JPH08306370A - Laminated phosphoric acid type fuel cell - Google Patents

Laminated phosphoric acid type fuel cell

Info

Publication number
JPH08306370A
JPH08306370A JP7105515A JP10551595A JPH08306370A JP H08306370 A JPH08306370 A JP H08306370A JP 7105515 A JP7105515 A JP 7105515A JP 10551595 A JP10551595 A JP 10551595A JP H08306370 A JPH08306370 A JP H08306370A
Authority
JP
Japan
Prior art keywords
phosphoric acid
refrigerant
flow pipe
cooling
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7105515A
Other languages
Japanese (ja)
Inventor
Shigemi Kato
茂実 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7105515A priority Critical patent/JPH08306370A/en
Publication of JPH08306370A publication Critical patent/JPH08306370A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To avoid the generation of damage in a unit cell by supply of phosphoric acid, and prevent damage to a discharge gas system by phosphoric acid by eliminating need of supplying phosphoric acid for a long period. CONSTITUTION: A first cooling medium flow tube 21 disposed to face a reaction part of a unit cell, and a second cooling medium flow tube 21 disposed to face a discharge part of oxidizer gas in the unit cell are embedded between a pair of cooling base plates 20 for composing a cooling plate. Temperature of cooling medium in the second cooling medium flow tube 22 is set to be lower than temperature of cooling medium in the first cooling medium flow tube 21, temperature at the oxidizer gas discharge part of the unit cell is decreased, and vaporized phosphoric acid is condensed to be collected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、リン酸を電解質とす
る単セルを積層してセミブロックを形成し、さらに冷却
板と交互に積層して形成される積層リン酸型燃料電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked phosphoric acid fuel cell formed by stacking single cells having phosphoric acid as an electrolyte to form a semi-block, and then alternately stacking them with cooling plates.

【0002】[0002]

【従来の技術】図2は、従来の積層リン酸型燃料電池の
一般的な構造を簡略化して示す分解斜視図である。図に
見られるように、従来の積層リン酸型燃料電池において
は、リン酸を担持する電解質マトリックス1を、一面に
燃料触媒層3を備え他の面に燃料ガス通流溝4を備えた
燃料極2と、一面に酸化剤触媒層6を備え他の面に酸化
剤ガス通流溝7を備えた酸化剤極5とで挟持させて形成
した単セル8を、セパレータ9を介在させて積層するこ
とにより、セミブロックを構成し、さらに冷媒通流管1
1を埋設した冷却板10と交互に積層することにより燃
料電池積層体が構成されている。このように構成された
積層リン酸型燃料電池に燃料ガスと酸化剤ガスを供給
し、それぞれ燃料ガス通流溝4および酸化剤ガス通流溝
7に通流させると、単セル8で電気化学反応が生じて直
流電力が得られ、反応に伴う発熱は冷却板10によって
除熱されることとなる。
2. Description of the Related Art FIG. 2 is an exploded perspective view showing a simplified general structure of a conventional stacked phosphoric acid fuel cell. As shown in the figure, in a conventional stacked phosphoric acid fuel cell, a fuel having an electrolyte matrix 1 carrying phosphoric acid, a fuel catalyst layer 3 on one surface and a fuel gas flow groove 4 on the other surface is used. A single cell 8 formed by being sandwiched between an electrode 2 and an oxidant electrode 5 having an oxidant catalyst layer 6 on one surface and an oxidant gas flow groove 7 on the other surface is laminated with a separator 9 interposed therebetween. By doing so, a semi-block is formed, and the refrigerant flow pipe 1
A fuel cell stack is constructed by alternately stacking the cooling plates 10 in which 1 is embedded. When the fuel gas and the oxidant gas are supplied to the laminated phosphoric acid fuel cell configured as described above and flowed through the fuel gas flow groove 4 and the oxidant gas flow groove 7, respectively, the electrochemical reaction is performed in the single cell 8. A reaction occurs and DC power is obtained, and the heat generated by the reaction is removed by the cooling plate 10.

【0003】図3は、上記の従来の冷却板10の構成を
模式的に示す平面図である。一端を冷媒供給用ヘッダー
12に、また他端を冷媒排出用ヘッダー13に連結され
た複数の冷媒通流管11を、一組の冷却基板14の間に
埋設して、冷却板10が構成されている。冷媒供給用ヘ
ッダー12に送られた冷媒は、複数の冷媒通流管11を
分岐して流れ、冷媒排出用ヘッダー13に集められて排
出される。
FIG. 3 is a plan view schematically showing the structure of the conventional cooling plate 10 described above. The cooling plate 10 is configured by embedding a plurality of refrigerant flow pipes 11, one end of which is connected to the refrigerant supply header 12 and the other end of which is connected to the refrigerant discharge header 13, between a set of cooling substrates 14. ing. The refrigerant sent to the refrigerant supply header 12 branches and flows through the plurality of refrigerant flow pipes 11, and is collected and discharged in the refrigerant discharge header 13.

【0004】[0004]

【発明が解決しようとする課題】積層リン酸型燃料電池
を実用に供する際には、4万時間以上の長期にわたり使
用されることとなる。従来の構成においては、電解質マ
トリックス1に担持されるリン酸が、発電運転に際して
蒸発、飛散して、燃料ガスあるいは酸化剤ガスとともに
排出されるので、4万時間に達するまでにリン酸量が不
足し、これを補うためにリン酸を定期的に外部より補給
する方法が採られている。
When the laminated phosphoric acid fuel cell is put to practical use, it will be used for a long period of 40,000 hours or more. In the conventional configuration, the phosphoric acid carried on the electrolyte matrix 1 is vaporized and scattered during the power generation operation, and is discharged together with the fuel gas or the oxidant gas. Therefore, the phosphoric acid amount is insufficient by 40,000 hours. However, in order to compensate for this, a method of periodically replenishing phosphoric acid from the outside is adopted.

【0005】しかしながら、蒸発、飛散するリン酸量は
運転温度やガス流量に依存し、各単セル毎に異なるの
で、各単セルにそれぞれ適正なリン酸量を補給すること
は実質的に困難である。このため、リン酸の補給量が過
剰となって、リン酸が燃料ガス通流溝4あるいは酸化剤
ガス通流溝7に溢れて反応ガスの適正な通流を阻害す
る、あるいは、リン酸の補給量が不足して、燃料極2と
酸化剤極5との間の反応ガスの透過が生じ電極内部で反
応が生じる等の事態が起こり、単セルに致命的な損傷を
与えるという危険性がある。
However, since the amount of phosphoric acid that evaporates and scatters depends on the operating temperature and the gas flow rate and differs for each single cell, it is substantially difficult to replenish each single cell with an appropriate amount of phosphoric acid. is there. For this reason, the supply amount of phosphoric acid becomes excessive, and the phosphoric acid overflows into the fuel gas passage groove 4 or the oxidant gas passage groove 7 to hinder the proper passage of the reaction gas. There is a risk of causing fatal damage to the unit cell due to a situation such as a shortage of the replenishment amount, a reaction gas permeation between the fuel electrode 2 and the oxidizer electrode 5, and a reaction occurs inside the electrode. is there.

【0006】また、蒸発したリン酸は、燃料ガスあるい
は酸化剤ガスの排出配管や熱交換器等の付属の補器に凝
集、付着し、これらを腐食して損傷させトラブルを引き
起こす危険性がある。本発明は、上記のごとき問題点を
考慮してなされたもので、その目的は、長期にわたりリ
ン酸の補給が不要のものとして補給に伴う単セルの損傷
を回避し、さらにリン酸による排出ガス系統の損傷の少
ない積層リン酸型燃料電池を提供することにある。
Further, the vaporized phosphoric acid may be aggregated and adhered to auxiliary pipes such as exhaust pipes for fuel gas or oxidant gas or heat exchangers, which may corrode and damage them to cause troubles. . The present invention has been made in consideration of the above problems, and an object thereof is to avoid damage to a single cell due to replenishment of phosphoric acid for a long period of time as unnecessary, and to exhaust gas due to phosphoric acid. An object of the present invention is to provide a laminated phosphoric acid fuel cell with less damage to the system.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、燃料ガス通流溝を備える燃料
極と酸化剤ガス通流溝を備える酸化剤極との間にリン酸
を担持する電解質層を挟持してなる単セルを複数層積層
してセミブロックを形成し、セミブロックと、方形の冷
却基板に冷媒通流管を埋設してなる冷却板を交互に積層
して形成される積層リン酸型燃料電池において、冷却板
の冷媒通流管を、セミブロックの電池反応部に面して配
される第1の冷却系統の冷媒通流管と、セミブロックの
燃料ガスおよび酸化剤ガスの排出部に面して配される第
2の冷却系統の冷媒通流管とから構成し、かつ、第1の
冷却系統の冷媒通流管に通流する冷媒の温度より低い温
度の冷媒を第2の冷却系統の冷媒通流管に通流させるこ
ととする。
In order to achieve the above object, in the present invention, phosphoric acid is provided between a fuel electrode having a fuel gas passage groove and an oxidant electrode having an oxidant gas passage groove. To form a semi-block by stacking a plurality of single cells sandwiching an electrolyte layer carrying the semi-block, and alternately laminating the semi-block and a cooling plate in which a refrigerant flow pipe is embedded in a rectangular cooling substrate. In the laminated phosphoric acid fuel cell to be formed, the refrigerant flow pipe of the cooling plate and the refrigerant flow pipe of the first cooling system arranged facing the cell reaction part of the semi-block, and the fuel gas of the semi-block And a temperature lower than the temperature of the refrigerant flowing through the refrigerant flow pipe of the first cooling system, and the refrigerant flow pipe of the second cooling system arranged facing the discharge portion of the oxidant gas. It is assumed that the refrigerant having the temperature is made to flow through the refrigerant flow pipe of the second cooling system.

【0008】[0008]

【作用】上記のごとく、冷却板に埋設する冷媒通流管を
セミブロックの電池反応部に面して配される第1の冷却
系統と、セミブロックの燃料ガスおよび酸化剤ガスの排
出部に面して配される第2の冷却系統とに分割し、第2
の冷却系統に通流する冷媒の温度を第1の冷却系統通流
する冷媒の温度より低くすれば、各単セルのガス出口部
の温度は、ガス入口部ならびに中央部分の電池反応部の
温度に比べて低くなる。したがって、比較的温度の高い
ガス入口部ならびに電池反応部で蒸発したリン酸は、反
応ガスとともに比較的温度の低いガス出口部に達する
と、その大部分が凝集して燃料極あるいは酸化剤極を構
成する基材等に補集され、基材のガス通流溝等を通し
て、各電極の触媒層や電解質層へと供給されることとな
る。すなわち、本構成とすれば、蒸発したリン酸が再び
各電極の触媒層や電解質層へと還流するので、発電運転
に伴うリン酸量の減少が大幅に抑制され、長期の運転に
際しても補給する必要がなくなる。また、蒸発して反応
ガスの排出系へ達するリン酸量が大幅に減少するので、
排出ガス系統の機器の損傷も抑制される。
As described above, in the first cooling system in which the refrigerant flow pipe embedded in the cooling plate faces the battery reaction section of the semi-block and the discharge section of the fuel gas and the oxidant gas of the semi-block. It is divided into a second cooling system that is arranged facing
If the temperature of the refrigerant flowing in the cooling system of 1 is lower than the temperature of the refrigerant flowing in the first cooling system, the temperature of the gas outlet of each unit cell will be Will be lower than. Therefore, when the phosphoric acid evaporated in the gas inlet part having a relatively high temperature and the cell reaction part reaches the gas outlet part having a relatively low temperature together with the reaction gas, most of them aggregate to form the fuel electrode or the oxidizer electrode. It is collected on the constituent base material and the like, and is supplied to the catalyst layer and the electrolyte layer of each electrode through the gas flow grooves of the base material. That is, with this configuration, the evaporated phosphoric acid is recirculated to the catalyst layer and the electrolyte layer of each electrode again, so that the decrease in the phosphoric acid amount due to the power generation operation is significantly suppressed, and the phosphoric acid is replenished even during long-term operation. There is no need. Also, since the amount of phosphoric acid that evaporates and reaches the reaction gas discharge system is greatly reduced,
Damage to equipment in the exhaust gas system is also suppressed.

【0009】[0009]

【実施例】図1は、本発明の積層リン酸型燃料電池の実
施例を示す冷却板の基本構成の模式図である。本冷却板
は、セミブロックの電池反応部に面して配された第1冷
媒通流管21とセミブロックの酸化剤ガスの排出部に面
して配された第2冷媒通流管22を、一組の冷却基板2
0の間に埋設して構成されており、第1冷媒通流管21
には185℃の冷媒が、また第2冷媒通流管22には1
50℃の冷媒が送られている。本構成では、単セルの電
池反応部に比べて酸化剤ガスの排出部の温度が低く設定
されているので、電池反応部で酸化剤ガスへと蒸発した
リン酸は排出部で凝集し酸化剤極の基材等に捕集され、
触媒層や電解質層へと還流する。したがって、リン酸量
の減少が大幅に抑制され、また、蒸発して反応ガスの排
出系へ達するリン酸量も大幅に減少する。
EXAMPLE FIG. 1 is a schematic view of the basic constitution of a cooling plate showing an example of the laminated phosphoric acid fuel cell of the present invention. This cooling plate has a first refrigerant flow pipe 21 arranged facing the battery reaction part of the semi-block and a second refrigerant flow pipe 22 arranged facing the discharge part of the oxidizing gas of the semi-block. , A set of cooling substrates 2
It is configured to be embedded between 0 and the first refrigerant flow pipe 21.
Is 185 ° C., and the second refrigerant flow pipe 22 is 1
Refrigerant at 50 ° C is being sent. In this configuration, since the temperature of the oxidant gas discharge part is set lower than that of the single cell battery reaction part, the phosphoric acid evaporated to the oxidant gas in the battery reaction part aggregates at the discharge part and becomes the oxidizer. Collected on the base material of the pole,
Reflux to the catalyst layer and the electrolyte layer. Therefore, the decrease in the amount of phosphoric acid is significantly suppressed, and the amount of phosphoric acid that reaches the exhaust system of the reaction gas by evaporation is also significantly reduced.

【0010】なお、本実施例ではセミブロックの酸化剤
ガスの排出部に面して配された第2冷媒通流管22に温
度の低い冷媒を供給するものとしているが、セミブロッ
クの燃料ガスの排出部に面して配した冷媒通流管に温度
の低い冷媒を供給するものとしてもよく、また酸化剤ガ
スの排出部と燃料ガスの排出部との双方に面するよう配
置した冷媒通流管に温度の低い冷媒を供給するものとし
ても同様の効果が得られる。
In the present embodiment, the low temperature refrigerant is supplied to the second refrigerant flow pipe 22 arranged facing the discharge portion of the semi-block oxidant gas. A low-temperature refrigerant may be supplied to the refrigerant flow pipe arranged facing the discharge part of the refrigerant, and the refrigerant flow pipe arranged so as to face both the oxidant gas discharge part and the fuel gas discharge part. The same effect can be obtained by supplying a low temperature refrigerant to the flow tube.

【0011】[0011]

【発明の効果】上述のように、本発明によれば、燃料ガ
ス通流溝を備える燃料極と酸化剤ガス通流溝を備える酸
化剤極との間にリン酸を担持する電解質層を挟持してな
る単セルを複数層積層してセミブロックを形成し、セミ
ブロックと、方形の冷却基板に冷媒通流管を埋設してな
る冷却板を交互に積層して形成される積層リン酸型燃料
電池において、冷却板の冷媒通流管を、セミブロックの
電池反応部に面して配される第1の冷却系統の冷媒通流
管と、セミブロックの燃料ガスおよび酸化剤ガスの排出
部に面して配される第2の冷却系統の冷媒通流管とから
構成し、かつ、第1の冷却系統の冷媒通流管に通流する
冷媒の温度より低い温度の冷媒を第2の冷却系統の冷媒
通流管に通流させることとしたので、電池反応部で蒸発
したリン酸がガス出口部で大部分凝集して燃料極あるい
は酸化剤極を構成する基材等に補集され、再び各電極の
触媒層や電解質層へと還流されるので、長時間運転に際
しても単セルの損傷を引き起こしやすいリン酸の補給が
不要で、かつ排出ガス系統の損傷の少ない積層リン酸型
燃料電池が得られることとなった。
As described above, according to the present invention, an electrolyte layer carrying phosphoric acid is sandwiched between a fuel electrode having a fuel gas flow groove and an oxidant electrode having an oxidant gas flow groove. A laminated phosphoric acid type formed by stacking a plurality of single cells formed by forming a semi-block and alternately stacking the semi-block and a cooling plate in which a refrigerant flow pipe is embedded in a rectangular cooling substrate. In the fuel cell, the coolant flow pipe of the cooling plate is arranged so as to face the cell reaction part of the semi-block, and the coolant flow pipe of the first cooling system and the discharge part of the fuel gas and the oxidant gas of the semi-block. And a refrigerant having a temperature lower than the temperature of the refrigerant flowing through the refrigerant flow pipe of the first cooling system. Since it was decided to let the refrigerant flow through the refrigerant flow pipe of the cooling system, the phosphoric acid evaporated in the battery reaction section would become gas. Most of the particles agglomerate at the mouth and are collected on the base material that constitutes the fuel electrode or oxidizer electrode, and then flow back to the catalyst layer and electrolyte layer of each electrode, which damages the single cell even during long-term operation. Therefore, it is possible to obtain a laminated phosphoric acid fuel cell that does not require the supplementation of phosphoric acid that easily causes the above-mentioned phenomenon and has less damage to the exhaust gas system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層リン酸型燃料電池の実施例を示す
冷却板の基本構成の模式図
FIG. 1 is a schematic diagram of a basic configuration of a cooling plate showing an embodiment of a laminated phosphoric acid fuel cell of the present invention.

【図2】従来の積層リン酸型燃料電池の一般的な構造を
簡略化して示す分解斜視図
FIG. 2 is an exploded perspective view showing a simplified general structure of a conventional stacked phosphoric acid fuel cell.

【図3】従来の積層リン酸型燃料電池の冷却板の構成を
模式的に示す平面図
FIG. 3 is a plan view schematically showing the structure of a cooling plate of a conventional laminated phosphoric acid fuel cell.

【符号の説明】[Explanation of symbols]

1 電解質マトリックス 2 燃料極 5 酸化剤極 8 単セル 9 セパレータ 10 冷却板 11 冷媒通流管 12 冷媒供給用ヘッダー 13 冷媒排出用ヘッダー 14 冷却基板 20 冷却基板 21 第1冷媒通流管 22 第2冷媒通流管 1 Electrolyte Matrix 2 Fuel Electrode 5 Oxidizer Electrode 8 Single Cell 9 Separator 10 Cooling Plate 11 Refrigerant Flow Pipe 12 Refrigerant Supply Header 13 Refrigerant Discharge Header 14 Cooling Substrate 20 Cooling Substrate 21 First Refrigerant Flowing Pipe 22 Second Refrigerant Flow pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料ガス通流溝を備える燃料極と酸化剤ガ
ス通流溝を備える酸化剤極との間にリン酸を担持する電
解質層を挟持してなる単セルを複数層積層してセミブロ
ックを形成し、該セミブロックと、方形の冷却基板に冷
媒通流管を埋設してなる冷却板を交互に積層して形成さ
れる積層リン酸型燃料電池において、前記冷却板の冷媒
通流管が、セミブロックの電池反応部に面して配される
第1の冷却系統の冷媒通流管と、セミブロックの燃料ガ
スおよび酸化剤ガスの排出部に面して配される第2の冷
却系統の冷媒通流管とからなり、かつ、第1の冷却系統
の冷媒通流管に通流される冷媒より温度の低い冷媒が第
2の冷却系統の冷媒通流管に通流されることを特徴とす
る積層リン酸型燃料電池。
1. A plurality of single cells laminated by sandwiching an electrolyte layer carrying phosphoric acid between a fuel electrode having a fuel gas flow groove and an oxidant electrode having an oxidant gas flow groove. In a laminated phosphoric acid fuel cell in which semi-blocks are formed and cooling plates formed by embedding a refrigerant flow pipe in a rectangular cooling substrate are alternately laminated, a cooling medium for the cooling plates is passed through. A flow pipe has a refrigerant flow pipe of the first cooling system, which faces the battery reaction part of the semi-block, and a second flow pipe, which faces the discharge part of the fuel gas and the oxidant gas of the semi-block. And a refrigerant having a lower temperature than the refrigerant flowing through the refrigerant flow pipe of the first cooling system and flowing through the refrigerant flow pipe of the second cooling system. And a laminated phosphoric acid fuel cell.
JP7105515A 1995-04-28 1995-04-28 Laminated phosphoric acid type fuel cell Pending JPH08306370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7105515A JPH08306370A (en) 1995-04-28 1995-04-28 Laminated phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7105515A JPH08306370A (en) 1995-04-28 1995-04-28 Laminated phosphoric acid type fuel cell

Publications (1)

Publication Number Publication Date
JPH08306370A true JPH08306370A (en) 1996-11-22

Family

ID=14409745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7105515A Pending JPH08306370A (en) 1995-04-28 1995-04-28 Laminated phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JPH08306370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134867A1 (en) * 2005-06-13 2006-12-21 Matsushita Electric Industrial Co., Ltd. Fuel cell
EP1842254A2 (en) * 2004-12-29 2007-10-10 UTC Power Corporation Fuel cell coolers with inverse flow and condensation zone
KR100970336B1 (en) * 2003-02-10 2010-07-15 한라공조주식회사 A Thermal Management System of a Fuel Cell Vehicle
JP2015530714A (en) * 2012-08-30 2015-10-15 バラード パワー システムズ インコーポレイテッド Fuel cell components having a selected cooling capacity distribution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970336B1 (en) * 2003-02-10 2010-07-15 한라공조주식회사 A Thermal Management System of a Fuel Cell Vehicle
EP1842254A2 (en) * 2004-12-29 2007-10-10 UTC Power Corporation Fuel cell coolers with inverse flow and condensation zone
JP2008525992A (en) * 2004-12-29 2008-07-17 ユーティーシー パワー コーポレイション Fuel cell cooler with backflow region and condensation region
EP1842254A4 (en) * 2004-12-29 2009-03-18 Utc Power Corp Fuel cell coolers with inverse flow and condensation zone
WO2006134867A1 (en) * 2005-06-13 2006-12-21 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2015530714A (en) * 2012-08-30 2015-10-15 バラード パワー システムズ インコーポレイテッド Fuel cell components having a selected cooling capacity distribution
US10381664B2 (en) 2012-08-30 2019-08-13 Audi Ag Fuel cell component having selected cooling capacity distribution

Similar Documents

Publication Publication Date Title
TWI225718B (en) Solid polymer cell assembly
JPS63279574A (en) Temperature distribution improving method for fuel cell
JPH0238377Y2 (en)
US20010038935A1 (en) Polymer electrolyte fuel cell
JPH08111230A (en) Operating method for solid high polymer type fuel cell
JPS62264564A (en) Stacked fuel cell
JP2570771B2 (en) Fuel cell cooling method
JPH08306370A (en) Laminated phosphoric acid type fuel cell
JPS63119166A (en) Fuel battery
JPH06338334A (en) Cooling plate and cooling system for fuel cell
JPH08306381A (en) Lamination type fuel cell
JPH1167258A (en) Fuel cell
JPH1131517A (en) Phosphoric acid type fuel cell
JPS6280972A (en) Improvement of temperature distribution of fuel cell
JPH0831437A (en) Fuel cell and operation thereof
JP2659951B2 (en) Fuel cell stack
JPS6255873A (en) Fuel cell
JP2865025B2 (en) Molten carbonate fuel cell
JPS63155561A (en) Fuel cell
JP2947549B2 (en) Fuel cell
JP2000164240A (en) Fuel cell
JPH06105625B2 (en) Molten carbonate fuel cell
JPS6286670A (en) Fuel cell
JPH0398269A (en) Fuel cell
JPH06231774A (en) Cooling plate of fuel cell