JPH0831437A - Fuel cell and operation thereof - Google Patents

Fuel cell and operation thereof

Info

Publication number
JPH0831437A
JPH0831437A JP6162570A JP16257094A JPH0831437A JP H0831437 A JPH0831437 A JP H0831437A JP 6162570 A JP6162570 A JP 6162570A JP 16257094 A JP16257094 A JP 16257094A JP H0831437 A JPH0831437 A JP H0831437A
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
outlet
electrolyte
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6162570A
Other languages
Japanese (ja)
Inventor
Nobuaki Sato
信昭 佐藤
Tsutomu Aoki
努 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6162570A priority Critical patent/JPH0831437A/en
Publication of JPH0831437A publication Critical patent/JPH0831437A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce loss of electrolyte, and prolong a life of a fuel cell by lowering temperature at a specific part of a cooling plate of a fuel cell for decreasing temperature at an outlet part of reaction gas, and condensing the electrolyte vaporized and scattered into the reaction gas. CONSTITUTION:Fuel gas is supplied from an inlet hole 6 of an in/out manifold 2 to a cell, it returns in a return manifold 3, and it is discharged from an outlet hole 7. Oxidizer is supplied from an inlet hole 8 of an inlet manifold 4 to the cell, and it is discharged from an outlet hole 9 of an outlet manifold 5. Cooling medium under a saturation temperature is supplied from an inlet hole 10 of a cooling plate 1, and it is discharged through a cooling coil 12 form an outlet hole 11. When a cooling medium inlet temperature is set property, a temperature gradient can be provided at the part (diagonal line part) where a fuel gas outlet part and an oxidizer outlet part are combined with each other to set temperature of the cooling medium to be under the saturation temperature. Electrolyte in reaction gas can thus be recondensed to be recovered in a cell, thereby its loss can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池に係り、特に電
解液無補給の燃料電池とその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a fuel cell without electrolyte replenishment and its operating method.

【0002】[0002]

【従来の技術】燃料電池は、電解質層における電気化学
プロセスで燃料を酸化させ、酸化反応に伴って放出され
るエネルギーを、直接電気エネルギーに変換する発電装
置であるが、電解質層に貯蔵された電解質は発電に伴な
い反応ガス中に微量蒸発し電池外部へ持ち去られるた
め、長時間の発電運転後には電解質層内の電解質が減少
し、安定な運転が不能な状態に至るという問題があっ
た。
2. Description of the Related Art A fuel cell is a power generation device that oxidizes a fuel by an electrochemical process in an electrolyte layer and directly converts the energy released by the oxidation reaction into electric energy, which is stored in the electrolyte layer. A small amount of electrolyte evaporates in the reaction gas during power generation and is carried away to the outside of the battery.Therefore, after long-term power generation operation, the electrolyte in the electrolyte layer decreased, and stable operation was impossible. .

【0003】このような燃料電池の電解質の欠乏を防ぐ
ため、定期的に外部より電解質を補給することが一般に
採用されてきたが、外部より電解質を補給することは、
電池の運転を長時間に亘って停止せねばならず、また積
層された多数のセルに均等に電解質を配分することは意
外に難しいことであった。さらに電池外部へ持ち去られ
た電解質は、下流の機器・配管・弁・計装品等に付着
し、これらを腐食せしめる他、水分を回収する系統に流
入すると水処理装置の頻繁な保守を必要とさせる等の問
題があった。
[0003] In order to prevent such electrolyte deficiency of the fuel cell, it has been generally adopted to periodically replenish the electrolyte from the outside.
The operation of the battery had to be stopped for a long time, and it was surprisingly difficult to evenly distribute the electrolyte to a large number of stacked cells. Further, the electrolyte taken out of the battery adheres to downstream equipment, pipes, valves, instrumentation equipment, etc., and corrodes them.In addition, if it flows into the water recovery system, frequent maintenance of the water treatment equipment is required. There was a problem such as making it happen.

【0004】そこで、電池外部へ持ち去られる電解質を
低減する目的で、反応ガス中の電解質濃度を下げる技術
は、例えば特開昭64−14876号公報「燃料電池本
体冷却系」に提案されているが、酸化剤の出口部のみを
冷却するため、その効果は不十分であった。
Therefore, a technique for reducing the electrolyte concentration in the reaction gas for the purpose of reducing the amount of electrolyte carried away to the outside of the cell has been proposed, for example, in JP-A-64-14876, "Fuel Cell Main Body Cooling System". However, the effect was insufficient because only the outlet of the oxidizer was cooled.

【0005】[0005]

【発明が解決しようとする課題】以上のように、従来の
燃料電池は、反応ガス中に蒸発する電解質の濃度が高
く、経済的に引き合う期間の安定運転が難しいという問
題があった。本発明は、上記問題を解決するためになさ
れたもので、その目的は反応ガス中の電解質濃度を下げ
て電池外部へ持ち去られる電解質を低減することによっ
て経済的に引き合う期間、電解質無補給で安定運転を可
能とする燃料電池とその運転方法を提供することにあ
る。
As described above, the conventional fuel cell has a problem that the concentration of the electrolyte evaporated in the reaction gas is high and it is difficult to perform stable operation during the economically competing period. The present invention has been made to solve the above problems, and its purpose is to reduce the electrolyte concentration in the reaction gas and reduce the electrolyte carried away to the outside of the battery, thereby stabilizing the supply without electrolyte supply during an economically competing period. An object of the present invention is to provide a fuel cell that enables operation and a method of operating the fuel cell.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の請求項1は、電解質を含浸させた電解質層
を挟んで一対の多孔質電極からなるセルによって構成さ
れる単電池と、複数個の単電池ごとに内部に冷媒を供給
・排出して電池を冷却する冷却板とを複数個積層して四
角柱状のセルスタックを形成し、このセルスタックの側
面に、当該セルスタックの側面との間に反応ガス流路が
形成された反応ガス供給・排出用のマニホールドを配置
した積層体で構成される燃料電池において、前記冷却板
の特定部分の温度を下げることにより前記反応ガスの片
方または両方の出口部分の温度を下げ、前記反応ガス中
に蒸発して飛散する電解質を凝縮せしめるようにしたこ
とを特徴とする。
In order to achieve the above-mentioned object, the first aspect of the present invention is to provide a unit cell composed of a cell composed of a pair of porous electrodes sandwiching an electrolyte layer impregnated with an electrolyte, A plurality of cooling cells for supplying and discharging a refrigerant to cool the battery are stacked inside each of the plurality of unit cells to form a square columnar cell stack, and a side surface of the cell stack is formed on a side surface of the cell stack. In a fuel cell composed of a laminated body in which a manifold for reaction gas supply / exhaust in which a reaction gas flow path is formed is arranged between one side of the reaction gas by lowering the temperature of a specific portion of the cooling plate. Alternatively, the temperature of both outlets is lowered so that the electrolyte that evaporates and scatters in the reaction gas is condensed.

【0007】本発明の請求項2は、請求項1に記載の燃
料電池において、反応ガス供給・排出用のマニホールド
内に仕切り板等を設けることにより、燃料の流路を少な
くとも1回以上反転し燃料ガスの出口部を酸化剤の出口
部に重ね合わせると共に、この重ね合わせ部分に飽和温
度より冷却した冷媒を供給するようにしたことを特徴と
する。
According to a second aspect of the present invention, in the fuel cell according to the first aspect, a partition plate or the like is provided in the manifold for supplying and discharging the reaction gas, so that the flow path of the fuel is inverted at least once or more. It is characterized in that the outlet of the fuel gas is superposed on the outlet of the oxidant, and a refrigerant cooled to a saturation temperature is supplied to the superposed portion.

【0008】本発明の請求項3は、請求項2に記載の燃
料電池において、前記冷媒が水であることを特徴とす
る。本発明の請求項4は、電解質を含浸させた電解質層
を挟んで一対の多孔質電極からなるセルによって構成さ
れる単電池と、複数個の単電池ごとに内部に冷媒を供給
・排出して電池を冷却する冷却板とを複数個積層して四
角柱状のセルスタックを形成し、このセルスタックの側
面に、当該セルスタックの側面との間に反応ガス流路が
形成された反応ガス供給・排出用のマニホールドを配置
した積層体で構成される燃料電池の運転方法において、
当該燃料電池内部の温度を広い範囲で均一化しかつ当該
燃料電池内部の特定部分の温度を下げるために、飽和温
度より冷却した冷媒を供給し、反応ガスの出口温度を局
所的に低下せしめるようにしたことを特徴とする。
According to a third aspect of the present invention, in the fuel cell according to the second aspect, the refrigerant is water. According to claim 4 of the present invention, a unit cell composed of a cell composed of a pair of porous electrodes sandwiching an electrolyte layer impregnated with an electrolyte, and a plurality of unit cells each supplying and discharging a refrigerant inside A plurality of cooling plates for cooling the battery are stacked to form a rectangular column-shaped cell stack, and a reaction gas supply channel in which a reaction gas flow path is formed between the side surface of the cell stack and the side surface of the cell stack. In a method of operating a fuel cell, which is composed of a laminated body in which exhaust manifolds are arranged,
In order to make the temperature inside the fuel cell uniform over a wide range and to lower the temperature of a specific portion inside the fuel cell, a refrigerant cooled below the saturation temperature is supplied so that the outlet temperature of the reaction gas can be locally lowered. It is characterized by having done.

【0009】本発明の請求項5は、請求項4記載の燃料
電池の運転方法において、前記冷媒の入口温度が飽和温
度より少なくとも10℃以上冷却されていることを特徴
とする。
A fifth aspect of the present invention is the method for operating a fuel cell according to the fourth aspect, characterized in that the inlet temperature of the refrigerant is cooled to at least 10 ° C. or higher than the saturation temperature.

【0010】[0010]

【作用】従来、燃料電池の電解質は、電気化学プロセス
に伴って生成される水と共に酸化剤ガス中に飛散し電池
外部に逸失すると考えられていた。しかし、最近の研究
により反応ガス中の電解質濃度は、電気化学プロセスよ
りも局所的な電池温度により強く支配されることが見出
された。すなわち、図7の電解質濃度と温度との関係を
示す特性図に示すように、燃料電池の平均動作温度付近
において、反応ガス中の電解質濃度の対数はほぼ温度に
比例している。
It has been conventionally considered that the electrolyte of the fuel cell is scattered in the oxidant gas together with water produced by the electrochemical process and is lost to the outside of the cell. However, recent studies have found that the electrolyte concentration in the reaction gas is more strongly governed by the local cell temperature than the electrochemical process. That is, as shown in the characteristic diagram of FIG. 7 showing the relationship between the electrolyte concentration and the temperature, the logarithm of the electrolyte concentration in the reaction gas is almost proportional to the temperature near the average operating temperature of the fuel cell.

【0011】したがって、本発明は、電池主要反応部の
温度を電気化学プロセスを促進して高電圧を得るために
主要なレベルに維持したまま、反応ガスの出口部分のみ
で局所的に冷却を強化し、電池主要反応部の温度で平衡
する濃度の電解質が含まれている部分(以下特定部分と
いう)の反応ガスの温度を下げることによって反応ガス
中の電解質を再凝縮させて、電池内に回収するようにし
たものである。このように冷却板の特定部分の温度を下
げることにより反応ガスの片方または両方の出口部分の
温度を下げ、反応ガス中に蒸発して飛散する電解質を凝
縮せしめて電解質の逸失を低減することにより電池寿命
を延長することができる。
Therefore, according to the present invention, the temperature of the main reaction section of the battery is maintained at the main level in order to accelerate the electrochemical process and obtain a high voltage, and the cooling is locally enhanced only at the outlet section of the reaction gas. However, by lowering the temperature of the reaction gas in the part that contains the concentration of electrolyte that equilibrates with the temperature of the main reaction part of the battery (hereinafter referred to as the specific part), the electrolyte in the reaction gas is recondensed and collected in the battery. It is something that is done. In this way, by lowering the temperature of a specific part of the cooling plate, the temperature of one or both outlets of the reaction gas is decreased, and the electrolyte that evaporates and scatters in the reaction gas is condensed to reduce the loss of the electrolyte. Battery life can be extended.

【0012】[0012]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は、本発明の第1実施例の一部切除した平面図
である。同図に示すように、燃料電池は、電解質を含浸
させた電解質層を挟んで一対の多孔質電極からなるセル
によって構成される単電池ごとに冷却板1を設け、この
単電池を複数個積層して四角柱状のセルスタックを形成
し、このセルスタックの側面に反応ガス出入口用マニホ
ールドが形成されている。すなわち、燃料ガスは燃料出
入口マニホールド2に形成された燃料ガス入口孔6より
電池に供給され、燃料リターンマニホールド3の内部で
折り返し、燃料ガス出口孔7より電池外部に排出され
る。酸化剤は燃料ガスの流れとは直交するように酸化剤
入口マニホールド4に形成された酸化剤入口孔8より電
池に供給され、酸化剤出口マニホールド5に形成された
酸化剤出口孔9より電池外部に排出される。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a partially cutaway plan view of a first embodiment of the present invention. As shown in the figure, in a fuel cell, a cooling plate 1 is provided for each unit cell composed of a pair of porous electrodes sandwiching an electrolyte layer impregnated with an electrolyte, and a plurality of the unit cells are stacked. Then, a rectangular column-shaped cell stack is formed, and a reaction gas inlet / outlet manifold is formed on a side surface of the cell stack. That is, the fuel gas is supplied to the cell through the fuel gas inlet hole 6 formed in the fuel inlet / outlet manifold 2, folded back inside the fuel return manifold 3, and discharged to the outside of the cell through the fuel gas outlet hole 7. The oxidant is supplied to the battery through an oxidant inlet hole 8 formed in the oxidant inlet manifold 4 so as to be orthogonal to the flow of the fuel gas, and is supplied to the battery through an oxidant outlet hole 9 formed in the oxidant outlet manifold 5. Is discharged to.

【0013】一方、冷媒は飽和温度より冷却された温度
で、冷却板1のコーナに形成された冷媒入口孔10より
電池に供給され、冷却用蛇管12を通って電気化学反応
に伴う発熱により加熱されて飽和温度に達し、冷却板1
の他のコーナに形成された冷媒出口孔11より電池外部
に排出される。したがって冷媒入口温度を適切に設定す
ることにより燃料ガスの出口部と酸化剤の出口部が重ね
合わさる部分(図の斜線部)において、冷媒の温度が飽
和温度以下であるような勾配を設けることができる。こ
のような温度勾配によりこの重ね合される部分の冷却板
温度、ひいては反応ガスの出口温度を局所的に低下せし
めることができ、これにより反応ガス中の電解質を再凝
縮させて、電池内に回収することにより電解質の逸失を
低減することができる。
On the other hand, the refrigerant is supplied to the battery at a temperature cooled below the saturation temperature through a refrigerant inlet hole 10 formed in a corner of the cooling plate 1, and is heated by heat generated by an electrochemical reaction through a cooling spiral tube 12. And reaches the saturation temperature, and the cooling plate 1
It is discharged to the outside of the battery through the refrigerant outlet hole 11 formed in the other corner. Therefore, by appropriately setting the refrigerant inlet temperature, it is possible to provide a gradient such that the refrigerant temperature is equal to or lower than the saturation temperature in the portion where the fuel gas outlet portion and the oxidant outlet portion overlap (the hatched portion in the figure). it can. With such a temperature gradient, the temperature of the cooling plates in the superposed portions, and consequently the outlet temperature of the reaction gas, can be locally reduced, whereby the electrolyte in the reaction gas is recondensed and collected in the battery. By doing so, the loss of the electrolyte can be reduced.

【0014】図7は電解質濃度と反応ガス温度の関係を
示す特性図であり、この図から反応ガス温度を10℃低
下させると電解質濃度は半減することができるので、電
解質の初期仕込み量と電解質の蒸発濃度で決まる電池寿
命を倍増することが可能となる。
FIG. 7 is a characteristic diagram showing the relationship between the electrolyte concentration and the reaction gas temperature. From this diagram, it is possible to reduce the electrolyte concentration by half by lowering the reaction gas temperature by 10 ° C. Therefore, the initial charge amount of the electrolyte and the electrolyte are It is possible to double the battery life determined by the evaporation concentration of.

【0015】以上の説明から明らかなように、燃料ガス
や酸化剤の各流体の位置関係及び冷媒の供給位置は本実
施例のみに限定されることなく、下記のような第2〜第
6実施例で示す構成によっても本実施例と同様な効果が
得られる。
As is apparent from the above description, the positional relationship between the fluids such as the fuel gas and the oxidizing agent and the supply position of the refrigerant are not limited to the present embodiment, and the following second to sixth embodiments are possible. With the configuration shown in the example, the same effect as that of the present embodiment can be obtained.

【0016】図2は、本発明の第2実施例の一部切除し
た平面図である。本実施例が図1の実施例と相違する点
は、冷媒の供給方法が図1の実施例では1本の蛇管12
であるが、本実施例では2本の蛇管12,15を用いて
いる点である。それに伴い冷却板1の2ケ所のコーナに
冷媒入口孔10,13が形成されており、冷却板1の他
のコーナに冷媒出口孔11,14が形成されている。そ
の他の構成は同一であるので、同一部分には同一符号を
付してその説明は省略する。
FIG. 2 is a partially cutaway plan view of the second embodiment of the present invention. This embodiment differs from the embodiment of FIG. 1 in that the method of supplying the refrigerant is one flexible tube 12 in the embodiment of FIG.
However, in this embodiment, two flexible tubes 12 and 15 are used. Along with this, refrigerant inlet holes 10 and 13 are formed at two corners of the cooling plate 1, and refrigerant outlet holes 11 and 14 are formed at the other corners of the cooling plate 1. Since other configurations are the same, the same reference numerals are given to the same portions and the description thereof will be omitted.

【0017】図3は、本発明の第3実施例の一部切除し
た平面図である。本実施例が図2の実施例と相違する点
は、冷媒の供給方法として図2の実施例では2本の蛇管
12,15であるが、本実施例では2本の平行管16,
17を用いている点である。それに伴い冷却板1の1ケ
所のコーナに設けた冷媒入口孔13と冷却板1の他のコ
ーナに設けた冷媒出口孔14の一が逆になった点であ
る。その他の構成は同一であるので、同一部分には同一
符号を付してその説明は省略する。
FIG. 3 is a partially cutaway plan view of the third embodiment of the present invention. The present embodiment is different from the embodiment of FIG. 2 in that the refrigerant supply method is two flexible pipes 12 and 15 in the embodiment of FIG. 2, but in this embodiment, two parallel pipes 16 and 15 are used.
17 is used. Along with this, one of the refrigerant inlet holes 13 provided at one corner of the cooling plate 1 and one of the refrigerant outlet holes 14 provided at the other corners of the cooling plate 1 is reversed. Since other configurations are the same, the same reference numerals are given to the same portions and the description thereof will be omitted.

【0018】図4は、本発明の第4実施例の一部切除し
た平面図である。本実施例が図1の実施例と相違する点
は、燃料ガスと酸化剤の流路をそれぞれ1回折り返し、
燃料ガスの出口部を酸化剤の出口部に重ね合わせ、この
部分に飽和温度より冷却した冷媒を供給する点である。
それに伴い酸化剤入口8と酸化剤出口9を設けた酸化剤
出入口マニホールド18と酸化剤リターンマニホールド
19が形成されている。その他の構成は同一であるの
で、同一部分には同一符号を付してその説明は省略す
る。
FIG. 4 is a partially cutaway plan view of the fourth embodiment of the present invention. This embodiment is different from the embodiment of FIG. 1 in that the flow paths of the fuel gas and the oxidant are each turned back once.
That is, the outlet of the fuel gas is superposed on the outlet of the oxidant, and the refrigerant cooled to the saturation temperature is supplied to this portion.
Along with this, an oxidant inlet / outlet manifold 18 having an oxidant inlet 8 and an oxidant outlet 9 and an oxidant return manifold 19 are formed. Since other configurations are the same, the same reference numerals are given to the same portions and the description thereof will be omitted.

【0019】図5は、本発明の第5実施例の一部切除し
た平面図である。本実施例が図1の実施例と相違する点
は、燃料ガスの流路を2回折り返して燃料ガスの出口部
を酸化剤の出口部に重ね合わせ、この部分に飽和温度よ
り冷却した冷媒を供給する点である。それに伴い燃料入
口6を設けた燃料入口マニホールド20と、燃料出口7
を設けた燃料出口マニホールド21が形成されている。
その他の構成は同一であるので、同一部分には同一符号
を付してその説明は省略する。
FIG. 5 is a partially cutaway plan view of the fifth embodiment of the present invention. The present embodiment is different from the embodiment of FIG. 1 in that the fuel gas flow path is folded back twice and the fuel gas outlet is overlapped with the oxidant outlet, and a refrigerant cooled to the saturation temperature is placed in this portion. The point of supply. Accordingly, the fuel inlet manifold 20 having the fuel inlet 6 and the fuel outlet 7 are provided.
A fuel outlet manifold 21 is provided.
Since other configurations are the same, the same reference numerals are given to the same portions and the description thereof will be omitted.

【0020】図6は、本発明の第6実施例の一部切除し
た平面図である。本実施例が図5の実施例と相違する点
は、燃料ガスの流路を2回折り返し、酸化剤の流路を1
回折り返して燃料ガスの出口部を酸化剤の出口部に重ね
合わせ、この部分に飽和温度より冷却した冷媒を供給す
る点である。それに伴い酸化剤入口及び出口を図4の実
施例のように構成している。すなわち、酸化剤入口8と
酸化剤出口9を設けた酸化剤出入口マニホールド18と
酸化剤リターンマニホールド19が形成されている。そ
の他の構成は同一であるので、同一部分には同一符号を
付してその説明は省略する。
FIG. 6 is a partially cutaway plan view of the sixth embodiment of the present invention. This embodiment is different from the embodiment of FIG. 5 in that the fuel gas flow path is folded back twice and the oxidant flow path is changed to one.
The point is that the fuel gas outlet is folded back and overlapped with the outlet of the oxidant, and the refrigerant cooled to the saturation temperature is supplied to this portion. Accordingly, the oxidant inlet and outlet are configured as in the embodiment of FIG. That is, an oxidant inlet / outlet manifold 18 having an oxidant inlet 8 and an oxidant outlet 9 and an oxidant return manifold 19 are formed. Since other configurations are the same, the same reference numerals are given to the same portions and the description thereof will be omitted.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
電池主要反応部の温度を電気化学プロセスを促進して高
電圧を得るために必要なレベルに維持したまま、反応ガ
スの出口部分のみで局所的に冷却を強化し、電池主要反
応部の温度で平衡する濃度の電解質が含まれている反応
ガスの温度を下げ、もって反応ガス中の電解質を再凝縮
させて電池内に回収することにより、電解質の逸失を低
減し、長寿命の燃料電池が実現できる。また、飛散した
電解質が電池下流の機器、配管・弁・計装品等に付着
し、これらを腐食せしめる危険を軽減し、もって保守頻
度を減少せしめ、燃料電池装置全体の稼働率を向上せし
めることが可能となる。
As described above, according to the present invention,
While maintaining the temperature of the main reaction part of the battery at a level required to accelerate the electrochemical process to obtain a high voltage, the cooling is locally enhanced only at the outlet part of the reaction gas, and By lowering the temperature of the reaction gas containing an equilibrium concentration of electrolyte and then re-condensing the electrolyte in the reaction gas and collecting it in the cell, the loss of electrolyte is reduced and a long-life fuel cell is realized. it can. It also reduces the risk of the scattered electrolyte adhering to the equipment, pipes, valves, instrumentation, etc. downstream of the cell and corroding them, thus reducing the maintenance frequency and improving the operating rate of the entire fuel cell system. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の平面図。FIG. 1 is a plan view of a first embodiment of the present invention.

【図2】本発明の第2の実施例の平面図。FIG. 2 is a plan view of the second embodiment of the present invention.

【図3】本発明の第3の実施例の平面図。FIG. 3 is a plan view of a third embodiment of the present invention.

【図4】本発明の第4の実施例の平面図。FIG. 4 is a plan view of the fourth embodiment of the present invention.

【図5】本発明の第5の実施例の平面図。FIG. 5 is a plan view of a fifth embodiment of the present invention.

【図6】本発明の第6の実施例の平面図。FIG. 6 is a plan view of a sixth embodiment of the present invention.

【図7】燃料電池の温度と電解質濃度との関係を示す特
性図。
FIG. 7 is a characteristic diagram showing the relationship between the temperature of the fuel cell and the electrolyte concentration.

【符号の説明】[Explanation of symbols]

1…冷却板、2…燃料出入口マニホールド、3…燃料リ
ターンマニホールド、4…酸化剤入口マニホールド、5
…酸化剤出口マニホールド、6…燃料入口孔、7…燃料
出口孔、8…酸化剤入口孔、9…酸化剤出口孔、10,
13…冷媒入口孔、11,14…冷媒出口孔、12,1
5…冷却用蛇管、16,17…冷却管、18…酸化剤出
入口マニホールド、19…酸化剤リターンマニホール
ド、20…燃料入口マニホールド、21…燃料出口マニ
ホールド。
1 ... Cooling plate, 2 ... Fuel inlet / outlet manifold, 3 ... Fuel return manifold, 4 ... Oxidant inlet manifold, 5
... oxidant outlet manifold, 6 ... fuel inlet hole, 7 ... fuel outlet hole, 8 ... oxidant inlet hole, 9 ... oxidant outlet hole, 10,
13 ... Refrigerant inlet hole, 11, 14 ... Refrigerant outlet hole, 12, 1
5 ... Cooling pipes, 16, 17 ... Cooling pipes, 18 ... Oxidizing agent inlet / outlet manifold, 19 ... Oxidizing agent return manifold, 20 ... Fuel inlet manifold, 21 ... Fuel outlet manifold.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電解質を含浸させた電解質層を挟んで一
対の多孔質電極からなるセルによって構成される単電池
と、複数個の単電池ごとに内部に冷媒を供給・排出して
電池を冷却する冷却板とを複数個積層して四角柱状のセ
ルスタックを形成し、このセルスタックの側面に、当該
セルスタックの側面との間に反応ガス流路が形成された
反応ガス供給・排出用のマニホールドを配置した積層体
で構成される燃料電池において、前記冷却板の特定部分
の温度を下げることにより前記反応ガスの片方または両
方の出口部分の温度を下げ、前記反応ガス中に蒸発して
飛散する電解質を凝縮せしめるようにしたことを特徴と
する燃料電池。
1. A battery comprising a cell composed of a pair of porous electrodes sandwiching an electrolyte layer impregnated with an electrolyte, and a coolant is supplied to and discharged from each of the plurality of cells to cool the battery. A plurality of cooling plates are stacked to form a rectangular column-shaped cell stack, and a side face of the cell stack is provided with a reaction gas flow path between the side face and the side face of the cell stack. In a fuel cell composed of a laminated body in which manifolds are arranged, by lowering the temperature of a specific portion of the cooling plate, the temperature of one or both outlet portions of the reaction gas is lowered, and it is evaporated and scattered in the reaction gas. The fuel cell is characterized in that the electrolyte to be condensed is condensed.
【請求項2】 請求項1に記載の燃料電池において、反
応ガス供給・排出用のマニホールド内に仕切り板等を設
けることにより、燃料の流路を少なくとも1回以上反転
し燃料ガスの出口部を酸化剤の出口部に重ね合わせると
共に、この重ね合わせ部分に飽和温度より冷却した冷媒
を供給するようにしたことを特徴とする燃料電池。
2. The fuel cell according to claim 1, wherein a partition plate or the like is provided in the reaction gas supply / exhaust manifold so that the fuel flow path is inverted at least once and the fuel gas outlet is provided. A fuel cell characterized by being superposed on an outlet of an oxidant and supplying a refrigerant cooled to a saturation temperature to the superposed portion.
【請求項3】 請求項2に記載の燃料電池において、前
記冷媒が水であることを特徴とする燃料電池。
3. The fuel cell according to claim 2, wherein the refrigerant is water.
【請求項4】 電解質を含浸させた電解質層を挟んで一
対の多孔質電極からなるセルによって構成される単電池
と、複数個の単電池ごとに内部に冷媒を供給・排出して
電池を冷却する冷却板とを複数個積層して四角柱状のセ
ルスタックを形成し、このセルスタックの側面に、当該
セルスタックの側面との間に反応ガス流路が形成された
反応ガス供給・排出用のマニホールドを配置した積層体
で構成される燃料電池の運転方法において、当該燃料電
池内部の温度を広い範囲で均一化しかつ当該燃料電池内
部の特定部分の温度を下げるために、飽和温度より冷却
した冷媒を供給し、反応ガスの出口温度を局所的に低下
せしめるようにしたことを特徴とする燃料電池の運転方
法。
4. A unit cell composed of a cell composed of a pair of porous electrodes sandwiching an electrolyte layer impregnated with an electrolyte, and a coolant is supplied to and discharged from each of the plurality of unit cells to cool the battery. A plurality of cooling plates are stacked to form a rectangular column-shaped cell stack, and a side face of the cell stack is provided with a reaction gas flow path between the side face and the side face of the cell stack. In a method for operating a fuel cell composed of a laminate in which manifolds are arranged, in order to make the temperature inside the fuel cell uniform over a wide range and lower the temperature of a specific portion inside the fuel cell, a refrigerant cooled below the saturation temperature. Is supplied to locally lower the outlet temperature of the reaction gas.
【請求項5】 請求項4記載の燃料電池の運転方法にお
いて、前記冷媒の入口温度が飽和温度より少なくとも1
0℃以上冷却されていることを特徴とする燃料電池の運
転方法。
5. The method of operating a fuel cell according to claim 4, wherein the inlet temperature of the refrigerant is at least 1 higher than the saturation temperature.
A method of operating a fuel cell, which is characterized in that it is cooled to 0 ° C. or more.
JP6162570A 1994-07-15 1994-07-15 Fuel cell and operation thereof Pending JPH0831437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162570A JPH0831437A (en) 1994-07-15 1994-07-15 Fuel cell and operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162570A JPH0831437A (en) 1994-07-15 1994-07-15 Fuel cell and operation thereof

Publications (1)

Publication Number Publication Date
JPH0831437A true JPH0831437A (en) 1996-02-02

Family

ID=15757104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162570A Pending JPH0831437A (en) 1994-07-15 1994-07-15 Fuel cell and operation thereof

Country Status (1)

Country Link
JP (1) JPH0831437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036680A1 (en) * 1998-12-17 2000-06-22 International Fuel Cells, Llc A cooling plate for a fuel cell stack assembly
EP1030396A1 (en) * 1998-09-04 2000-08-23 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
WO2001035476A1 (en) * 1999-11-06 2001-05-17 Daimlerchrysler Ag Electrochemical fuel cell stack comprising a polymer electrolyte
CN108269638A (en) * 2017-12-20 2018-07-10 中核四0四有限公司 A kind of spent fuel reprocessing process system electrolytic cell with external cooling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030396A1 (en) * 1998-09-04 2000-08-23 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
EP1030396A4 (en) * 1998-09-04 2006-03-08 Toshiba Kk Solid polymer type fuel cell system
WO2000036680A1 (en) * 1998-12-17 2000-06-22 International Fuel Cells, Llc A cooling plate for a fuel cell stack assembly
WO2001035476A1 (en) * 1999-11-06 2001-05-17 Daimlerchrysler Ag Electrochemical fuel cell stack comprising a polymer electrolyte
DE19953404B4 (en) * 1999-11-06 2004-11-25 Daimlerchrysler Ag Electrochemical fuel cell stack
CN108269638A (en) * 2017-12-20 2018-07-10 中核四0四有限公司 A kind of spent fuel reprocessing process system electrolytic cell with external cooling

Similar Documents

Publication Publication Date Title
US8304123B2 (en) Ambient pressure fuel cell system employing partial air humidification
US5965288A (en) Gas humidifying device for use with a fuel cell
TWI225718B (en) Solid polymer cell assembly
US6207310B1 (en) Fuel cell with metal screen flow-field
JP3499090B2 (en) Fuel cell
RU2332753C2 (en) Thermoregulation in electrochemical fuel elements
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JPH11312531A (en) Fuel cell system
JP2000277128A (en) Solid polymer type fuel cell
JPH0831437A (en) Fuel cell and operation thereof
JPH06338334A (en) Cooling plate and cooling system for fuel cell
JPH08306370A (en) Laminated phosphoric acid type fuel cell
JPH1131517A (en) Phosphoric acid type fuel cell
JP2003059513A (en) Separator for fuel cell
JPH0750614B2 (en) Fuel cell
JPH10302826A (en) Fuel cell
JP3981476B2 (en) Fuel cell stack
JPS63155561A (en) Fuel cell
JPH07169494A (en) Phosphoric acid type fuel cell power plant
JP2000149962A (en) Cooling plate for fuel cell
JPH1154140A (en) Fuel cell power generating device
JPH03261073A (en) Cooling body of fuel cell
JP2659951B2 (en) Fuel cell stack
JPH06267551A (en) Fuel cell
JPH06260190A (en) Fuel cell of solid polymetype

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030520