
US20050008921A1 (en) Fluid flow plate for fuel cell
JPH1167258A (en) Fuel cell
JPS6273568A (en) Fuel cell
JPS62268062A (en) Cooling device for fuel cell
JP2004529458A (en) Method for improving the moisture balance of a fuel cell
JPH07122280A (en) Solid high polymer electrolyte type fuel cell
US20060263663A1 (en) Temperature management of an end cell in a fuel cell stack
KR101181821B1 (en) Fuel cell system and stack of the same
JPH09161821A (en) Solid polymer electrolytic fuel cell
JPH06105625B2 (en) Molten carbonate fuel cell
JPH08306370A (en) Laminated phosphoric acid type fuel cell