JPH10172594A - Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type - Google Patents

Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type

Info

Publication number
JPH10172594A
JPH10172594A JP8325039A JP32503996A JPH10172594A JP H10172594 A JPH10172594 A JP H10172594A JP 8325039 A JP8325039 A JP 8325039A JP 32503996 A JP32503996 A JP 32503996A JP H10172594 A JPH10172594 A JP H10172594A
Authority
JP
Japan
Prior art keywords
gas
solid electrolyte
separator
gas flow
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8325039A
Other languages
Japanese (ja)
Inventor
Yuichi Hishinuma
祐一 菱沼
Yoshio Matsuzaki
良雄 松崎
Takashi Ogiwara
崇 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP8325039A priority Critical patent/JPH10172594A/en
Publication of JPH10172594A publication Critical patent/JPH10172594A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an introduced gas distributing method and device with a solid electrolyte fuel cell, wherein the configuration is such that the pressure loss of the gas in a gas introduction part leading from gas supply ports to gas flow grooves in each separator and/or in the gas flow grooves is made good greater than the pressure loss in each gas supply port and thereby the gas is distributed uniformly to all unit cells belonging to the stack. SOLUTION: A solid electrolyte fuel cell of flat plate type includes unit cells each formed by arranging an air electrode and fuel electrode on the two surfaces of a solid electrolyte layer, and is structured so that these unit cells and separators 1 are stacked alternately, gas supply ports 1a are arranged at the four corners. Gas flow grooves 1c are formed at the two surfaces of each separator, wherein a gas flow throttle part 8 and/or obstacle 9 are provided in at least either of the gas introduction part and gas leadout part of the separator, and if the case is applicable, the depth of each gas flow groove is made shallower than the other portions of the groove so that a pressure losing function is equipped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は平板型固体電解質燃
料電池の導入ガス分配方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for distributing an introduced gas in a flat solid electrolyte fuel cell.

【0002】[0002]

【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤ガスおよび燃料ガスとして、燃料が本来持っている
化学エネルギーを直接電気エネルギーに変換する燃料電
池が、省資源、環境保護の観点から注目されており、特
に固体電解質燃料電池は発電効率が高く、排熱を有効に
利用できるなど多くの利点を有するため研究、開発が進
んでいる。
2. Description of the Related Art Recently, fuel cells which directly convert chemical energy inherent in fuel into electric energy by using, for example, air and hydrogen as oxidizing gas and fuel gas, respectively, have attracted attention from the viewpoint of resource saving and environmental protection. Research and development of solid electrolyte fuel cells have been progressing because they have many advantages such as high power generation efficiency and effective use of waste heat.

【0003】固体電解質燃料電池に燃料ガスと酸化剤ガ
スとを供給するため、固体電解質燃料電池の外周に外部
マニホールドを設ける形式のものと、セパレータおよび
固体電解質層にそれぞれのガスの給排気孔を設け、この
孔から各単電池の各電極面に各ガスを給排気するように
なった内部マニホールド形式のものがある。
In order to supply a fuel gas and an oxidizing gas to a solid electrolyte fuel cell, an external manifold is provided on the outer periphery of the solid electrolyte fuel cell, and a gas supply / exhaust hole for each gas is provided in a separator and a solid electrolyte layer. There is an internal manifold type in which each gas is supplied and exhausted from each hole to each electrode surface of each unit cell through this hole.

【0004】図1は内部マニホールド形式の平板型固体
電解質燃料電池の横断面図、図3は従来のセパレータの
斜視図である。
FIG. 1 is a cross-sectional view of a flat solid electrolyte fuel cell of an internal manifold type, and FIG. 3 is a perspective view of a conventional separator.

【0005】図1の内部マニホールド形式の平板型固体
電解質燃料電池は、イットリアなどをドープしたジルコ
ニア焼結体(YSZ)からなる平板型固体電解質層4の
両面に、それぞれ(La、Sr)MnO3 の空気極6
と、Ni/YSZサーメットの燃料極5とを配置してな
る平板状単電池3と、隣接する単電池3同士を電気的に
直列に接続し、かつ各単電池3に燃料ガスと酸化剤ガス
とを分配するセパレータ1とを交互に積層し、燃料極5
とセパレータ1の燃料ガス流通路側との間に金属メッシ
ュ7を介在し、単電池3の固体電解質層4とセパレータ
1の間にそれぞれシール剤またはスペーサ2を介在して
スタックに積層したものであり、各単電池3の電極面に
それぞれ燃料ガスと酸化剤ガスとを接触させることによ
り起電力を発生する。セパレータ1は燃料極5と空気極
6とにそれぞれ供給される燃料ガスと酸化剤ガスとを分
離してそれらのクロスリークを防止する作用と、単電池
3同士を電気的に直列に接続する作用とを有するもので
ある。セパレータ1の代表的なものはストロンチウムを
ドープしたランタンクロマイトのような導電性酸化物で
作られている。
[0005] A flat solid electrolyte fuel cell of the internal manifold type shown in FIG. 1 has (La, Sr) MnO 3 on both surfaces of a flat solid electrolyte layer 4 made of zirconia sintered body (YSZ) doped with yttria or the like. Air pole 6
And a flat cell 3 in which a Ni / YSZ cermet fuel electrode 5 is disposed, and adjacent cell 3 are electrically connected in series, and each cell 3 is provided with fuel gas and oxidant gas. And the separators 1 that distribute the fuel and the fuel electrode 5
A metal mesh 7 is interposed between the separator 1 and the fuel gas flow path side, and a stack is formed by interposing a sealant or a spacer 2 between the solid electrolyte layer 4 of the unit cell 3 and the separator 1. An electromotive force is generated by bringing the fuel gas and the oxidizing gas into contact with the electrode surface of each unit cell 3, respectively. The separator 1 separates the fuel gas and the oxidizing gas supplied to the fuel electrode 5 and the air electrode 6, respectively, to prevent cross leakage thereof, and to connect the cells 3 electrically in series. And A typical separator 1 is made of a conductive oxide such as strontium-doped lanthanum chromite.

【0006】図に示すように、セパレータの空気極側の
表面に空気極6側への酸化剤ガス分配構造(後述する溝
等)が形成され、また、セパレータの燃料極側の表面に
燃料極5側への燃料ガス分配構造が形成されている。ま
た、セパレータの4隅にガスの給気孔1aおよび排気孔
1a’がそれぞれ開けられ、更に、燃料極5および空気
極6の表面にそれぞれ燃料ガスと酸化剤ガスを均等に分
配するため、および、隣り合う単電池3を直列に接続す
るため電極5、6面に複数列のガス流通溝1cと突起1
bが刻設されている。
As shown in the figure, an oxidizing gas distribution structure (a groove or the like to be described later) is formed on the surface of the separator on the air electrode side, and the fuel electrode is formed on the surface of the separator on the fuel electrode side. A fuel gas distribution structure to the fifth side is formed. In addition, gas supply holes 1a and exhaust holes 1a 'are respectively formed in the four corners of the separator, and furthermore, in order to evenly distribute the fuel gas and the oxidizing gas to the surfaces of the fuel electrode 5 and the air electrode 6, respectively, and A plurality of rows of gas flow grooves 1c and protrusions 1
b is engraved.

【0007】燃料電池が組み立てられたとき、突起1b
は燃料極5または空気極6に接触して電気的に導通して
集電部を形成する。ガス流通溝1cはセパレータ1の表
面に形成されている三角形へこみ1fを通じて、対角線
方向の隅に形成されているガス給気孔1aに連通してい
る。ガス流通溝1cと三角形へこみ1fが、燃料ガスお
よび酸化剤ガスの分配構造となる。また、セパレータ1
の表面の周縁部1dは単電池3の固体電解質層4やスペ
ーサ2と重なるシール面となる。
When the fuel cell is assembled, the protrusion 1b
Is in contact with the fuel electrode 5 or the air electrode 6 and is electrically conducted to form a current collector. The gas flow groove 1c communicates with a gas supply hole 1a formed at a diagonal corner through a triangular recess 1f formed on the surface of the separator 1. The gas flow grooves 1c and the triangular indents 1f form a distribution structure for the fuel gas and the oxidizing gas. Separator 1
1d is a sealing surface that overlaps with the solid electrolyte layer 4 and the spacer 2 of the unit cell 3.

【0008】[0008]

【発明が解決しようとする課題】一組の単電池とセパレ
ータを有する一層の固体電解質燃料電池では、該セパレ
ータの面(表と裏の面)内に関してガスの流れに問題は
生じないが、複数層(スタック)に積層された固体電解
質燃料電池では、ガスが該電池のガス給気孔1aからセ
パレータのガス流通溝1cに流入する位置であるガス導
入部においてガスの圧力損失が小さいと、セパレータの
ガス給気孔1a内の圧力損失がガスの流れに影響し易く
なり、そのためガス流中で上流に位置する単電池へのガ
ス流入が増大し易くなり、反対に下流に位置する単電池
へのガス流入量が減少してしまう。
In a single-layer solid electrolyte fuel cell having a set of cells and a separator, there is no problem with the gas flow in the plane (front and back) of the separator. In a solid electrolyte fuel cell stacked in a layer (stack), if the pressure loss of the gas is small at the gas introduction portion where the gas flows from the gas supply hole 1a of the battery into the gas flow groove 1c of the separator, the separator of the separator may be damaged. The pressure loss in the gas supply hole 1a tends to affect the gas flow, so that the gas flow into the cell located upstream in the gas flow tends to increase, and the gas flowing into the cell located downstream is conversely increased. The inflow will decrease.

【0009】その結果、スタックの中に燃料ガスおよび
酸化剤ガスの希薄な単電池が存在することになり、スタ
ック全体として電池性能の低下をもたらすようになる。
[0009] As a result, the fuel cell and the oxidizing gas are diluted in the unit cell, and the cell performance of the entire stack is lowered.

【0010】本発明は上述の点にかんがみてなされたも
ので、内部マニホールド形式の平板型固体電解質燃料電
池において、給気孔1a内の圧力損失に比較して、給気
孔1aからセパレータのガス流通溝1cへのガス導入部
におけるガスの圧力損失を大きくし、給気孔1a内の圧
力損失を無視できるようにして、下流の単電池でもガス
流量が減少せず、スタック中のどの単電池へも均等にガ
スを分配するようにした導入ガス分配方法および装置を
提供することを目的とするものである。
The present invention has been made in view of the above points, and in a flat solid electrolyte fuel cell of an internal manifold type, compared with the pressure loss in the air supply hole 1a, the gas flow groove of the separator from the air supply hole 1a. The gas pressure loss in the gas inlet to the gas inlet 1c is increased so that the pressure loss in the air supply hole 1a can be neglected. It is an object of the present invention to provide a method and an apparatus for distributing an introduced gas which distributes a gas to a gas.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は平板状固体電解質層の両面にそれぞれ空気
極と燃料極とを配置してなる平板状単電池と、隣接する
単電池同士を電気的に直列に接続しかつ各単電池に燃料
ガスと酸化剤ガスとを分配するセパレータとを交互に積
層し、前記セパレータおよび固体電解質層の四隅にそれ
ぞれのガスの給排気孔を設け、かつ前記セパレータの両
面にそれぞれのガスの流通溝を刻設した内部マニホール
ド方式の平板型固体電解質燃料電池において、前記セパ
レータのガス給気孔からガス流通溝へのガス導入部、セ
パレータのガス流通溝からガス排気孔へのガス導出部の
いずれか一方または両方にガス流の絞り部、障害物のい
ずれか一方または両方を形成することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a flat cell having an air electrode and a fuel electrode disposed on both sides of a flat solid electrolyte layer, and a cell having adjacent cells. Electrically connected in series and alternately stacking separators for distributing fuel gas and oxidizing gas to each unit cell, and providing gas supply / exhaust holes at the four corners of the separator and solid electrolyte layer, And in the flat plate solid electrolyte fuel cell of the internal manifold system in which the respective gas flow grooves are engraved on both surfaces of the separator, the gas introduction portion from the gas supply hole to the gas flow groove of the separator, from the gas flow groove of the separator One or both of the gas flow restricting portion and the obstacle are formed in one or both of the gas outlet portions to the gas exhaust hole.

【0012】また、本発明は上記の平板型固体電解質燃
料電池において、前記セパレータのガス流通溝入口部お
よび/またはガス流通溝出口部におけるガス流通溝の深
さを該溝の他の部分の深さより浅くして圧力損失機能を
持たせることを特徴とする。
Further, according to the present invention, in the above-mentioned plate type solid electrolyte fuel cell, the depth of the gas flow groove at the gas flow groove entrance and / or the gas flow groove exit of the separator is adjusted to the depth of the other part of the groove. It is characterized in that it is shallower and has a pressure loss function.

【0013】[0013]

【発明の実施の形態】本発明は、図1、3を参照して従
来の平板型固体電解質燃料電池について上述したよう
に、平板型固体電解質層4の両面に、それぞれ空気極6
と、燃料極5とを配置してなる平板状単電池3と、隣接
する単電池3同士を電気的に直列に接続し、かつ各単電
池3に燃料ガスと酸化剤ガスとを分配するセパレータ1
とを交互に積層し、燃料極5とセパレータ1の燃料ガス
流通路側との間に金属メッシュ7を介在し、単電池3の
固体電解質層4とセパレータ1の間にそれぞれシール剤
またはスペーサ2を介在してスタックに積層したもので
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a conventional flat solid electrolyte fuel cell with reference to FIGS.
And a flat cell 3 having a fuel electrode 5 disposed therein and a separator for electrically connecting adjacent cells 3 in series and distributing a fuel gas and an oxidizing gas to each cell 3. 1
Are alternately stacked, a metal mesh 7 is interposed between the fuel electrode 5 and the fuel gas flow path side of the separator 1, and a sealant or spacer 2 is respectively interposed between the solid electrolyte layer 4 of the unit cell 3 and the separator 1. They are stacked on a stack with interposition.

【0014】セパレータの空気極側の表面に空気極6側
への酸化剤ガス分配構造が形成され、また、セパレータ
の燃料極側の表面に燃料極5側への燃料ガス分配構造が
形成されている。また、セパレータの4隅にガスの給気
孔1a、排気孔1a’が開けられ、更に、燃料極5およ
び空気極6の表面にそれぞれ燃料ガスと酸化剤ガスを均
等に分配するために電極5、6面に複数列のガス流通溝
1cと突起1bが刻設されている。燃料電池が組み立て
られたとき、突起1bは燃料極5または空気極6に接触
して電気的に導通して集電部を形成する。ガス流通溝1
cはセパレータ1の表面に形成されている三角形へこみ
1fを通じて、対角線方向の隅に形成されているガス排
気孔1a’に連通している。ガス流通溝1cと三角形へ
こみ1f、1f’が、燃料ガスおよび酸化剤ガスの分配
構造となる。
An oxidant gas distribution structure to the air electrode 6 is formed on the surface of the separator on the air electrode side, and a fuel gas distribution structure to the fuel electrode 5 is formed on the surface of the separator on the fuel electrode side. I have. In addition, gas supply holes 1a and exhaust holes 1a 'are formed at the four corners of the separator, and the electrodes 5 and 4 are provided on the surfaces of the fuel electrode 5 and the air electrode 6 to evenly distribute the fuel gas and the oxidizing gas, respectively. A plurality of rows of gas flow grooves 1c and protrusions 1b are engraved on six surfaces. When the fuel cell is assembled, the protrusion 1b contacts the fuel electrode 5 or the air electrode 6 and is electrically conducted to form a current collector. Gas flow groove 1
c communicates with a gas exhaust hole 1a 'formed at a diagonal corner through a triangular recess 1f formed on the surface of the separator 1. The gas flow groove 1c and the triangular dents 1f, 1f 'form a distribution structure for the fuel gas and the oxidizing gas.

【0015】図2は本発明に使用されるセパレータの斜
視図である。
FIG. 2 is a perspective view of the separator used in the present invention.

【0016】図2に示すように、セパレータ1のガス給
気孔1aから三角形へこみ1fを経てガス流通溝1cへ
流入する。三角形へこみ1fのガス給気孔1aに近い部
分をガス導入部と称し、また三角形へこみ1f’のガス
排気孔1a’に近い部分をガス導出部と称し、このガス
導入部にガスの流れを絞る(制限する)ための手段とし
て、絞り部8または障害物9のいずれか一方または両方
が設けられている。この絞り部8、障害物9はガス給気
孔1aからガス導入部に流入するガスの圧力損失を増加
させる作用がある。このガス導入部におけるガスの流れ
方向を矢印Fで示している。ガス導入部におけるガスの
圧力損失を大きくすることにより、もって給気孔1a内
の圧力損失を無視できるようにすれば、ガス流の中で下
流に位置するセパレータ1、従って、単電池3へのガス
流量が減少することがない。このようにしてスタック中
のどの単電池3にも均等にガスを分配して、すべての単
電池3に同等の電池性能を出させることができる。
As shown in FIG. 2, the gas flows from the gas supply hole 1a of the separator 1 into the gas flow groove 1c via the triangular recess 1f. The portion of the triangular dent 1f near the gas supply hole 1a is referred to as a gas inlet, and the portion of the triangular dent 1f 'near the gas exhaust hole 1a' is referred to as a gas outlet. For restricting), one or both of the throttle unit 8 and the obstacle 9 are provided. The throttle portion 8 and the obstacle 9 have an effect of increasing the pressure loss of the gas flowing into the gas introduction portion from the gas supply hole 1a. The flow direction of the gas in the gas introduction section is indicated by an arrow F. By increasing the pressure loss of the gas in the gas inlet so that the pressure loss in the gas supply hole 1a can be ignored, the gas flowing to the separator 1 located downstream in the gas flow, and thus to the cell 3 can be reduced. The flow rate does not decrease. In this way, gas can be evenly distributed to any of the unit cells 3 in the stack, and all unit cells 3 can have the same battery performance.

【0017】なお、ガス流通溝1cの入口部をガス流通
溝入口部1eと称し、ガス流通溝1cの出口部をガス流
通溝出口部1oと称している(図2にそれぞれ鎖線で示
す)。これらのガス流通溝入口部1e及び又はガス流通
溝出口部1oにおいてガス流通溝1cの深さを該溝の他
の部分例えば中央部より浅くしてガス流の圧力損失機能
を持たせるようにすることもできる。
The inlet of the gas flow groove 1c is called a gas flow groove inlet 1e, and the outlet of the gas flow groove 1c is called a gas flow groove outlet 1o (indicated by chain lines in FIG. 2). At the gas flow groove inlet 1e and / or the gas flow groove outlet 1o, the depth of the gas flow groove 1c is made shallower than the other part of the groove, for example, the center, so that the gas flow has a pressure loss function. You can also.

【0018】また、このようにガス流通溝入口部1e及
び又はガス流通溝出口部1oにおける溝深さをの他の部
分の溝の深さより浅くする手段を、先に説明した絞り部
8または障害物9のいずれか一方または両方と、組み合
わせることにより圧力損失機能を持たせることもでき
る。
The means for reducing the groove depth at the gas flow groove inlet 1e and / or the gas flow groove outlet 1o to be smaller than the depth of the other part of the groove as described above is provided by the above-described restricting portion 8 or obstacle. A pressure loss function can be provided by combining with one or both of the objects 9.

【0019】[0019]

【実施例】図3および図2の形状をしたプラスチック製
のマニホールドをそれぞれ50段積層し、各マニホール
ド間のガス流通路に黒色の粘着材を挿入し挟んだ。ここ
で前者をA、後者をBとする。ガス吸気孔より、白色の
微粉末(平均粒径0.1μm)を混合した空気を室温に
おいて1l/min.、5l/min.、10l/mi
n.、50l/min.それぞれ5分間導入した。
EXAMPLE Each of plastic manifolds having the shapes shown in FIGS. 3 and 2 was stacked in 50 stages, and a black adhesive was inserted into a gas flow passage between the manifolds and sandwiched. Here, the former is A, and the latter is B. Air mixed with white fine powder (average particle size: 0.1 μm) was supplied at 1 l / min. , 5 l / min. , 10 l / mi
n. , 50 l / min. Each was introduced for 5 minutes.

【0020】空気と混合した白色の微粉末は、各マニホ
ールドに運ばれ、ガス流通路の黒色の粘着材に捕らえら
れるので、空気の流れを可視化できる。
The fine white powder mixed with the air is carried to each manifold, and is captured by the black adhesive in the gas flow passage, so that the flow of the air can be visualized.

【0021】Aの場合は、いずれの流量のガスを導入し
ても、上流側のマニホールドの粘着材に粒子が多く捕ら
えられており、下流側のそれには、ほとんど粒子が捕ら
えられていなかった。つまり、上流側にガスが流れやす
い。
In the case of A, no matter how much gas was introduced, many particles were trapped in the adhesive material of the upstream manifold, and almost no particles were trapped in the downstream material. That is, the gas easily flows to the upstream side.

【0022】一方、Bの場合は、いずれの流量のガスを
導入しても、上流側、下流側どのマニホールドにも均一
に粒子が付着しており、ガスが均等に流れることが分か
った。
On the other hand, in the case of B, it was found that particles were uniformly attached to both the upstream and downstream manifolds regardless of the flow rate of gas introduced, and that the gas flowed evenly.

【0023】ここで、5l/min.を5分間流したと
き、最も上流に位置するマニホールドに導入され、粘着
材に付着した粒子の重さを1.000とすると、表1の
ような結果が得られた。
Here, 5 l / min. Was flowed for 5 minutes, and the results shown in Table 1 were obtained when the weight of the particles introduced into the most upstream manifold and adhered to the adhesive was 1.000.

【0024】[0024]

【表1】 マニホールドの形状 最上流(1段目)中間(25段目)最下流(50段目) A 1.000 0.002 0.001 B 1.000 1.001 0.999[Table 1] Manifold shape Most upstream (first stage) Middle (25th stage) Most downstream (50th stage) A 1.000 0.002 0.001 B 1.000 1.001 0.999

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば平
板状固体電解質層の両面にそれぞれ空気極と燃料極とを
配置してなる平板状単電池と、隣接する単電池同士を電
気的に直列に接続しかつ各単電池に燃料ガスと酸化剤ガ
スとを分配するセパレータとを交互に積層してなる内部
マニホールド方式の平板型固体電解質燃料電池におい
て、セパレータのガス給気孔からガス流通溝へのガス導
入部においてガス流を絞るように構成したので、給気孔
内の圧力損失に比較して、給気孔からセパレータのガス
流通溝へのガス導入部におけるガスの圧力損失を大きく
し、給気孔内の圧力損失を無視できるようにして、下流
の単電池でもガス流量が減少せず、スタック中のどの単
電池へも均等にガスを分配して、各単電池の性能を同等
に向上させ、もって燃料電池全体の性能を向上させるこ
とができる効果がある。
As described above, according to the present invention, a flat cell having an air electrode and a fuel electrode disposed on both surfaces of a flat solid electrolyte layer and an adjacent cell are electrically connected to each other. In the flat plate solid electrolyte fuel cell of the internal manifold type, which is connected in series and alternately laminated separators for distributing the fuel gas and the oxidizing gas to each unit cell, the gas flow groove extends from the gas supply hole of the separator. The gas flow in the gas inlet to the gas inlet of the separator is made larger than the pressure loss in the gas inlet. Pressure loss in the pores can be neglected, gas flow does not decrease even in downstream cells, gas is evenly distributed to all cells in the stack, and the performance of each cell is improved equally. With There is an effect that it is possible to improve the charge cell overall performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内部マニホールド形式の平板型固体電解質燃料
電池の横断面図である。
FIG. 1 is a cross-sectional view of a flat solid electrolyte fuel cell of an internal manifold type.

【図2】本発明に使用されるセパレータの斜視図であ
る。
FIG. 2 is a perspective view of a separator used in the present invention.

【図3】従来のセパレータの斜視図である。FIG. 3 is a perspective view of a conventional separator.

【符号の説明】[Explanation of symbols]

1 セパレータ 1a ガス給気孔 1a’ ガス排気孔 1b 突起 1c ガス流通溝 1d 周縁部 1e ガス流通溝入口部 1f 三角形へこみ 1f’ 三角形へこみ 1o ガス流通溝出口部 2 スペーサ 3 平板状単電池 5 燃料極 6 空気極 7 金属メッシュまたは金属フェルト 8 絞り部 9 障害物 F ガスの流動方向 DESCRIPTION OF SYMBOLS 1 Separator 1a Gas supply hole 1a 'Gas exhaust hole 1b Projection 1c Gas flow groove 1d Peripheral edge 1e Gas flow groove entrance 1f Triangular dent 1f' Triangle dent 1o Gas flow groove exit 2 Spacer 3 Flat plate cell 5 Fuel electrode 6 Air electrode 7 Metal mesh or metal felt 8 Restricted part 9 Obstacle F Flow direction of gas

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 平板状固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料ガスと酸化剤ガスとを分配するセパレータとを交互に
積層し、前記セパレータおよび固体電解質層の四隅にそ
れぞれのガスの給排気孔を設け、かつ前記セパレータの
両面にそれぞれのガスの流通溝を刻設した内部マニホー
ルド方式の平板型固体電解質燃料電池において、前記セ
パレータのガス給気孔からガス流通溝へのガス導入部、
セパレータのガス流通溝からガス排気孔へのガス導出部
のいずれか一方または両方においてガス流を絞ることを
特徴とする平板型固体電解質燃料電池の導入ガス分配方
法。
1. A flat cell in which an air electrode and a fuel electrode are disposed on both sides of a flat solid electrolyte layer, and adjacent cells are electrically connected in series, and a fuel cell is connected to each cell. Gas and oxidizing gas-distributing separators are alternately laminated, gas supply / exhaust holes are provided at the four corners of the separator and the solid electrolyte layer, and respective gas flow grooves are cut on both surfaces of the separator. In the flat solid electrolyte fuel cell of the internal manifold system provided, a gas introduction portion from the gas supply hole of the separator to the gas flow groove,
A gas distribution method for a flat solid electrolyte fuel cell, characterized in that a gas flow is restricted in one or both of a gas outlet from a gas flow groove of a separator to a gas exhaust hole.
【請求項2】 平板状固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料ガスと酸化剤ガスとを分配するセパレータとを交互に
積層し、前記セパレータおよび固体電解質層の四隅にそ
れぞれのガスの給排気孔を設け、かつ前記セパレータの
両面にそれぞれのガスの流通溝を刻設した内部マニホー
ルド方式の平板型固体電解質燃料電池において、前記セ
パレータのガス流通溝入口部、ガス流通溝出口部のいず
れか一方または両方においてガス流の圧力損失を発生さ
せることを特徴とする平板型固体電解質燃料電池の導入
ガス分配方法。
2. A flat cell in which an air electrode and a fuel electrode are respectively disposed on both surfaces of a flat solid electrolyte layer, an adjacent cell being electrically connected in series, and a fuel cell connected to each cell. Gas and oxidizing gas-distributing separators are alternately laminated, gas supply / exhaust holes are provided at the four corners of the separator and the solid electrolyte layer, and respective gas flow grooves are cut on both surfaces of the separator. In the flat solid electrolyte fuel cell of the internal manifold system provided, a pressure loss of a gas flow is generated at one or both of a gas flow groove inlet and a gas flow groove outlet of the separator. A method for distributing an introduced gas in a solid oxide fuel cell.
【請求項3】 平板状固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料ガスと酸化剤ガスとを分配するセパレータとを交互に
積層し、前記セパレータおよび固体電解質層の四隅にそ
れぞれのガスの給排気孔を設け、かつ前記セパレータの
両面にそれぞれのガスの流通溝を刻設した内部マニホー
ルド方式の平板型固体電解質燃料電池において、前記セ
パレータのガス給気孔からガス流通溝へのガス導入部、
セパレータのガス流通溝からガス排気孔へのガス導出部
のいずれか一方または両方にガス流の絞り部または障害
物を形成したことを特徴とする平板型固体電解質燃料電
池の導入ガス分配装置。
3. A flat cell in which an air electrode and a fuel electrode are disposed on both surfaces of a flat solid electrolyte layer, and adjacent cells are electrically connected in series, and a fuel cell is connected to each cell. Gas and oxidizing gas-distributing separators are alternately laminated, gas supply / exhaust holes are provided at the four corners of the separator and the solid electrolyte layer, and respective gas flow grooves are cut on both surfaces of the separator. In the flat solid electrolyte fuel cell of the internal manifold system provided, a gas introduction portion from the gas supply hole of the separator to the gas flow groove,
A gas distribution device for a flat panel solid electrolyte fuel cell, wherein a gas flow restricting portion or an obstacle is formed in one or both of gas outlets from a gas circulation groove to a gas exhaust hole of a separator.
【請求項4】 平板状固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料ガスと酸化剤ガスとを分配するセパレータとを交互に
積層し、前記セパレータおよび固体電解質層の四隅にそ
れぞれのガスの給排気孔を設け、かつ前記セパレータの
両面にそれぞれのガスの流通溝を刻設した内部マニホー
ルド方式の平板型固体電解質燃料電池において、前記セ
パレータのガス給気孔からガス流通溝へのガス導入部、
セパレータのガス流通溝からガス排気孔へのガス導出部
のいずれか一方または両方にガス流の絞り部および障害
物を形成したことを特徴とする平板型固体電解質燃料電
池の導入ガス分配装置。
4. A flat cell in which an air electrode and a fuel electrode are disposed on both sides of a flat solid electrolyte layer, and adjacent cells are electrically connected in series, and each cell has a fuel cell. Gas and oxidizing gas-distributing separators are alternately laminated, gas supply / exhaust holes are provided at the four corners of the separator and the solid electrolyte layer, and respective gas flow grooves are cut on both surfaces of the separator. In the flat solid electrolyte fuel cell of the internal manifold system provided, a gas introduction portion from the gas supply hole of the separator to the gas flow groove,
An introduction gas distribution device for a flat solid electrolyte fuel cell, wherein a gas flow restricting portion and an obstacle are formed in one or both of a gas outlet portion and a gas outlet from a gas circulation groove of a separator to a gas exhaust hole.
【請求項5】 平板状固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料ガスと酸化剤ガスとを分配するセパレータとを交互に
積層し、前記セパレータおよび固体電解質層の四隅にそ
れぞれのガスの給排気孔を設け、かつ前記セパレータの
両面にそれぞれのガスの流通溝を刻設した内部マニホー
ルド方式の平板型固体電解質燃料電池において、前記セ
パレータのガス流通溝入口部におけるガス流通溝の深さ
を該溝の他の部分の深さより浅くして圧力損失機能を持
たせることを特徴とする平板型固体電解質燃料電池の導
入ガス分配装置。
5. A flat cell in which an air electrode and a fuel electrode are disposed on both surfaces of a flat solid electrolyte layer, and adjacent cells are electrically connected in series, and a fuel cell is connected to each cell. Gas and oxidizing gas-distributing separators are alternately laminated, gas supply / exhaust holes are provided at the four corners of the separator and the solid electrolyte layer, and respective gas flow grooves are cut on both surfaces of the separator. In the flat solid electrolyte fuel cell of the internal manifold type provided, the depth of the gas flow groove at the gas flow groove inlet portion of the separator is made shallower than the depth of the other portion of the groove to have a pressure loss function. Characteristic introduction gas distribution device for flat solid electrolyte fuel cells.
【請求項6】 平板状固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料ガスと酸化剤ガスとを分配するセパレータとを交互に
積層し、前記セパレータおよび固体電解質層の四隅にそ
れぞれのガスの給排気孔を設け、かつ前記セパレータの
両面にそれぞれのガスの流通溝を刻設した内部マニホー
ルド方式の平板型固体電解質燃料電池において、前記セ
パレータのガス流通溝出口部におけるガス流通溝の深さ
を該溝の他の部分の深さより浅くして圧力損失機能を持
たせることを特徴とする平板型固体電解質燃料電池の導
入ガス分配装置。
6. A flat cell in which an air electrode and a fuel electrode are disposed on both surfaces of a flat solid electrolyte layer, and adjacent cells are electrically connected in series, and a fuel cell is connected to each cell. Gas and oxidizing gas-distributing separators are alternately laminated, gas supply / exhaust holes are provided at the four corners of the separator and the solid electrolyte layer, and respective gas flow grooves are cut on both surfaces of the separator. In the flat solid electrolyte fuel cell of the internal manifold type provided, the depth of the gas flow groove at the outlet of the gas flow groove of the separator is made shallower than the depth of other portions of the groove to have a pressure loss function. Characteristic introduction gas distribution device for flat solid electrolyte fuel cells.
【請求項7】 セパレータのガス流通溝入口部における
ガス流通溝の深さを該溝の他の部分の深さより浅くして
圧力損失機能を持たせることを特徴とする前記請求項3
または4に記載の平板型固体電解質燃料電池の導入ガス
分配装置。
7. The pressure loss function according to claim 3, wherein the depth of the gas flow groove at the inlet of the gas flow groove of the separator is made shallower than the depth of the other portion of the groove.
Or the introduced gas distribution device for a flat panel solid electrolyte fuel cell according to 4.
【請求項8】 セパレータのガス流通溝出口部における
ガス流通溝の深さを該溝の他の部分の深さより浅くして
圧力損失機能を持たせることを特徴とする前記請求項3
または4に記載の平板型固体電解質燃料電池の導入ガス
分配装置。
8. The pressure loss function according to claim 3, wherein the depth of the gas flow groove at the outlet of the gas flow groove of the separator is made shallower than the depth of the other part of the groove.
Or the introduced gas distribution device for a flat panel solid electrolyte fuel cell according to 4.
JP8325039A 1996-12-05 1996-12-05 Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type Withdrawn JPH10172594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8325039A JPH10172594A (en) 1996-12-05 1996-12-05 Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8325039A JPH10172594A (en) 1996-12-05 1996-12-05 Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type

Publications (1)

Publication Number Publication Date
JPH10172594A true JPH10172594A (en) 1998-06-26

Family

ID=18172474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8325039A Withdrawn JPH10172594A (en) 1996-12-05 1996-12-05 Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type

Country Status (1)

Country Link
JP (1) JPH10172594A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013441A3 (en) * 1999-08-16 2001-06-07 Allied Signal Inc Fuel cell having improved condensation and reaction product management capabilities
FR2879824A1 (en) * 2004-12-16 2006-06-23 Snecma Moteurs Sa BIPOLAR PLATE FOR FUEL CELL
JP2006172759A (en) * 2004-12-13 2006-06-29 Toyota Motor Corp Fuel cell
JP2006236612A (en) * 2005-02-22 2006-09-07 Honda Motor Co Ltd Fuel cell
KR100625698B1 (en) * 2000-12-30 2006-09-20 주식회사 엘지이아이 Separator structure for fuel cell
JP2007141537A (en) * 2005-11-16 2007-06-07 Hitachi Ltd Fuel cell
JP2007294177A (en) * 2006-04-24 2007-11-08 Honda Motor Co Ltd Fuel cell
JP2009004230A (en) * 2007-06-21 2009-01-08 Honda Motor Co Ltd Fuel cell
JP2009037860A (en) * 2007-08-01 2009-02-19 Hitachi Ltd Fuel cell and separator used for the same
JP2009037889A (en) * 2007-08-02 2009-02-19 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Stack flow path of planer type solid oxide fuel cell
JP2010129265A (en) * 2008-11-26 2010-06-10 Honda Motor Co Ltd Fuel cell
EP2228859A1 (en) 2006-08-09 2010-09-15 Honda Motor Co., Ltd. Fuel cell
WO2010113630A1 (en) 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
WO2011114970A2 (en) 2010-03-17 2011-09-22 Honda Motor Co., Ltd. Fuel cell
WO2011114971A1 (en) 2010-03-15 2011-09-22 Honda Motor Co., Ltd. Fuel cell
US8283086B2 (en) 2006-10-19 2012-10-09 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US8785075B2 (en) 2006-08-15 2014-07-22 Honda Motor Co., Ltd. Fuel cell having a stacked electrolyte electrode assembly
US8865363B2 (en) 2009-04-02 2014-10-21 Honda Motor Co., Ltd. Fuel cell
US8916308B2 (en) 2008-04-28 2014-12-23 Honda Motor Co., Ltd. Fuel cell
US8932778B2 (en) 2008-04-28 2015-01-13 Honda Motor Co., Ltd. Fuel cell with fuel gas outlets
US9123946B2 (en) 2010-03-15 2015-09-01 Honda Motor Co., Ltd. Fuel cell stack
DE102015207100A1 (en) 2014-04-23 2015-10-29 Honda Motor Co., Ltd. fuel cell stack
US9368815B2 (en) 2012-01-27 2016-06-14 Honda Motor Co., Ltd. Fuel cell
JP2016520970A (en) * 2013-05-02 2016-07-14 ハルドール・トプサー・アクチエゼルスカベット Gas inlet for SOEC unit
EP3644422A1 (en) * 2018-10-26 2020-04-29 Korea Institute of Energy Research Fuel cell separator including embossing structure for uniform distribution of gas and fuel cell stack including the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013441A3 (en) * 1999-08-16 2001-06-07 Allied Signal Inc Fuel cell having improved condensation and reaction product management capabilities
KR100697480B1 (en) * 1999-08-16 2007-03-20 얼라이드시그날 인코퍼레이티드 Fuel cell having improved condensation and reaction product management capabilities
US6635378B1 (en) 1999-08-16 2003-10-21 Hybrid Power Generation System, Llc Fuel cell having improved condensation and reaction product management capabilities
KR100625698B1 (en) * 2000-12-30 2006-09-20 주식회사 엘지이아이 Separator structure for fuel cell
JP2006172759A (en) * 2004-12-13 2006-06-29 Toyota Motor Corp Fuel cell
EP1672726A3 (en) * 2004-12-16 2009-06-03 Snecma Bipolar plate for fuel cell
FR2879824A1 (en) * 2004-12-16 2006-06-23 Snecma Moteurs Sa BIPOLAR PLATE FOR FUEL CELL
US7306875B2 (en) 2004-12-16 2007-12-11 Snecma Bipolar plate for a fuel cell
JP2006236612A (en) * 2005-02-22 2006-09-07 Honda Motor Co Ltd Fuel cell
JP2007141537A (en) * 2005-11-16 2007-06-07 Hitachi Ltd Fuel cell
JP2007294177A (en) * 2006-04-24 2007-11-08 Honda Motor Co Ltd Fuel cell
US8557478B2 (en) 2006-08-09 2013-10-15 Honda Motor Co., Ltd. Fuel cell
EP2228859A1 (en) 2006-08-09 2010-09-15 Honda Motor Co., Ltd. Fuel cell
US8785075B2 (en) 2006-08-15 2014-07-22 Honda Motor Co., Ltd. Fuel cell having a stacked electrolyte electrode assembly
US8283086B2 (en) 2006-10-19 2012-10-09 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2009004230A (en) * 2007-06-21 2009-01-08 Honda Motor Co Ltd Fuel cell
JP2009037860A (en) * 2007-08-01 2009-02-19 Hitachi Ltd Fuel cell and separator used for the same
JP2009037889A (en) * 2007-08-02 2009-02-19 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Stack flow path of planer type solid oxide fuel cell
US8932778B2 (en) 2008-04-28 2015-01-13 Honda Motor Co., Ltd. Fuel cell with fuel gas outlets
US8916308B2 (en) 2008-04-28 2014-12-23 Honda Motor Co., Ltd. Fuel cell
JP2010129265A (en) * 2008-11-26 2010-06-10 Honda Motor Co Ltd Fuel cell
WO2010113630A1 (en) 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
US9017894B2 (en) 2009-04-02 2015-04-28 Honda Motor Co., Ltd. Fuel cell
US8865363B2 (en) 2009-04-02 2014-10-21 Honda Motor Co., Ltd. Fuel cell
WO2011114971A1 (en) 2010-03-15 2011-09-22 Honda Motor Co., Ltd. Fuel cell
US9123946B2 (en) 2010-03-15 2015-09-01 Honda Motor Co., Ltd. Fuel cell stack
US9166244B2 (en) 2010-03-15 2015-10-20 Honda Motor Co., Ltd. Fuel cell
WO2011114970A2 (en) 2010-03-17 2011-09-22 Honda Motor Co., Ltd. Fuel cell
US10069152B2 (en) 2010-03-17 2018-09-04 Honda Motor Co., Ltd. Fuel cell
US9368815B2 (en) 2012-01-27 2016-06-14 Honda Motor Co., Ltd. Fuel cell
JP2016520970A (en) * 2013-05-02 2016-07-14 ハルドール・トプサー・アクチエゼルスカベット Gas inlet for SOEC unit
US10074864B2 (en) 2013-05-02 2018-09-11 Haldor Topsoe A/S Gas inlet for SOEC unit
DE102015207100A1 (en) 2014-04-23 2015-10-29 Honda Motor Co., Ltd. fuel cell stack
US10297854B2 (en) 2014-04-23 2019-05-21 Honda Motor Co., Ltd. Fuel cell stack
EP3644422A1 (en) * 2018-10-26 2020-04-29 Korea Institute of Energy Research Fuel cell separator including embossing structure for uniform distribution of gas and fuel cell stack including the same
CN111193046A (en) * 2018-10-26 2020-05-22 韩国能源技术研究院 Fuel cell separator including sheet-based embossed structure and fuel cell stack

Similar Documents

Publication Publication Date Title
JPH10172594A (en) Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type
CN109904484B (en) Fuel cell bipolar plate structure and fuel cell
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP4630529B2 (en) Fuel cell system
WO2005074062A1 (en) Polymer electrolyte fuel cell
CN103250290A (en) Fuel cell and fuel cell stack
JP2000294261A5 (en)
JP5145623B2 (en) Fuel cell stack
JPH05159790A (en) Solid electrolyte fuel cell
JP2003229144A (en) Fuel cell
CA2490011A1 (en) Fuel cell with separator having a ridge member
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JP6228984B2 (en) Fuel cell
JPH09326259A (en) Solid electrolyte fuel cell
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JP2000323149A (en) Separator for fuel cell and manufacturing device thereof
JP3219600B2 (en) Solid oxide fuel cell
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JP3244310B2 (en) Solid oxide fuel cell
JP4209962B2 (en) Single cell of flat-type solid electrolyte fuel cell and cell stack using the same
JP2004119189A (en) Fuel cell
JP4908699B2 (en) Fuel cell stack
JP3383319B2 (en) Fuel cell
JP2000012053A (en) Solid high-polymer electrolyte-type fuel cell
JPH06140056A (en) Solid electrolytic fuel cell having inside manifold structure to increase current collecting rate

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302