JPH1154140A - Fuel cell power generating device - Google Patents

Fuel cell power generating device

Info

Publication number
JPH1154140A
JPH1154140A JP9212968A JP21296897A JPH1154140A JP H1154140 A JPH1154140 A JP H1154140A JP 9212968 A JP9212968 A JP 9212968A JP 21296897 A JP21296897 A JP 21296897A JP H1154140 A JPH1154140 A JP H1154140A
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
pipe
battery cooling
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9212968A
Other languages
Japanese (ja)
Inventor
Masaki Takahashi
正樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9212968A priority Critical patent/JPH1154140A/en
Publication of JPH1154140A publication Critical patent/JPH1154140A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide power generating characteristics at a low cost by heating and supplying oxidant gas by a simple constitution, and achieving a uniform inplane temperature distribution. SOLUTION: A pipeline 15 is disposed in contact with the wall surface of an oxidant gas supply manifold 2 attached at the side surface of a fuel cell layered body 1. One end of the pipeline 15 is connected to a cell cooling water supply pipe 10 for supplying cell cooling water to the fuel cell layered body 1 through a cooling pipe 13, and the other end is connected to a cell cooling water discharging pipe 11 for converging the cell cooling water discharged through a cooling pipe 14, so that oxidant gas is heat-exchanged with the cell cooling water, and then, is supplied to the fuel cell layered body 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池積層体
の側面にマニホールドを組み込み、反応ガスを供給して
発電する、主としてりん酸型の燃料電池発電装置に係わ
り、特に酸化剤ガスの供給構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid type fuel cell power generation apparatus which incorporates a manifold into a side surface of a fuel cell stack and supplies a reaction gas to generate power, and more particularly to an oxidizing gas supply structure. About.

【0002】[0002]

【従来の技術】図6は、側面にガス供給、排出用のマニ
ホールドを配した燃料電池積層体の構成例を示す平面図
である。燃料電池積層体1は、りん酸を保持するマトリ
ックスを燃料電極と酸化剤電極で挟持してなる平板状の
単電池を多数積層して方形状に形成されており、相対す
る側面に酸化剤ガス供給マニホールド2と酸化剤ガス排
出マニホールド3を配し、これらと直交するもう一方の
相対する側面に燃料ガス供給マニホールド4と燃料ガス
排出マニホールド5を配して、酸化剤ガスと燃料ガスを
直交して通流させる方法が採られている。すなわち、酸
化剤ガスには通常大気が使用され、大気温度で酸化剤ガ
ス供給管6より酸化剤ガス供給マニホールド2へと送ら
れ、燃料電池積層体1の多数の単電池の酸化剤極を分流
して通流し、酸化剤ガス排出マニホールド3に合流し、
酸化剤ガス排出管7より外部へと排出される。一方、燃
料ガスには改質された水素濃度の高い改質ガスが使用さ
れ、燃料電池積層体の運転温度の約 190℃に近い温度で
供給される。燃料ガス供給管8より燃料ガス供給マニホ
ールド4へと送られた燃料ガスは、効率を上げるために
燃料ガス排出マニホールド5との間を往復して通流した
のち、燃料ガス排出管9より外部へ排出される。
2. Description of the Related Art FIG. 6 is a plan view showing an example of the configuration of a fuel cell stack having gas supply and discharge manifolds on the side surfaces. The fuel cell stack 1 is formed in a square shape by stacking a large number of flat unit cells in which a matrix holding phosphoric acid is sandwiched between a fuel electrode and an oxidant electrode, and oxidant gas is provided on opposing side surfaces. A supply manifold 2 and an oxidant gas discharge manifold 3 are arranged, and a fuel gas supply manifold 4 and a fuel gas discharge manifold 5 are arranged on the other opposite side perpendicular to these, so that the oxidant gas and the fuel gas intersect at right angles. The method of letting it flow is adopted. That is, the atmosphere is usually used as the oxidizing gas, and the oxidizing gas is sent from the oxidizing gas supply pipe 6 to the oxidizing gas supply manifold 2 at the atmospheric temperature to separate the oxidizing electrodes of many cells of the fuel cell stack 1. And flow into the oxidant gas discharge manifold 3
The oxidant gas is discharged to the outside through the discharge pipe 7. On the other hand, a reformed gas having a high hydrogen concentration is used as the fuel gas, and is supplied at a temperature close to the operating temperature of the fuel cell stack of about 190 ° C. The fuel gas sent from the fuel gas supply pipe 8 to the fuel gas supply manifold 4 flows back and forth between the fuel gas discharge manifold 5 and the fuel gas discharge pipe 9 in order to increase the efficiency. Is discharged.

【0003】なお、単電池における発電反応は発熱反応
であり、単電池を所定の温度に維持するためには発熱を
除去する必要がある。このため、燃料電池積層体1は冷
却板を適宜挿入して積層されており、図に見られる電池
冷却水供給管10に送った電池冷却水を、各冷却板に埋
設した冷却管へと通流させて酸化剤ガスの排出側から供
給側方向へと送り、電池冷却水排出管11より外部へと
排出することにより発熱を除去して、燃料電池積層体1
の温度を約 190℃に保持している。
[0003] The power generation reaction in a unit cell is an exothermic reaction, and it is necessary to eliminate the heat generation in order to maintain the unit cell at a predetermined temperature. For this reason, the fuel cell stack 1 is laminated by appropriately inserting a cooling plate, and the battery cooling water sent to the battery cooling water supply pipe 10 shown in the figure passes through the cooling pipes embedded in each cooling plate. The fuel cell stack 1 is caused to flow from the discharge side of the oxidant gas to the supply side, and is discharged from the cell cooling water discharge pipe 11 to remove heat.
Is maintained at about 190 ° C.

【0004】[0004]

【発明が解決しようとする課題】上述のように、りん酸
型燃料電池においては燃料電池積層体の温度を約 190℃
に保持して運転されており、燃料ガスもほぼ同程度の温
度で供給されているが、酸化剤ガスとしての空気は通常
の大気温度で供給されている。このため、図8に示した
ように、燃料電池積層体に積層された単電池の面内の温
度分布を見ると、酸化剤ガス供給側の温度が低くなる傾
向がある。このように温度が低くなると発電特性も低下
するので、電池全体としての特性が低下するばかりでな
く、特性の低下分を補うために温度の高い部分で過度の
反応が生じて、この部分においても特性の劣化を引き起
こすこととなる。
As described above, in a phosphoric acid type fuel cell, the temperature of the fuel cell stack is about 190 ° C.
, And the fuel gas is also supplied at substantially the same temperature, but the air as the oxidizing gas is supplied at a normal atmospheric temperature. For this reason, as shown in FIG. 8, looking at the in-plane temperature distribution of the unit cells stacked in the fuel cell stack, the temperature on the oxidant gas supply side tends to decrease. As the temperature decreases, the power generation characteristics also decrease, so that not only the characteristics of the battery as a whole deteriorate, but also an excessive reaction occurs in a high-temperature portion to compensate for the decrease in the characteristics. This will cause deterioration of the characteristics.

【0005】この難点を解消するには、酸化剤ガスの温
度を上げて供給すればよく、例えば図7のごとく熱交換
器12を付設して、燃料電池積層体1において発電反応
により加熱されて排出される酸化剤ガスと熱交換させて
加熱し、高温となった酸化剤ガスを供給する方式が採ら
れている。図9は、この方式における燃料電池積層体の
面内の温度分布を示す特性図で、酸化剤ガス供給側の温
度の低下がなく、発電特性も図7の場合に比較して上昇
している。
In order to solve this difficulty, the temperature of the oxidizing gas may be increased and supplied. For example, a heat exchanger 12 is provided as shown in FIG. A method is employed in which the oxidizing gas is heated by exchanging heat with the oxidizing gas to be discharged, and the oxidizing gas is heated to a high temperature. FIG. 9 is a characteristic diagram showing the in-plane temperature distribution of the fuel cell stack in this method. There is no decrease in the temperature on the oxidant gas supply side, and the power generation characteristics are higher than those in FIG. .

【0006】しかしながら、このように熱交換器12を
付設する方式においては、発電反応により加熱されて排
出される酸化剤ガスに、単電池の電解質に用いられてい
るりん酸の蒸気が含まれており、温度の低い供給用の酸
化剤ガスとの熱交換によって、熱交換器12の内部にり
ん酸が凝縮し、腐食が進行して破損する危険性があるの
で、これを防止する構成とする必要があり、また、設置
スペースも必要となるので、コストが高くなってしまう
という難点がある。
However, in such a method in which the heat exchanger 12 is provided, the oxidizing gas which is heated and discharged by the power generation reaction contains the vapor of phosphoric acid used for the electrolyte of the unit cell. Since there is a risk of phosphoric acid condensing inside the heat exchanger 12 due to heat exchange with the supply oxidizing gas having a low temperature and causing corrosion to proceed and being damaged, a configuration for preventing this is provided. However, there is a disadvantage that the cost is high because the necessity and the installation space are required.

【0007】本発明の目的は、簡略な構成により供給す
る酸化剤ガスの温度が効果的に上昇し、機器の腐食や設
置スペースの増大、あるいはコストの増大等を引き起こ
すことなく、安価で、かつ優れた発電特性を備えた燃料
電池発電装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple configuration in which the temperature of an oxidizing gas to be supplied is effectively increased, and the cost is low without causing corrosion of equipment, an increase in installation space, or an increase in cost. An object of the present invention is to provide a fuel cell power generation device having excellent power generation characteristics.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、複数の単電池を適宜冷却板を
介装して積層することにより燃料電池積層体を構成し、
燃料電池積層体に近接して配した電池冷却水供給管へ供
給した電池冷却水を冷却板へ通流して燃料電池積層体を
所定温度に保持し、燃料電池積層体の側面に組み込んだ
マニホールドを用いて燃料電池積層体に酸化剤ガスおよ
び燃料ガスを通流して運転する燃料電池発電装置におい
て、(1)燃料電池積層体へ供給される酸化剤ガスを電
池冷却水供給管に供給された電池冷却水と熱交換させる
熱交換手段を備えることとし、(2)例えば、電池冷却
水供給管より分岐した電池冷却水が分流する配管、ある
いは前記の冷却板を通流したのちの電池冷却水が流れる
配管を、酸化剤ガス供給用のマニホールドの壁面に密着
して配することとする。
In order to achieve the above object, in the present invention, a fuel cell stack is constituted by stacking a plurality of unit cells with a cooling plate interposed therebetween as appropriate,
The cell cooling water supplied to the cell cooling water supply pipe arranged close to the fuel cell stack flows through the cooling plate to maintain the fuel cell stack at a predetermined temperature, and the manifold incorporated into the side surface of the fuel cell stack is provided. In a fuel cell power generator operated by flowing an oxidizing gas and a fuel gas through a fuel cell stack using the fuel cell, (1) a battery in which the oxidizing gas supplied to the fuel cell stack is supplied to a cell cooling water supply pipe A heat exchange means for exchanging heat with the cooling water is provided. (2) For example, a pipe branched from the battery cooling water supply pipe and diverted from the battery cooling water, or the battery cooling water after flowing through the cooling plate is used. The flowing pipe is arranged in close contact with the wall surface of the manifold for supplying the oxidizing gas.

【0009】(3)あるいは、電池冷却水供給管より分
岐した配管を酸化剤ガス供給用のマニホールドの内部に
配された冷却水槽へと連結し、電池冷却水を分流する。
(4)あるいは、電池冷却水供給管より分岐した電池冷
却水が分流する配管、あるいは前記の冷却板を通流した
のちの電池冷却水が流れる配管を、酸化剤ガスの供給用
配管に密着して配することとする。
(3) Alternatively, a pipe branched from the battery cooling water supply pipe is connected to a cooling water tank disposed inside the manifold for supplying the oxidizing gas, and the battery cooling water is divided.
(4) Alternatively, the pipe for diverting the battery cooling water branched from the battery cooling water supply pipe, or the pipe for flowing the battery cooling water after flowing through the cooling plate is closely attached to the oxidizing gas supply pipe. And distribute them.

【0010】電池冷却水は、発電反応に伴う発熱を除去
するとともに燃料電池積層体を約190℃の運転温度に保
持する役割を果たしているので、電池冷却水供給管に供
給される電池冷却水は、高温に保持されている。したが
って、上記の(1)のごとく、燃料電池積層体へ供給さ
れる酸化剤ガスをこの電池冷却水と熱交換させれば、酸
化剤ガスは効果的に加熱され、温度の上昇した酸化剤ガ
スが燃料電池積層体へと供給されるので、従来のごとき
酸化剤ガスの入口側での温度低下が回避され、発電特性
が向上する。
The battery cooling water serves to remove the heat generated by the power generation reaction and to maintain the fuel cell stack at an operating temperature of about 190 ° C. Therefore, the battery cooling water supplied to the battery cooling water supply pipe is , Is kept at a high temperature. Therefore, as described in (1) above, if the oxidizing gas supplied to the fuel cell stack is subjected to heat exchange with the cell cooling water, the oxidizing gas is effectively heated, and the oxidizing gas having an increased temperature is heated. Is supplied to the fuel cell stack, so that a temperature drop on the inlet side of the oxidizing gas as in the conventional case is avoided, and the power generation characteristics are improved.

【0011】特に、(2)あるいは(3)のごとくとす
れば、酸化剤ガスは、酸化剤ガス供給用のマニホールド
の内部において電池冷却水と効果的に熱交換し、温度上
昇したのち燃料電池積層体へと供給され、また(4)の
ごとくとすれば、酸化剤ガスは、酸化剤ガスの供給用配
管で電池冷却水と効果的に熱交換して温度上昇したの
ち、酸化剤ガス供給用のマニホールドへと送られ、燃料
電池積層体へと供給されるので、酸化剤ガスの入口側で
の温度低下が回避され、発電特性が向上する。
In particular, in the case of (2) or (3), the oxidizing gas effectively exchanges heat with the cell cooling water inside the oxidizing gas supply manifold, and after the temperature rises, the fuel cell If the oxidizing gas is supplied to the laminate and the temperature is raised by effectively exchanging heat with the battery cooling water in the oxidizing gas supply pipe according to (4), the oxidizing gas is supplied. Is supplied to the fuel cell stack, so that a decrease in temperature at the inlet side of the oxidizing gas is avoided, and the power generation characteristics are improved.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<実施例1>図1は、本発明の燃料電池発電装置の第1
の実施例の熱交換手段を示す要部斜視図である。なお、
図には、燃料電池積層体1に組み込まれる4個のマニホ
ールドのうち酸化剤ガス供給マニホールド2のみ表示さ
れ、他は省略されている。
<Embodiment 1> FIG. 1 shows a first embodiment of a fuel cell power generator according to the present invention.
It is a principal part perspective view which shows the heat exchange means of the Example of FIG. In addition,
In the figure, only the oxidizing gas supply manifold 2 among the four manifolds incorporated in the fuel cell stack 1 is shown, and the others are omitted.

【0013】本構成の特徴は、燃料電池積層体1に組み
込まれた図示しない冷却板へと連通する冷却管13を備
えた電池冷却水供給管10から分岐され、前記冷却板よ
り連通する冷却管14を備えた電池冷却水排出管11へ
と連結された配管15が、酸化剤ガス供給マニホールド
2の壁面に密着して配されている点にある。本構成にお
いては燃料電池積層体1を約 190℃の所定の運転温度に
保持するために加温して供給される電池冷却水が配管1
5を分流することとなる。酸化剤ガスは、酸化剤ガス供
給マニホールド2において配管15を流れる電池冷却水
と熱交換して加熱され、温度上昇したのち、燃料電池積
層体1へと供給されることとなる。したがって、燃料電
池積層体1の面内の温度分布は、従来のごとき酸化剤ガ
スの入口側での温度低下を生じることなく、より均一化
され、良好な電池特性が得られることとなる。
The feature of this configuration is that the cooling pipe is branched from the battery cooling water supply pipe 10 provided with a cooling pipe 13 communicating with a cooling plate (not shown) incorporated in the fuel cell stack 1 and communicates with the cooling plate. A pipe 15 connected to the battery cooling water discharge pipe 11 provided with the pipe 14 is provided in close contact with the wall surface of the oxidizing gas supply manifold 2. In this configuration, the fuel cell stack 1 is heated and supplied to maintain the fuel cell stack 1 at a predetermined operating temperature of about 190 ° C.
5 will be diverted. The oxidizing gas is heated by exchanging heat with the cell cooling water flowing through the pipe 15 in the oxidizing gas supply manifold 2, heated, and then supplied to the fuel cell stack 1. Therefore, the in-plane temperature distribution of the fuel cell stack 1 is made more uniform without lowering the temperature on the inlet side of the oxidizing gas as in the prior art, and good cell characteristics are obtained.

【0014】<実施例2>図2は、本発明の燃料電池発
電装置の第2の実施例の熱交換手段を示す要部斜視図で
ある。本構成の特徴は、燃料電池積層体1に組み込まれ
た図示しない冷却板に連通し、排出される電池冷却水を
通流する多数の冷却管14A、ならびにこれらの電池冷
却水を合流させて排出する電池冷却水排出管11が、酸
化剤ガス供給マニホールド2の壁面に密着して配されて
いる点にある。
<Embodiment 2> FIG. 2 is a perspective view showing a main part of a heat exchange means of a fuel cell power generator according to a second embodiment of the present invention. This configuration is characterized by a large number of cooling pipes 14A which communicate with a cooling plate (not shown) incorporated in the fuel cell stack 1 and through which the discharged battery cooling water flows, and discharge these battery cooling waters by combining them. The battery cooling water discharge pipe 11 is disposed in close contact with the wall surface of the oxidizing gas supply manifold 2.

【0015】本構成においても、酸化剤ガスは、酸化剤
ガス供給マニホールド2において冷却管14Aならびに
電池冷却水排出管11を流れる電池冷却水と熱交換して
加熱され、温度上昇したのち、燃料電池積層体1へと供
給されることとなり、燃料電池積層体1の面内の温度分
布は、酸化剤ガスの入口側での温度低下を生じることな
く均一化され、良好な電池特性が得られることとなる。
Also in this structure, the oxidizing gas is heated by exchanging heat with the cooling water flowing through the cooling pipe 14A and the battery cooling water discharge pipe 11 in the oxidizing gas supply manifold 2, and is heated. As a result, the temperature distribution in the plane of the fuel cell stack 1 is made uniform without lowering the temperature on the inlet side of the oxidizing gas, and good cell characteristics can be obtained. Becomes

【0016】<実施例3>図3は、本発明の燃料電池発
電装置の第3の実施例の熱交換手段を示す要部斜視図で
ある。本構成の特徴は、酸化剤ガス供給マニホールド2
Aの壁面に冷却水槽16が備えられ、冷却水槽16と電
池冷却水供給管10との間に配管17が、また、冷却水
槽16と電池冷却水排出管11との間に配管18が備え
られている点にある。
<Embodiment 3> FIG. 3 is a perspective view showing a main part of a heat exchange means of a fuel cell power generator according to a third embodiment of the present invention. The feature of this configuration is that the oxidant gas supply manifold 2
A cooling water tank 16 is provided on the wall surface of A, a pipe 17 is provided between the cooling water tank 16 and the battery cooling water supply pipe 10, and a pipe 18 is provided between the cooling water tank 16 and the battery cooling water discharge pipe 11. It is in the point.

【0017】本構成においては、酸化剤ガスは、酸化剤
ガス供給マニホールド2Aにおいて冷却水槽16に分流
される電池冷却水と熱交換して加熱され、温度上昇した
のち、燃料電池積層体1へと供給されることとなるの
で、燃料電池積層体1の面内の温度分布が均一化され、
良好な電池特性が得られることとなる。 <実施例4>図4は、本発明の燃料電池発電装置の第4
の実施例の熱交換手段を示す要部斜視図である。本構成
の特徴は、酸化剤ガス供給マニホールド2に連結された
酸化剤ガス供給管が、その一部を電池冷却水排出管11
の一部で覆って形成した二重管19を備えて構成されて
いる点にある。
In this configuration, the oxidizing gas is heated by exchanging heat with the battery cooling water diverted to the cooling water tank 16 in the oxidizing gas supply manifold 2A, heated, and then heated to the fuel cell stack 1. As a result, the temperature distribution in the plane of the fuel cell stack 1 is made uniform,
Good battery characteristics will be obtained. <Embodiment 4> FIG. 4 shows a fourth embodiment of the fuel cell power generator according to the present invention.
It is a principal part perspective view which shows the heat exchange means of the Example of FIG. This configuration is characterized in that the oxidizing gas supply pipe connected to the oxidizing gas supply manifold 2 is partially connected to the battery cooling water discharge pipe 11.
In that it is provided with a double tube 19 formed so as to cover a part of the double tube.

【0018】本構成においては、酸化剤ガスは、二重管
19において電池冷却水と熱交換して加熱され、温度上
昇したのち、酸化剤ガス供給マニホールド2より燃料電
池積層体1へと供給されることとなるので、燃料電池積
層体1の面内の温度分布が均一化され、良好な電池特性
が得られることとなる。 <実施例5>図5は、本発明の燃料電池発電装置の第5
の実施例の熱交換手段を示す要部斜視図である。本構成
の特徴は、酸化剤ガス供給マニホールド2に連結された
酸化剤ガス供給管の一部に、電池冷却水供給管10と電
池冷却水排出管11とを連結する配管20が巻装して配
されている点にある。
In this configuration, the oxidizing gas is heated by exchanging heat with the battery cooling water in the double pipe 19 and is heated, and then supplied from the oxidizing gas supply manifold 2 to the fuel cell stack 1. Therefore, the in-plane temperature distribution of the fuel cell stack 1 is made uniform, and good cell characteristics are obtained. <Embodiment 5> FIG. 5 shows a fifth embodiment of the fuel cell power generator of the present invention.
It is a principal part perspective view which shows the heat exchange means of the Example of FIG. The feature of this configuration is that a pipe 20 for connecting the battery cooling water supply pipe 10 and the battery cooling water discharge pipe 11 is wound around a part of the oxidizing gas supply pipe connected to the oxidizing gas supply manifold 2. It is located at the point.

【0019】本構成においても、酸化剤ガスは、酸化剤
ガス供給管において配管20を通流する電池冷却水と熱
交換して加熱され、温度上昇したのち、酸化剤ガス供給
マニホールド2より燃料電池積層体1へと供給されるこ
ととなるので、燃料電池積層体1の面内の温度分布が均
一化され、良好な電池特性が得られることとなる。
Also in this configuration, the oxidizing gas is heated by exchanging heat with the battery cooling water flowing through the pipe 20 in the oxidizing gas supply pipe, and after the temperature rises, the fuel cell is supplied from the oxidizing gas supply manifold 2 to the fuel cell. Since the fuel is supplied to the stack 1, the in-plane temperature distribution of the fuel cell stack 1 is made uniform, and good cell characteristics are obtained.

【0020】[0020]

【発明の効果】上述のごとく、本発明によれば、複数の
単電池を適宜冷却板を介装して積層することにより燃料
電池積層体を構成し、燃料電池積層体に近接して配した
電池冷却水供給管へ供給した電池冷却水を冷却板へ通流
して燃料電池積層体を所定温度に保持し、燃料電池積層
体の側面に組み込んだマニホールドを用いて燃料電池積
層体に酸化剤ガスおよび燃料ガスを通流して運転する燃
料電池発電装置において、燃料電池積層体へ供給される
酸化剤ガスを電池冷却水供給管に供給された電池冷却水
と熱交換させる熱交換手段を備えることとし、例えば、
(1)電池冷却水供給管より分岐した電池冷却水が分流
する配管、あるいは前記の冷却板を通流したのちの電池
冷却水が流れる配管を、酸化剤ガス供給用のマニホール
ドの壁面に密着して配することとする。あるいは、
(2)電池冷却水供給管より分岐した配管を酸化剤ガス
供給用のマニホールドの内部に配された冷却水槽へと連
結し、電池冷却水を分流する。あるいは、(3)電池冷
却水供給管より分岐した電池冷却水が分流する配管、あ
るいは前記の冷却板を通流したのちの電池冷却水が流れ
る配管を、酸化剤ガスの供給用配管に密着して配するこ
ととしたので、酸化剤ガスが電池冷却水と熱交換して加
熱され、温度上昇したのち燃料電池積層体へと供給され
ることとなるので、燃料電池積層体の面内の温度分布が
均一化され、安価で、かつ優れた発電特性を備えた燃料
電池発電装置が得られることとなった。
As described above, according to the present invention, a fuel cell stack is formed by stacking a plurality of unit cells with a cooling plate interposed therebetween as appropriate, and arranged in close proximity to the fuel cell stack. The battery cooling water supplied to the battery cooling water supply pipe flows through the cooling plate to maintain the fuel cell stack at a predetermined temperature, and the oxidant gas is supplied to the fuel cell stack using the manifold incorporated on the side of the fuel cell stack. And a fuel cell power generation device that operates by flowing fuel gas, wherein a heat exchange means is provided for exchanging heat between the oxidizing gas supplied to the fuel cell stack and the battery cooling water supplied to the battery cooling water supply pipe. For example,
(1) The pipe for diverting the battery cooling water branched from the battery cooling water supply pipe or the pipe for flowing the battery cooling water after flowing through the cooling plate is closely attached to the wall surface of the oxidant gas supply manifold. And distribute them. Or,
(2) A pipe branched from the battery cooling water supply pipe is connected to a cooling water tank disposed inside a manifold for supplying an oxidizing gas, and the battery cooling water is divided. Alternatively, (3) the pipe for diverting the battery cooling water branched from the battery cooling water supply pipe or the pipe for flowing the battery cooling water after flowing through the cooling plate is closely attached to the oxidizing gas supply pipe. Since the oxidizing gas is heated by exchanging heat with the cell cooling water and is heated and then supplied to the fuel cell stack, the temperature in the plane of the fuel cell stack is increased. A fuel cell power generator with uniform distribution, low cost, and excellent power generation characteristics has been obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池発電装置の第1の実施例の熱
交換手段を示す要部斜視図
FIG. 1 is a perspective view of a main part showing a heat exchange unit of a first embodiment of a fuel cell power generator according to the present invention.

【図2】本発明の燃料電池発電装置の第2の実施例の熱
交換手段を示す要部斜視図
FIG. 2 is a perspective view of a main part showing a heat exchange unit of a second embodiment of the fuel cell power generator according to the present invention.

【図3】本発明の燃料電池発電装置の第3の実施例の熱
交換手段を示す要部斜視図
FIG. 3 is a perspective view of a main part showing heat exchange means of a third embodiment of the fuel cell power generator according to the present invention.

【図4】本発明の燃料電池発電装置の第4の実施例の熱
交換手段を示す要部斜視図
FIG. 4 is a perspective view of a main part showing a heat exchange unit of a fourth embodiment of the fuel cell power generator according to the present invention.

【図5】本発明の燃料電池発電装置の第5の実施例の熱
交換手段を示す要部斜視図
FIG. 5 is a perspective view of a main part showing a heat exchange unit of a fifth embodiment of the fuel cell power generator according to the present invention.

【図6】側面にガス供給、排出用のマニホールドを配し
た燃料電池積層体の構成例を示す平面図
FIG. 6 is a plan view showing a configuration example of a fuel cell stack having gas supply / discharge manifolds arranged on side surfaces;

【図7】排出される酸化剤ガスを用いて加熱した酸化剤
ガスを燃料電池積層体へと供給するガス供給方式の説明
FIG. 7 is an explanatory diagram of a gas supply system for supplying an oxidizing gas heated by using an oxidizing gas to be discharged to a fuel cell stack;

【図8】従来のガス供給方式における燃料電池積層体の
面内の温度分布を示す特性図
FIG. 8 is a characteristic diagram showing an in-plane temperature distribution of a fuel cell stack in a conventional gas supply system.

【図9】図7のガス供給方式における燃料電池積層体の
面内の温度分布を示す特性図
9 is a characteristic diagram showing an in-plane temperature distribution of the fuel cell stack in the gas supply system of FIG. 7;

【符号の説明】[Explanation of symbols]

1 燃料電池積層体 2 酸化剤ガス供給マニホールド 2A 酸化剤ガス供給マニホールド 10 電池冷却水供給管 11 電池冷却水排出管 13 冷却管 14 冷却管 14A 冷却管 15 配管 16 冷却水槽 17 配管 18 配管 19 二重管 20 配管 DESCRIPTION OF SYMBOLS 1 Fuel cell laminated body 2 Oxidant gas supply manifold 2A Oxidant gas supply manifold 10 Battery cooling water supply pipe 11 Battery cooling water discharge pipe 13 Cooling pipe 14 Cooling pipe 14A Cooling pipe 15 Pipe 16 Cooling water tank 17 Pipe 18 Pipe 18 Duplex Pipe 20 Piping

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数の単電池を適宜冷却板を介装して積層
することにより燃料電池積層体を構成し、燃料電池積層
体に近接して配した電池冷却水供給管へ供給した電池冷
却水を冷却板へ通流して燃料電池積層体を所定温度に保
持し、燃料電池積層体の側面に組み込んだマニホールド
を用いて燃料電池積層体に酸化剤ガスおよび燃料ガスを
通流して運転する燃料電池発電装置において、燃料電池
積層体へ供給される酸化剤ガスを電池冷却水供給管に供
給された電池冷却水と熱交換させる熱交換手段を備えた
ことを特徴とする燃料電池発電装置。
A fuel cell stack is formed by stacking a plurality of unit cells with a cooling plate interposed therebetween as appropriate, and the battery cooling unit is supplied to a battery cooling water supply pipe disposed close to the fuel cell stack. The fuel is operated by flowing water to the cooling plate to maintain the fuel cell stack at a predetermined temperature, and flowing the oxidizing gas and the fuel gas through the fuel cell stack using a manifold incorporated on the side of the fuel cell stack. A fuel cell power generator, comprising: a heat exchange means for exchanging heat with oxidant gas supplied to a fuel cell stack with battery water supplied to a cell cooling water supply pipe.
【請求項2】請求項1に記載の燃料電池発電装置におい
て、熱交換手段が、前記の電池冷却水供給管より分岐し
た電池冷却水が分流する配管、あるいは前記の冷却板を
通流したのちの電池冷却水が流れる配管を、酸化剤ガス
供給用のマニホールドの壁面に密着して配してなること
を特徴とする燃料電池発電装置。
2. The fuel cell power generator according to claim 1, wherein the heat exchanging means includes a pipe for diverting battery cooling water from the battery cooling water supply pipe or a cooling plate. A fuel cell power generator, wherein a pipe through which the cell cooling water flows is closely attached to a wall surface of a manifold for supplying an oxidizing gas.
【請求項3】請求項1に記載の燃料電池発電装置におい
て、熱交換手段が、前記の電池冷却水供給管より分岐し
た配管を酸化剤ガス供給用のマニホールドの内部に配さ
れた冷却水槽へと連結し、電池冷却水を分流してなるこ
とを特徴とする燃料電池発電装置。
3. The fuel cell power generator according to claim 1, wherein the heat exchange means connects a pipe branched from the battery cooling water supply pipe to a cooling water tank arranged inside a manifold for supplying oxidant gas. And a fuel cell power generation device, wherein the fuel cell power generation device is connected to the fuel cell and shunts the battery cooling water.
【請求項4】請求項1に記載の燃料電池発電装置におい
て、熱交換手段が、前記の電池冷却水供給管より分岐し
た電池冷却水が分流する配管、あるいは前記の冷却板を
通流したのちの電池冷却水が流れる配管を、酸化剤ガス
の供給用配管に密着して配してなることを特徴とする燃
料電池発電装置。
4. The fuel cell power generator according to claim 1, wherein the heat exchange means includes a pipe for diverting the battery cooling water branched from the battery cooling water supply pipe, or the heat exchange means flowing through the cooling plate. A fuel cell power generator, wherein a pipe through which the battery cooling water flows is closely attached to a pipe for supplying an oxidizing gas.
JP9212968A 1997-08-07 1997-08-07 Fuel cell power generating device Pending JPH1154140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9212968A JPH1154140A (en) 1997-08-07 1997-08-07 Fuel cell power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9212968A JPH1154140A (en) 1997-08-07 1997-08-07 Fuel cell power generating device

Publications (1)

Publication Number Publication Date
JPH1154140A true JPH1154140A (en) 1999-02-26

Family

ID=16631288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9212968A Pending JPH1154140A (en) 1997-08-07 1997-08-07 Fuel cell power generating device

Country Status (1)

Country Link
JP (1) JPH1154140A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343387A (en) * 2001-05-21 2002-11-29 Mitsubishi Heavy Ind Ltd Fuel cell and operation method of the same
JP2008277039A (en) * 2007-04-26 2008-11-13 Toyota Motor Corp Fuel cell system and fuel cell vehicle
JP2011086549A (en) * 2009-10-16 2011-04-28 Toyota Boshoku Corp Fuel cell system
JP2012508947A (en) * 2008-11-05 2012-04-12 ベレノス・クリーン・パワー・ホールディング・アーゲー Fuel cell system including heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343387A (en) * 2001-05-21 2002-11-29 Mitsubishi Heavy Ind Ltd Fuel cell and operation method of the same
JP2008277039A (en) * 2007-04-26 2008-11-13 Toyota Motor Corp Fuel cell system and fuel cell vehicle
JP2012508947A (en) * 2008-11-05 2012-04-12 ベレノス・クリーン・パワー・ホールディング・アーゲー Fuel cell system including heat exchanger
JP2011086549A (en) * 2009-10-16 2011-04-28 Toyota Boshoku Corp Fuel cell system
US8835071B2 (en) 2009-10-16 2014-09-16 Toyota Boshoku Kabushiki Kaisha Fuel cell system including oxidation gas supply pipe integrated with coolant supply pipe

Similar Documents

Publication Publication Date Title
US7070874B2 (en) Fuel cell end unit with integrated heat exchanger
JPH09259910A (en) Molten carbonate fuel battery and power generator using this battery
JP2017076609A (en) Fuel cell module including heat exchanger and method for actuating such module
US8298710B2 (en) Humidifier for fuel cell and process for warming the same
JP2000164235A (en) Solid polymeric fuel cell system
JP2006114415A (en) Fuel cell system
JPH1154140A (en) Fuel cell power generating device
US20070122677A1 (en) Fuel cell system
JP2008251237A (en) Fuel cell
JPS5975573A (en) Fuel cell
JPH04144069A (en) Fuel cell
JP5376402B2 (en) Fuel cell module
JPH01279575A (en) Fuel cell
JP3981476B2 (en) Fuel cell stack
JP2865025B2 (en) Molten carbonate fuel cell
JP2000149962A (en) Cooling plate for fuel cell
JPH0831437A (en) Fuel cell and operation thereof
JP2659951B2 (en) Fuel cell stack
JP2024012000A (en) Fuel battery module, and gas supply method of fuel battery module
JPH0945359A (en) Fuel cell
JPH0227503Y2 (en)
JPH03261073A (en) Cooling body of fuel cell
JPS63131469A (en) Fuel cell
JPS60154472A (en) Fuel cell
JPH09293528A (en) Fuel cell