JPH05159790A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH05159790A
JPH05159790A JP3348699A JP34869991A JPH05159790A JP H05159790 A JPH05159790 A JP H05159790A JP 3348699 A JP3348699 A JP 3348699A JP 34869991 A JP34869991 A JP 34869991A JP H05159790 A JPH05159790 A JP H05159790A
Authority
JP
Japan
Prior art keywords
gas
separator
fuel
cell
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3348699A
Other languages
Japanese (ja)
Inventor
Isamu Yasuda
勇 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3348699A priority Critical patent/JPH05159790A/en
Publication of JPH05159790A publication Critical patent/JPH05159790A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide uniformity of reaction of each cell over the total surface of a pole by forming gas circulating labyrinth grooves on both surfaces of a separator. CONSTITUTION:Supply gas holes 1 for supplying oxidant gas and fuel gas to the adjacent next cell and exhaust holes 2 of these gases from the adjacent cell in an opposite side are drilled in a separator 7. Further, in order to uniformly distribute the oxidant and fuel gas to all the corners in both surfaces of the cell and in order to electrically connect in series the cells adjacent to each other, labyrinth grooves 14 are formed on both surfaces of the separator 7. By forming a separator structure thus obtained, the fuel gas or oxidant gas supplied to the cell from the supply gas hole 1 is forced to pass through the groove 14 formed on the surface of the separator 7, so that the gas, passing through the total surface of air and fuel poles 8a, 8b, is discharged from the exhaust hole 2. Thus by uniformly generating a flow speed and temperature of the fuel gas and oxidant gas in a stack and distributing thermal stress, output density can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池、
特にセパレータの構造に特徴を有する固体電解質型燃料
電池に関する。
FIELD OF THE INVENTION The present invention relates to a solid oxide fuel cell,
In particular, the present invention relates to a solid oxide fuel cell characterized by the structure of a separator.

【0002】[0002]

【従来技術】最近、酸素と水素をそれぞれ、酸化剤およ
び燃料として、燃料が本来持っている化学エネルギーを
直接電気エネルギーに変換する燃料電池が、省資源、環
境保護などの観点から注目されており、特に固体電解質
型燃料電池は、動作温度が800〜1000°Cと高い
ことから、リン酸型、溶融炭酸塩型の燃料電池に比べて
原理的に発電効率が高く、排熱を有効に利用することが
でき、構成材料がすべて固体であり取扱が容易であるな
どの多くの利点を有するため、研究・開発が進んできて
いる。
2. Description of the Related Art Recently, fuel cells, which use oxygen and hydrogen as an oxidant and a fuel, respectively, which directly convert the chemical energy originally possessed by the fuel into electric energy, have been attracting attention from the viewpoint of resource saving and environmental protection. In particular, since the solid oxide fuel cell has a high operating temperature of 800 to 1000 ° C., it has a higher power generation efficiency in principle than the phosphoric acid type and molten carbonate type fuel cells, and the waste heat can be effectively used. Since it can be manufactured and has many advantages such as that the constituent materials are all solid and easy to handle, research and development have been advanced.

【0003】従来、この種の技術としては図8に示すよ
うな固体電解質型燃料電池がある。この図は分解斜視図
であり、上から単電池11、セパレータ(またはインタ
ーコネクターと称する)7、単電池11及びセパレータ
7の順に積層され、最終的に一体的に固定されて固体電
解質型燃料電池の基本構造(以下スタックと略称する)
を構成している。このスタックにおいては、セパレータ
7は単電池11を交互に隔離し且つ該単電池11を次々
に電気的に直列に接続する機能を有する。
Conventionally, as a technique of this kind, there is a solid oxide fuel cell as shown in FIG. This drawing is an exploded perspective view, in which the unit cell 11, the separator (or referred to as an interconnector) 7, the unit cell 11 and the separator 7 are stacked in this order from the top, and finally fixed integrally to form a solid oxide fuel cell. Basic structure of (hereinafter referred to as stack)
Are configured. In this stack, the separator 7 has a function of alternately separating the unit cells 11 and electrically connecting the unit cells 11 one after another in series.

【0004】単電池11は平板状固体電解質層9の表面
に空気極又は酸化剤極8a、裏面に燃料極8bが配置さ
れており、これらの極8a,8bのそれぞれに酸化剤ガ
ス例えば空気12と燃料ガス13を接触させることによ
り起電力を発生させる。このように極8a,8bの表面
にガスを均等に流すための流通路としてセパレータ7の
両面には複数列の溝14が縦方向又は横方向に整然と形
成されている。
In the unit cell 11, an air electrode or an oxidant electrode 8a is arranged on the surface of the plate-like solid electrolyte layer 9 and a fuel electrode 8b is arranged on the back surface thereof, and an oxidant gas such as air 12 is arranged on each of these electrodes 8a and 8b. An electromotive force is generated by bringing the fuel gas 13 into contact with the fuel gas 13. In this way, a plurality of rows of grooves 14 are formed in order in the vertical direction or the horizontal direction on both surfaces of the separator 7 as a flow passage for evenly flowing the gas on the surfaces of the electrodes 8a, 8b.

【0005】[0005]

【発明が解決しようとする課題】このように、セパレー
タ7の表面に等間隔に規則正しく同一幅の流通路を多数
設けているが、実際上ガスは偏流現象を起こして空気極
8aおよび燃料極8bの表面に均等に分散して流れず反
応が不均一となることが多い。それはセパレータへのガ
ス吹き出し孔に近い溝にはたくさんの空気および燃料ガ
スが流れ、吹き出し孔から遠い溝には少量しか流れない
ことが原因である。この現象は外部マニホールドにより
ガスをスタック内に流通させる場合でも、またスタック
内に設けられたマニホールドからガスをスタック内に流
通させる場合でも同じように生じている。また、電池の
容量を大きくするためには単電池の面積を広くする必要
があり、そうすると上記偏流現象がますます激しくな
る。その結果、反応不均一のために単電池内部に大きな
温度分布を生じ、熱歪が発生し、ひいては電池の性能お
よび耐久性を低下させてしまう。
As described above, a large number of flow passages having the same width are regularly provided at regular intervals on the surface of the separator 7. However, in actuality, the gas causes a nonuniform flow phenomenon and the air electrode 8a and the fuel electrode 8b. The reaction is often non-uniform because it does not flow evenly over the surface of the solution. This is because a large amount of air and fuel gas flow in the groove close to the gas blowing hole to the separator, and a small amount flows in the groove far from the blowing hole. This phenomenon occurs similarly when the gas is circulated in the stack by the external manifold and also when the gas is circulated in the stack from the manifold provided in the stack. Further, in order to increase the capacity of the battery, it is necessary to increase the area of the unit cell, and then the above-mentioned drift current phenomenon becomes more severe. As a result, a large temperature distribution is generated inside the unit cell due to the non-uniform reaction, and thermal strain occurs, which in turn lowers the performance and durability of the cell.

【0006】本発明は上述の点に鑑みてなされたもの
で、酸化剤ガスおよび燃料ガスをスタック内の各単電池
の空気極および燃料極表面に均等に分散して流通させ、
各単電池の反応を極の全面にわたり均一化させることが
できる高出力密度の固体電解質型燃料電池を提供するこ
とを目的とする。
The present invention has been made in view of the above points, and an oxidant gas and a fuel gas are evenly distributed and flowed on the surfaces of the air electrode and the fuel electrode of each unit cell in the stack.
It is an object of the present invention to provide a solid oxide fuel cell with high output density, which can make the reaction of each cell uniform over the entire surface of the electrode.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
本発明は、固体電解質層を挟むように燃料極と空気極を
配置してなる平板状単電池と、隣接する単電池を電気的
に直列に接続しかつ各単電池に燃料ガスと酸化剤ガスと
を分配するセパレータとを交互に積層して構成される固
体電解質型燃料電池において、前記セパレータの両面に
燃料ガスおよび酸化剤ガスが単電池の表面をくまなく流
れるような形状のガス流通溝を形成したことを特徴とす
る。
In order to solve the above problems, the present invention electrically connects a flat cell having a fuel electrode and an air electrode so as to sandwich a solid electrolyte layer and an adjacent cell to each other. In a solid oxide fuel cell that is connected in series and is formed by alternately stacking separators that distribute a fuel gas and an oxidant gas to each unit cell, a fuel gas and an oxidant gas are provided on both sides of the separator. It is characterized in that a gas flow groove having a shape that flows all over the surface of the battery is formed.

【0008】また、前記迷路状ガス流通路へのガスの給
気孔や排気口の配置をいろいろ変えて、これらを種々組
み合わせるようにした。
Further, the arrangement of the gas supply holes and the exhaust ports for the maze-like gas flow passage is variously changed, and various combinations thereof are made.

【0009】[0009]

【作用】上記のように、単電池に対向するセパレータの
表面に迷路状のガス流通溝を形成したので、ガスが各単
電池の電極面上を均等に分散して流れるようになる。
As described above, since the labyrinth-shaped gas flow grooves are formed on the surface of the separator facing the unit cells, the gas is evenly distributed and flows on the electrode surface of each unit cell.

【0010】[0010]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0011】図1は本発明による固体電解室型燃料電池
を構成する単電池を示し、図2〜図7は同燃料電池を構
成するセパレータの種々の実施例を示す。
FIG. 1 shows a unit cell constituting a solid electrolytic chamber fuel cell according to the present invention, and FIGS. 2 to 7 show various embodiments of a separator constituting the fuel cell.

【0012】本発明の固体電解質型燃料電池の基本構造
(以下スタックと略称する)は固体電解質層を挟むよう
にその両側に燃料極と空気極を配置した平板状単電池
を、セパレータを間に置いて積層したものである。該単
電池は電解質層すなわちイットリア安定化ジルコニア
(YSZ)焼結体の片面に、空気極として(La,S
r)MnO3 を、他面に燃料極としてNi/YSZサー
メットをスクリーン印刷などによりコーティングし、空
気中で所定の温度で焼成することにより得られる。電解
質層(YSZ)の周縁部分にはガス通路となる孔を穿孔
しておく。セパレータ7は例えば特開平2−11163
2号に開示されているカルシウムド−プランタンクロマ
イトを加圧成形した後に、空気中で焼成して得られる平
板状焼結体に、ガス給排気用の孔とガス分配用の溝を機
械加工により形成することによって得られる。これらの
電池とセパレータ板を交互に積層することによりスタッ
クを構成する。
The basic structure of the solid oxide fuel cell of the present invention (hereinafter abbreviated as a stack) is a flat plate type cell in which a fuel electrode and an air electrode are arranged on both sides of a solid electrolyte layer so that a solid electrolyte layer is sandwiched between them. It is placed and laminated. The unit cell is composed of an electrolyte layer, that is, a yttria-stabilized zirconia (YSZ) sintered body on one side, and as an air electrode (La, S
r) MnO 3 can be obtained by coating the other surface with Ni / YSZ cermet as a fuel electrode by screen printing or the like, and firing at a predetermined temperature in air. The periphery of the electrolyte layer (YSZ) is perforated with holes serving as gas passages. The separator 7 is, for example, JP-A-2-11163.
The plate-shaped sintered body obtained by press-molding the calcium doptan chromite disclosed in No. 2 and then firing in air is provided with holes for gas supply / exhaust and grooves for gas distribution by machining. Obtained by forming. A stack is formed by alternately stacking these batteries and separator plates.

【0013】本発明による固体電解質型燃料電池の一実
施例を図1〜図4を参照して説明する。
An embodiment of the solid oxide fuel cell according to the present invention will be described with reference to FIGS.

【0014】図1は単電池11の構造を示し、(a)は
平面図であり、(b)は正面図である。固体電解質層9
の片側に空気極8aが、反対側に燃料極8bが配置され
ている。この固体電解質層9の表面であって空気極8a
および燃料極8bが付着されていない周縁部に燃料ガス
または空気の給気孔1および排気孔2が穿孔されてい
る。これらの孔1、2は単電池11を積層する過程で連
結されてスタックの内部にガス通路を形成する。
FIG. 1 shows the structure of the unit cell 11, (a) is a plan view and (b) is a front view. Solid electrolyte layer 9
The air electrode 8a is arranged on one side and the fuel electrode 8b is arranged on the opposite side. The air electrode 8a on the surface of the solid electrolyte layer 9
Also, a fuel gas or air supply hole 1 and an exhaust hole 2 are formed in the peripheral portion where the fuel electrode 8b is not attached. These holes 1 and 2 are connected in the process of stacking the unit cells 11 to form a gas passage inside the stack.

【0015】図2〜図4は実施例1のセパレータ7の構
造を示す。図2はスタックの中間に配置されるセパレー
タの構造を示しており、(a)は平面図、(b)はガス
の流れを示す模式図である。まず図2(a)からわかる
ようにセパレータ7には隣接する次の単電池へ酸化剤ガ
ス(空気)および燃料ガスを供給するための給気孔1
と、反対側に隣接する単電池からのこれらガスの排気を
集合するための排気孔2が穿孔されている。すなわち給
気孔1からは単電池の各面に空気と燃料ガスが供給さ
れ、排気孔2からは単電池11の両面で反応に使われた
酸化剤ガスおよび燃料ガスが排出される。さらに、単電
池両面のすみずみに酸化剤ガスおよび燃料ガスを均等に
分配するため、及び隣り合う単電池を電気的に直列に接
続するために溝14がセパレータ7の両面に形成されて
いる。この溝14は迷路状に形成されている。
2 to 4 show the structure of the separator 7 of the first embodiment. 2A and 2B show the structure of the separator arranged in the middle of the stack, where FIG. 2A is a plan view and FIG. 2B is a schematic view showing a gas flow. First, as can be seen from FIG. 2 (a), the separator 7 is provided with a gas supply hole 1 for supplying an oxidant gas (air) and a fuel gas to the next adjacent unit cell.
An exhaust hole 2 for collecting exhaust gas of these gases from the adjacent unit cells is formed on the opposite side. That is, air and fuel gas are supplied to each side of the unit cell from the air supply hole 1, and the oxidant gas and fuel gas used for the reaction on both sides of the unit cell 11 are discharged from the exhaust hole 2. Further, grooves 14 are formed on both sides of the separator 7 in order to evenly distribute the oxidant gas and the fuel gas to the corners on both sides of the unit cell and to electrically connect the adjacent unit cells in series. The groove 14 is formed in a labyrinth.

【0016】このようなセパレータ構造にすることによ
り、図2(b)からわかるように、給気孔1から単電池
に供給される燃料ガスまたは酸化剤ガス(例えば空気)
はセパレータ7の表面に形成された溝14を強制的に通
ることにより空気極8aおよび燃料極8bの全面を通過
し、排気孔2から排出される。図において、白丸はセパ
レータ7の面内において溝14が上下の単電池の給気孔
/排気孔と連結していることを表し、黒丸は連結してい
ないで、セパレータ7の裏側で連結していることを表
す。
With such a separator structure, as can be seen from FIG. 2 (b), the fuel gas or oxidant gas (for example, air) supplied from the air supply hole 1 to the unit cell.
Is forcedly passed through the groove 14 formed on the surface of the separator 7 to pass through the entire surfaces of the air electrode 8a and the fuel electrode 8b, and is discharged from the exhaust hole 2. In the figure, the white circles indicate that the groove 14 is connected to the air supply holes / exhaust holes of the upper and lower cells in the plane of the separator 7, and the black circles are not connected but are connected on the back side of the separator 7. It means that.

【0017】図3はスタックの最上面と最下面に配置さ
れるセパレータ7’の構造を示し、(a)は平面図、
(b)と(c)は断面図である。セパレータ7’の上面
は図2(a)に示したセパレータ7と同一であるが、図
3(b)に示したように、一方の排気孔2の内側面に開
口する水平の排出孔10が設けられている。図3(b)
からわかるように左側の排気孔2はセパレータ7’を貫
通しているが、右側の排気孔2は途中で切れて、排出孔
10に連通している。また、(c)に示すようにセパレ
ータ7’の片面のみに溝14が形成されており、この点
は図2に示したセパレータ7と異なっている。
FIG. 3 shows the structure of the separator 7'disposed on the uppermost surface and the lowermost surface of the stack, (a) is a plan view,
(B) And (c) is sectional drawing. The upper surface of the separator 7'is the same as that of the separator 7 shown in FIG. 2A, but as shown in FIG. 3B, the horizontal discharge hole 10 opening on the inner side surface of one exhaust hole 2 is It is provided. Figure 3 (b)
As can be seen, the left exhaust hole 2 penetrates the separator 7 ′, but the right exhaust hole 2 is cut off midway and communicates with the exhaust hole 10. Further, as shown in (c), the groove 14 is formed only on one surface of the separator 7 ', which is different from the separator 7 shown in FIG.

【0018】図4(a)〜(d)は図2に示したセパレ
ータとは異なる4種類のセパレータ7の裏側におけるガ
スの流れを示す模式図である。なお、これらのセパレー
タ7の表側におけるガスの流れは図2(b)に示すもの
と同一である。これらの4種類のセパレータ7を用いて
スタックを組み立てると、(a)に示すものは単電池の
両側を燃料ガスと酸化剤ガスである空気とが対向する向
きに流れる対向流式であり、(b)に示すものが両ガス
が平行に流れる並行流式であり、また、(c)および
(d)に示すものは両ガスが直交する直交流式である。
これら4種類の組合わせからガス流量、電流、温度、熱
応力分布の最小のものを選ぶことができる。
FIGS. 4A to 4D are schematic views showing the gas flow on the back side of four kinds of separators 7 different from the separator shown in FIG. The flow of gas on the front side of these separators 7 is the same as that shown in FIG. When a stack is assembled using these four types of separators, what is shown in (a) is a counterflow type in which the fuel gas and the air that is the oxidant gas flow in opposite directions on both sides of the unit cell, What is shown in b) is a parallel flow type in which both gases flow in parallel, and what is shown in (c) and (d) is a cross flow type in which both gases are orthogonal.
From these four types of combinations, the one having the smallest gas flow rate, current, temperature, and thermal stress distribution can be selected.

【0019】上述の単電池11(図1参照)とセパレー
タ7をパッキングを間に挟んで交互に積層することによ
り、スタックを組立てることができる。このスタックに
燃料ガスと空気をスタックの最上下面から給排気管によ
り、吹き出し孔から各セパレータ7に供給すると、ガス
は各セパレータ7の溝14を通り各単電池の面上をくま
なく流れ、排出孔から集合して外部へ排出される。その
結果スタック上下間に起電力が発生し、負荷を接続する
と電流が流れる。
A stack can be assembled by alternately stacking the above-mentioned unit cells 11 (see FIG. 1) and the separator 7 with packing interposed therebetween. When fuel gas and air are supplied to this stack from the top and bottom surfaces of the stack by the air supply and exhaust pipes to the respective separators 7 through the blowing holes, the gas flows through the grooves 14 of the respective separators 7 over the surface of the individual cells and is discharged. Collected from the holes and discharged to the outside. As a result, electromotive force is generated between the top and bottom of the stack, and when a load is connected, a current flows.

【0020】次に本発明の第2の実施例を図5〜図7を
参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS.

【0021】この実施例の単電池は図1に示した第1の
実施例の単電池と同一であるので説明は省略し、第1の
実施例とは異なるセパレータ7について図5〜図7を参
照して説明する。セパレータ7には隣接する次の単電池
への燃料ガスおよび酸化剤ガスの供給のため、および前
の単電池からのガスの排気を集合するため、周縁部に空
気給気孔3および空気排気孔4がまた燃料ガス給気孔5
と燃料ガス排気孔6が穿孔されている。これらの孔から
単電池に空気および燃料ガスを供給し、または単電池か
らの排ガスを集合するために吹き出し孔及び排出孔が設
けられている。さらに、単電池両面の隅々に空気および
燃料ガスを均等に分配するため、及び隣り合う単電池を
直列に接続するためにセパレータ7の両面に溝14が形
成されている。
Since the unit cell of this embodiment is the same as the unit cell of the first embodiment shown in FIG. 1, its explanation is omitted, and a separator 7 different from that of the first embodiment will be described with reference to FIGS. It will be described with reference to FIG. In order to supply the fuel gas and the oxidant gas to the next adjacent unit cell to the separator 7 and to collect the gas exhaust from the previous unit cell, the air supply hole 3 and the air exhaust hole 4 are formed in the peripheral portion. But also the fuel gas supply hole 5
And the fuel gas exhaust hole 6 is perforated. Blow-out holes and discharge holes are provided to supply air and fuel gas to the unit cells through these holes or to collect exhaust gas from the unit cells. Further, grooves 14 are formed on both sides of the separator 7 in order to evenly distribute air and fuel gas to both corners of both sides of the unit cell and to connect adjacent unit cells in series.

【0022】図5〜図7はセパレータ7に設ける空気供
給孔3、空気排気孔4、燃料ガス給気孔5、燃料ガス排
気孔6の位置が異なるいくつかのセパレータについてガ
スの流れを模式的に示した。
FIGS. 5 to 7 schematically show the gas flow in some separators in which the positions of the air supply hole 3, the air exhaust hole 4, the fuel gas supply hole 5 and the fuel gas exhaust hole 6 provided in the separator 7 are different. Indicated.

【0023】図5(a)に示すセパレータにはものは空
気給気孔3が2個、空気排気孔4が1個設けられてお
り、(b)に示すセパレータには燃料ガス給気孔5が1
個、燃料ガス排気孔6が2個設けられている。
The separator shown in FIG. 5 (a) has two air supply holes 3 and one air exhaust hole 4, and the separator shown in FIG. 5 (b) has one fuel gas supply hole 5.
Two fuel gas exhaust holes 6 are provided.

【0024】図6(a)はセパレータ7の表側を示し、
また(b)は同じセパレータ7の裏側を示す。セパレー
タの表側には空気給気孔3が2個設けられ且つ空気排気
孔4が2個設けられているが、裏側では燃料ガス給気孔
5が2個設けられ且つ燃料ガス排気孔6が2個設けられ
ている。
FIG. 6A shows the front side of the separator 7,
Further, (b) shows the back side of the same separator 7. Two air supply holes 3 and two air exhaust holes 4 are provided on the front side of the separator, but two fuel gas supply holes 5 and two fuel gas exhaust holes 6 are provided on the back side. Has been.

【0025】同様に図7(a)はセパレータの表側を示
し、(b)はその裏側を示す。表側には2個の空気給気
孔3と1個の空気排気孔4が設けられ、また裏側には1
個の燃料ガス給気孔5と2個の燃料ガス排気孔6が設け
られている。
Similarly, FIG. 7A shows the front side of the separator, and FIG. 7B shows the back side thereof. Two air supply holes 3 and one air exhaust hole 4 are provided on the front side, and 1 on the back side.
Fuel gas supply holes 5 and two fuel gas exhaust holes 6 are provided.

【0026】これらのセパレータはいづれも燃料ガスと
酸化剤ガスが単電池の両面を並行する向きに流れる構造
を持ち、給気孔または排気孔を複数個持つことにより、
電池反応の結果としてガスの流れ方向に反応ガスが次第
に薄まってしまうのを避けることができる。
Each of these separators has a structure in which the fuel gas and the oxidant gas flow in parallel on both sides of the unit cell, and by having a plurality of air supply holes or exhaust holes,
It is possible to prevent the reaction gas from gradually diluting in the gas flow direction as a result of the cell reaction.

【0027】単電池11といずれかのセパレータ7とを
実施例1の場合と同様に組立て、燃料ガスと酸化剤ガス
とを供給することにより、両ガスは各単電池の両面上を
くまなく流れるので、スタックの上下間に起電力が効率
的に発生される。
By assembling the unit cell 11 and any one of the separators 7 in the same manner as in the first embodiment and supplying the fuel gas and the oxidant gas, both gases flow on both sides of each unit cell. Therefore, electromotive force is efficiently generated between the top and bottom of the stack.

【0028】[0028]

【発明の効果】以上詳細に説明したように、本発明によ
る固体電解質型燃料電池によれば、各セパレータの表面
に迷路状のガス流通溝を形成し、且つこの流通溝へ酸化
剤ガスおよび燃料ガスを供給する給気孔および排出する
排気孔の数や位置を、セパレータの表面と裏面で適宜変
更して組み合わせるようにしたので、スタック内の燃料
ガスおよび酸化剤ガスの流速、温度、熱応力分布をでき
るだけ均一にすることができ、一段と出力密度を向上さ
せ且つ耐久性を増大させるという優れた効果が得られ
る。
As described above in detail, according to the solid oxide fuel cell of the present invention, a labyrinth-shaped gas flow groove is formed on the surface of each separator, and the oxidizing gas and the fuel are fed into the flow groove. The numbers and positions of the gas supply holes and the gas exhaust holes were changed on the front and back sides of the separator so that they could be combined, so the flow velocity, temperature, and thermal stress distribution of the fuel gas and oxidant gas in the stack Can be made as uniform as possible, and the excellent effect of further improving the output density and increasing the durability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による固体電解質型燃料電池に使用する
単電池の構造を示し、(a)は平面図、(b)は正面図
である。
FIG. 1 shows a structure of a unit cell used for a solid oxide fuel cell according to the present invention, (a) is a plan view and (b) is a front view.

【図2】本発明による固体電解質型燃料電池のスタック
中間に使用するセパレータの構造を示し、(a)は平面
図、(b)はガスの流れを示す模式図である。
2A and 2B show a structure of a separator used in the middle of a stack of a solid oxide fuel cell according to the present invention, FIG. 2A is a plan view, and FIG. 2B is a schematic view showing a gas flow.

【図3】本発明による固体電解質型燃料電池のスタック
最上下面に配置されるセパレータの構造を示し、(a)
は平面図、(b)はX−X’断面図、(c)はY−Y’
断面図である。
FIG. 3 shows a structure of a separator arranged on the top and bottom surfaces of a stack of a solid oxide fuel cell according to the present invention, (a)
Is a plan view, (b) is a sectional view taken along line XX ', and (c) is YY'.
FIG.

【図4】本発明による固体電解質型燃料電池に使用する
セパレータの裏側におけるガスの流れを示す模式図であ
る。
FIG. 4 is a schematic diagram showing a gas flow on the back side of a separator used in a solid oxide fuel cell according to the present invention.

【図5】本発明による固体電解質型燃料電池に使用する
異なる2個のセパレータのガスの流れを示す模式図であ
る。
FIG. 5 is a schematic diagram showing gas flows of two different separators used in the solid oxide fuel cell according to the present invention.

【図6】本発明による固体電解質型燃料電池に使用する
セパレータのガスの流れを示す模式図であり、(a)は
表面を示し、(b)は裏面を示す。
FIG. 6 is a schematic diagram showing a gas flow of a separator used in a solid oxide fuel cell according to the present invention, (a) showing a front surface and (b) showing a back surface.

【図7】本発明による固体電解質型燃料電池に使用する
セパレータのガスの流れを示す模式図であり、(a)は
表面を示し、(b)は裏面を示す。
FIG. 7 is a schematic diagram showing a gas flow of a separator used in a solid oxide fuel cell according to the present invention, (a) showing a front surface and (b) showing a back surface.

【図8】従来の固体電解質型燃料電池のスタックの分解
斜視図である。
FIG. 8 is an exploded perspective view of a stack of a conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料または空気の給気孔 2 燃料ガスまたは空気の排気孔 3 空気給気孔 4 空気排気孔 5 燃料ガス給気孔 6 燃料ガス排気孔 7 セパレータ 8a 空気極 8b 燃料極 9 固体電解質層 10 燃料ガスまたは空気の排出孔 11 単電池 12 空気または酸化剤ガス 13 燃料ガス 14 溝 1 Fuel or Air Supply Hole 2 Fuel Gas or Air Exhaust Hole 3 Air Supply Hole 4 Air Exhaust Hole 5 Fuel Gas Air Supply Hole 6 Fuel Gas Exhaust Hole 7 Separator 8a Air Electrode 8b Fuel Electrode 9 Solid Electrolyte Layer 10 Fuel Gas or Air Discharge hole 11 Unit cell 12 Air or oxidant gas 13 Fuel gas 14 Groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質層を挟むように燃料極と空気
極を配置してなる平板状単電池と、隣接する単電池を電
気的に直列に接続しかつ各単電池に燃料ガスと酸化剤ガ
スとを分配するセパレータとを交互に積層して構成され
る固体電解質型燃料電池において、前記セパレータの両
面に燃料ガスおよび酸化剤ガスが単電池の表面をくまな
く流れるような形状のガス流通溝を形成したことを特徴
とする固体電解質型燃料電池。
1. A flat-plate unit cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer, and adjacent unit cells are electrically connected in series, and a fuel gas and an oxidizer are provided in each unit cell. In a solid oxide fuel cell configured by alternately stacking separators for distributing gas, a gas flow groove having a shape such that fuel gas and oxidant gas flow on the both surfaces of the separator all over the surface of the unit cell. And a solid oxide fuel cell.
【請求項2】 前記セパレータのガス流通溝へのガスの
吸気孔および排気孔の数や配置を変化させたことを特徴
とする固体電解質型燃料電池。
2. A solid oxide fuel cell, wherein the number and arrangement of gas intake holes and gas exhaust holes into the gas flow grooves of the separator are changed.
JP3348699A 1991-12-05 1991-12-05 Solid electrolyte fuel cell Withdrawn JPH05159790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3348699A JPH05159790A (en) 1991-12-05 1991-12-05 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3348699A JPH05159790A (en) 1991-12-05 1991-12-05 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH05159790A true JPH05159790A (en) 1993-06-25

Family

ID=18398767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3348699A Withdrawn JPH05159790A (en) 1991-12-05 1991-12-05 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH05159790A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778631A1 (en) * 1995-12-06 1997-06-11 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
JPH09245819A (en) * 1996-03-07 1997-09-19 Tanaka Kikinzoku Kogyo Kk Fuel cell and electrolytic cell and cooling and dehumidifying method therefor
WO1997042672A1 (en) * 1996-05-07 1997-11-13 Alliedsignal Inc. Flow field plate for use in a proton exchange membrane fuel cell
EP0924785A2 (en) * 1997-12-18 1999-06-23 Toyota Jidosha Kabushiki Kaisha Fuel cell and bipolar separator for the same
EP0967675A2 (en) 1998-06-26 1999-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell, separator for the same and method for distributing gas in fuel cell
WO2000002272A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Fuel cell separator plate providing interconnection of serpentine reactant gas flowpaths in fuel cell stacks
US6387558B1 (en) 1999-02-18 2002-05-14 Toyota Jidosha Kabusiki Kaisha Fuel cell, separator for the same and method for distributing gas in fuel cell
JP2002151104A (en) * 2000-11-13 2002-05-24 Honda Motor Co Ltd Gas passage plate for fuel cell and fuel cell
EP1298753A2 (en) * 2001-10-01 2003-04-02 Delphi Technologies, Inc. Fuel cell having an anode protected from high oxygen ion concentration
WO2002039529A3 (en) * 2000-11-08 2003-09-12 Daimler Chrysler Ag Fuel cell stack with membrane electrode unit and distributor sheet
WO2003001621A3 (en) * 2001-06-21 2003-10-16 Forschungszentrum Juelich Gmbh Bipolar plate for a fuel cell
WO2002056402A3 (en) * 2001-01-10 2003-10-30 Daimler Chrysler Ag Electrochemical fuel cell stack with a polymer electrolyte
JP2004535049A (en) * 2001-07-13 2004-11-18 セラミック・フューエル・セルズ・リミテッド Stacked structure of solid oxide fuel cell
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
EP2337131A1 (en) * 2009-12-07 2011-06-22 Industrial Technology Research Institute Two-sided fluid flow plate assembly having parallel flow channels
KR20170118930A (en) * 2015-03-31 2017-10-25 니뽄 도쿠슈 도교 가부시키가이샤 Flat plate type fuel cell

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778631A1 (en) * 1995-12-06 1997-06-11 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
US5723228A (en) * 1995-12-06 1998-03-03 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
JPH09245819A (en) * 1996-03-07 1997-09-19 Tanaka Kikinzoku Kogyo Kk Fuel cell and electrolytic cell and cooling and dehumidifying method therefor
WO1997042672A1 (en) * 1996-05-07 1997-11-13 Alliedsignal Inc. Flow field plate for use in a proton exchange membrane fuel cell
EP1100140A2 (en) * 1997-12-18 2001-05-16 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
EP1100140A3 (en) * 1997-12-18 2003-12-03 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
EP0924785A2 (en) * 1997-12-18 1999-06-23 Toyota Jidosha Kabushiki Kaisha Fuel cell and bipolar separator for the same
EP0924785A3 (en) * 1997-12-18 2003-12-17 Toyota Jidosha Kabushiki Kaisha Fuel cell and bipolar separator for the same
EP0967675A2 (en) 1998-06-26 1999-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell, separator for the same and method for distributing gas in fuel cell
EP0967675A3 (en) * 1998-06-26 2001-08-22 Toyota Jidosha Kabushiki Kaisha Fuel cell, separator for the same and method for distributing gas in fuel cell
WO2000002272A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Fuel cell separator plate providing interconnection of serpentine reactant gas flowpaths in fuel cell stacks
WO2000002276A3 (en) * 1998-07-01 2000-04-20 British Gas Plc Fuel cell separator plate providing interconnection of reactant gas flowpaths in undulate layer fuel cell stacks
US6638658B1 (en) 1998-07-01 2003-10-28 Ballard Power Systems Inc. Fuel cell separator plate providing interconnection of reactant gas flowpaths in undulate layer fuel cell stacks
US6387558B1 (en) 1999-02-18 2002-05-14 Toyota Jidosha Kabusiki Kaisha Fuel cell, separator for the same and method for distributing gas in fuel cell
US6531245B2 (en) 1999-02-18 2003-03-11 Toyota Jidosha Kabushiki Kaisha Fuel cell, separator for the same and method for distributing gas in fuel cell
WO2002039529A3 (en) * 2000-11-08 2003-09-12 Daimler Chrysler Ag Fuel cell stack with membrane electrode unit and distributor sheet
US7335437B2 (en) 2000-11-08 2008-02-26 Daimlerchrysler Ag Fuel cell stack
JP2002151104A (en) * 2000-11-13 2002-05-24 Honda Motor Co Ltd Gas passage plate for fuel cell and fuel cell
JP4651807B2 (en) * 2000-11-13 2011-03-16 本田技研工業株式会社 Fuel cell
WO2002056402A3 (en) * 2001-01-10 2003-10-30 Daimler Chrysler Ag Electrochemical fuel cell stack with a polymer electrolyte
US7485389B2 (en) 2001-01-10 2009-02-03 Daimler Ag Electrochemical fuel cell stack
WO2003001621A3 (en) * 2001-06-21 2003-10-16 Forschungszentrum Juelich Gmbh Bipolar plate for a fuel cell
JP2004535049A (en) * 2001-07-13 2004-11-18 セラミック・フューエル・セルズ・リミテッド Stacked structure of solid oxide fuel cell
EP1298753A3 (en) * 2001-10-01 2005-12-14 Delphi Technologies, Inc. Fuel cell having an anode protected from high oxygen ion concentration
EP1298753A2 (en) * 2001-10-01 2003-04-02 Delphi Technologies, Inc. Fuel cell having an anode protected from high oxygen ion concentration
EP2337131A1 (en) * 2009-12-07 2011-06-22 Industrial Technology Research Institute Two-sided fluid flow plate assembly having parallel flow channels
KR20170118930A (en) * 2015-03-31 2017-10-25 니뽄 도쿠슈 도교 가부시키가이샤 Flat plate type fuel cell

Similar Documents

Publication Publication Date Title
JP5227543B2 (en) Fuel cell
JPH05159790A (en) Solid electrolyte fuel cell
JPH08273696A (en) Fuel cell stack structure
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
US6824910B2 (en) Co-flow planar SOFC fuel cell stack
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
US20070184328A1 (en) Dual function, bipolar separator plates for fuel cells
CN108110300B (en) Solid oxide fuel cell stack and gas flow distribution plate for distributing gas for the same
JPH10172594A (en) Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type
JPH0652881A (en) Solid electrolyte fuel cell of internal manifold type
JPH03266365A (en) Separator of solid electrolytic type fuel cell
US20120052410A1 (en) High-Volume-Manufacture Fuel Cell Arrangement and Method for Production Thereof
JP6228984B2 (en) Fuel cell
JPS63119166A (en) Fuel battery
JPH06349512A (en) Fuel cell
JP3443875B2 (en) Fuel cell
JPH05129033A (en) Solid electrolytic fuel cell
US7531262B1 (en) High-volume-manufacture fuel cell arrangement and method for production thereof
JPS63166159A (en) Solid electrolyte fuel cell
JPH06140056A (en) Solid electrolytic fuel cell having inside manifold structure to increase current collecting rate
JPH0982346A (en) Plate-like solid electrolyte fuel cell
JPH05307968A (en) Inside manifold type solid electrolyte fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
JPH05325997A (en) Stack structure of solid electrolyte fuel cell
JP2018181405A (en) Fuel cell power generation module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311