JP2009004230A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2009004230A
JP2009004230A JP2007163970A JP2007163970A JP2009004230A JP 2009004230 A JP2009004230 A JP 2009004230A JP 2007163970 A JP2007163970 A JP 2007163970A JP 2007163970 A JP2007163970 A JP 2007163970A JP 2009004230 A JP2009004230 A JP 2009004230A
Authority
JP
Japan
Prior art keywords
fuel gas
buffer portion
communication hole
flow path
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007163970A
Other languages
Japanese (ja)
Other versions
JP5128861B2 (en
Inventor
Yasuhiro Watanabe
康博 渡邊
Masaru Oda
優 小田
Masahiro Mouri
昌弘 毛里
Hiroaki Ota
広明 太田
Satoshi Tanimoto
谷本  智
Nobuhiro Saito
信広 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007163970A priority Critical patent/JP5128861B2/en
Publication of JP2009004230A publication Critical patent/JP2009004230A/en
Application granted granted Critical
Publication of JP5128861B2 publication Critical patent/JP5128861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the size of a buffer part as much as possible, and to secure desired power generation performance by a lightweight and compact structure. <P>SOLUTION: This fuel cell 10 includes a first metal separator 18 and a second metal separator 20 sandwiching an electrode structure 16 having an electrolyte membrane. The first metal separator 18 has fuel gas passages 34, a fuel gas supply communication hole 24a, a fuel gas exhaust communication hole 24b, and an entrance buffer part 36a and an exit buffer part 36b making the fuel gas passages 34, the fuel gas supply communication hole 24a and the fuel gas exhaust communication hole 24b communicate with one another. The average pressure loss of the entrance buffer part 36a and the exit buffer part 36b is set not larger than the average pressure loss of the fuel gas passage 34. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電解質膜の両側に一対の電極を設けた電解質膜・電極構造体とセパレータとが積層され、電極面に沿って反応ガスを供給する反応ガス流路が形成されるとともに、前記反応ガスを積層方向に流通させる反応ガス連通孔が形成される燃料電池に関する。   In the present invention, an electrolyte membrane / electrode structure provided with a pair of electrodes on both sides of an electrolyte membrane and a separator are laminated, and a reaction gas flow path for supplying a reaction gas is formed along the electrode surface. The present invention relates to a fuel cell in which a reaction gas communication hole for flowing gas in a stacking direction is formed.

例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜(電解質)の両側に、それぞれアノード側電極及びカソード側電極を配設した電解質膜・電極構造体を、セパレータによって挟持した発電セルを備えている。この種の燃料電池は、通常、所定の数の発電セルを積層することにより、燃料電池スタックとして使用されている。   For example, in a polymer electrolyte fuel cell, an electrolyte membrane / electrode structure in which an anode side electrode and a cathode side electrode are disposed on both sides of an electrolyte membrane (electrolyte) made of a polymer ion exchange membrane is sandwiched by separators. It has a power generation cell. This type of fuel cell is normally used as a fuel cell stack by stacking a predetermined number of power generation cells.

上記の燃料電池では、セパレータの面内に、アノード側電極に燃料ガスを流すための燃料ガス流路(以下、反応ガス流路ともいう)と、カソード側電極に酸化剤ガスを流すための酸化剤ガス流路(以下、反応ガス流路ともいう)とが設けられている。さらに、各発電セル毎又は複数の発電セル毎に、冷却媒体を流すための冷却媒体流路がセパレータの面方向に沿って設けられている。   In the fuel cell described above, a fuel gas flow path (hereinafter also referred to as a reaction gas flow path) for flowing a fuel gas to the anode side electrode and an oxidation for flowing an oxidant gas to the cathode side electrode in the plane of the separator. An agent gas channel (hereinafter also referred to as a reaction gas channel) is provided. Furthermore, a cooling medium flow path for flowing a cooling medium is provided along the surface direction of the separator for each power generation cell or for each of the plurality of power generation cells.

この種の燃料電池は、セパレータの積層方向に貫通する反応ガス連通孔及び冷却媒体連通孔が前記燃料電池の内部に設けられる、所謂、内部マニホールドを構成する場合がある。その際、一般的に、反応ガス連通孔と反応ガス流路との間には、前記反応ガス流路に反応ガスを均一に分散させて供給するために、バッファ部が設けられている。   This type of fuel cell may constitute a so-called internal manifold in which a reaction gas communication hole and a cooling medium communication hole penetrating in the stacking direction of the separator are provided inside the fuel cell. At this time, generally, a buffer portion is provided between the reaction gas communication hole and the reaction gas channel so as to uniformly distribute and supply the reaction gas to the reaction gas channel.

例えば、特許文献1では、図6に示すように、シートメタルエレメント1を備えており、このシートメタルエレメント1の長手方向一端縁部には、酸化剤ガス入口マニホールド2a、冷媒入口マニホールド3a及び燃料ガス入口マニホールド4aが貫通形成されている。シートメタルエレメント1の長手方向他端縁部には、酸化剤ガス出口マニホールド2b、冷媒出口マニホールド3b及び燃料ガス出口マニホールド4bが貫通形成されている。   For example, in Patent Document 1, as shown in FIG. 6, a sheet metal element 1 is provided, and an oxidant gas inlet manifold 2 a, a refrigerant inlet manifold 3 a, and a fuel are disposed at one end edge in the longitudinal direction of the sheet metal element 1. A gas inlet manifold 4a is formed through. An oxidant gas outlet manifold 2b, a refrigerant outlet manifold 3b, and a fuel gas outlet manifold 4b are formed through the other end of the sheet metal element 1 in the longitudinal direction.

シートメタルエレメント1の燃料ガス供給面側には、波形流路5が形成されるとともに、前記波形流路5の両端には、それぞれディンプルからなる入口バッファ部6a及び出口バッファ部6bが設けられている。波形流路5は、直線状の複数の流路溝5aを有している。   A corrugated flow path 5 is formed on the fuel gas supply surface side of the sheet metal element 1, and an inlet buffer section 6a and an outlet buffer section 6b made of dimples are provided at both ends of the corrugated flow path 5, respectively. Yes. The corrugated flow path 5 has a plurality of linear flow path grooves 5a.

特表2002−530836号公報Japanese translation of PCT publication No. 2002-530836

上記の特許文献1では、シートメタルエレメント1自体の寸法のばらつきや、発電中の生成水が入口バッファ部6a及び/又は出口バッファ部6bに滞留することにより、燃料ガスの流れが変化する場合がある。このため、各流路溝5aを流れる燃料ガスの流量に差が生じてしまい、前記燃料ガスを波形流路5の全面にわたって均一に分配することができないおそれがある。これにより、発電性能が低下するとともに、例えば、固体高分子電解質膜の劣化が惹起されるという問題がある。   In the above-mentioned Patent Document 1, the flow of the fuel gas may change due to variations in the dimensions of the sheet metal element 1 itself, or the water generated during power generation stays in the inlet buffer 6a and / or the outlet buffer 6b. is there. For this reason, a difference occurs in the flow rate of the fuel gas flowing through each flow channel groove 5 a, and the fuel gas may not be uniformly distributed over the entire surface of the corrugated flow channel 5. As a result, the power generation performance is lowered, and there is a problem that, for example, deterioration of the solid polymer electrolyte membrane is caused.

そこで、入口バッファ部6a及び出口バッファ部6bの寸法を必要以上に大きく設定することが考えられる。しかしながら、入口バッファ部6a及び出口バッファ部6bは、発電に寄与しない部位であり、所望の発電領域を確保するために、シートメタルエレメント1全体が相当に大型且つ重量物となるという問題がある。   Accordingly, it is conceivable to set the dimensions of the inlet buffer 6a and the outlet buffer 6b to be larger than necessary. However, the inlet buffer portion 6a and the outlet buffer portion 6b are portions that do not contribute to power generation, and there is a problem that the entire sheet metal element 1 becomes considerably large and heavy in order to secure a desired power generation region.

本発明はこの種の問題を解決するものであり、バッファ部の寸法を可及的に小型化するとともに、軽量且つコンパクトな構成で、所望の発電性能を確保することが可能な燃料電池を提供することを目的とする。   The present invention solves this type of problem, and provides a fuel cell capable of reducing the size of the buffer portion as much as possible and ensuring desired power generation performance with a lightweight and compact configuration. The purpose is to do.

本発明は、電解質膜の両側に一対の電極を設けた電解質膜・電極構造体とセパレータとが積層され、電極面に沿って反応ガスを供給する反応ガス流路が形成されるとともに、前記反応ガスを積層方向に流通させる反応ガス連通孔が形成される燃料電池に関するものである。   In the present invention, an electrolyte membrane / electrode structure provided with a pair of electrodes on both sides of an electrolyte membrane and a separator are laminated, and a reaction gas flow path for supplying a reaction gas is formed along the electrode surface. The present invention relates to a fuel cell in which a reaction gas communication hole for flowing gas in a stacking direction is formed.

そして、セパレータは、反応ガス流路の入口側に位置する略三角形状の入口バッファ部と、前記反応ガス流路の出口側に位置し、略三角形状の出口バッファ部とを備えるとともに、前記入口バッファ部及び前記出口バッファ部の平均圧損は、前記反応ガス流路の平均圧損以下に設定されている。   The separator includes a substantially triangular inlet buffer portion located on the inlet side of the reaction gas flow path, a substantially triangular outlet buffer portion located on the outlet side of the reaction gas flow path, and the inlet The average pressure loss of the buffer part and the outlet buffer part is set to be equal to or lower than the average pressure loss of the reaction gas flow path.

また、出口バッファ部は、入口バッファ部と点対称をなすことが好ましい。   Moreover, it is preferable that an exit buffer part makes point symmetry with an entrance buffer part.

さらに、反応ガス流路は、直線状又は波状を有して一方向に延在する複数の流路溝を備えることが好ましい。   Furthermore, it is preferable that the reaction gas channel includes a plurality of channel grooves that have a straight line shape or a wave shape and extend in one direction.

さらにまた、入口バッファ部及び出口バッファ部は、反応ガス流路側を底辺とし前記底辺から離間する頂点の位置と、前記底辺及び前記頂点を結ぶ長辺側の稜線と前記底辺とのなす角度とに基づいて、形状が設定されることが好ましい。   Furthermore, the inlet buffer section and the outlet buffer section are arranged such that the reaction gas flow path side is the base and the vertex is located away from the base, and the angle formed between the bottom and the long side ridge line connecting the top and the base is It is preferable that the shape is set based on this.

本発明によれば、入口バッファ部及び出口バッファ部の平均圧損が、反応ガス流路の平均圧損以下に設定されるため、前記反応ガス流路を流れる反応ガスの流量を均等化することができる。これにより、簡単な構成で、反応ガスを反応ガス連通孔から反応ガス流路全面に均一に供給することができ、所望の発電性能を確保することが可能になる。   According to the present invention, since the average pressure loss of the inlet buffer portion and the outlet buffer portion is set to be equal to or lower than the average pressure loss of the reaction gas flow channel, the flow rate of the reaction gas flowing through the reaction gas flow channel can be equalized. . Accordingly, the reaction gas can be uniformly supplied from the reaction gas communication hole to the entire surface of the reaction gas channel with a simple configuration, and desired power generation performance can be ensured.

しかも、入口バッファ部及び出口バッファ部の寸法を可及的に小型化することができる。従って、燃料電池全体を軽量且つコンパクトに構成するとともに、所望の発電性能を確保することが可能になる。   In addition, the dimensions of the inlet buffer portion and the outlet buffer portion can be reduced as much as possible. Therefore, the entire fuel cell can be configured to be lightweight and compact, and desired power generation performance can be ensured.

図1は、本発明の実施形態に係る燃料電池10の分解斜視図であり、図2は、前記燃料電池10の、図1中、II−II線断面説明図である。燃料電池10は、好ましくは、車両用燃料電池として使用される。   FIG. 1 is an exploded perspective view of a fuel cell 10 according to an embodiment of the present invention, and FIG. 2 is a sectional view of the fuel cell 10 taken along the line II-II in FIG. The fuel cell 10 is preferably used as a vehicle fuel cell.

図1に示すように、燃料電池10は、電解質膜・電極構造体16が、アノード側の第1金属セパレータ18とカソード側の第2金属セパレータ20とに挟持されている。第1及び第2金属セパレータ18、20は、金属製薄板を波形状にプレス加工することにより、断面凹凸形状を有している。   As shown in FIG. 1, in the fuel cell 10, an electrolyte membrane / electrode structure 16 is sandwiched between a first metal separator 18 on the anode side and a second metal separator 20 on the cathode side. The first and second metal separators 18 and 20 have a concavo-convex shape by pressing a metal thin plate into a wave shape.

なお、第1及び第2金属セパレータ18、20は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板により構成される。また、第1及び第2金属セパレータ18、20に代えて、例えば、カーボンセパレータを採用してもよい。   The first and second metal separators 18 and 20 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plated steel plate, or a metal plate whose surface is subjected to anticorrosion treatment. Moreover, instead of the first and second metal separators 18 and 20, for example, a carbon separator may be adopted.

燃料電池10の長辺方向(図1中、矢印C方向)の上端縁部には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス供給連通孔(反応ガス連通孔)22aと、燃料ガス、例えば、水素含有ガスを供給するための燃料ガス供給連通孔(反応ガス連通孔)24aとが設けられる。   An oxidant gas supply for supplying an oxidant gas, for example, an oxygen-containing gas, communicates with each other in the direction of the arrow A at the upper edge of the long side direction (the direction of arrow C in FIG. 1) of the fuel cell 10. A communication hole (reaction gas communication hole) 22a and a fuel gas supply communication hole (reaction gas communication hole) 24a for supplying a fuel gas, for example, a hydrogen-containing gas, are provided.

燃料電池10の長辺方向の下端縁部には、矢印A方向に互いに連通して、燃料ガスを排出するための燃料ガス排出連通孔(反応ガス連通孔)24bと、酸化剤ガスを排出するための酸化剤ガス排出連通孔(反応ガス連通孔)22bとが設けられる。酸化剤ガス供給連通孔22aと酸化剤ガス排出連通孔22bとは、点対称の位置に対応して設けられるとともに、燃料ガス供給連通孔24aと燃料ガス排出連通孔24bとは、同様に点対称の位置に対応して設けられる。   The lower end edge of the long side direction of the fuel cell 10 communicates with each other in the direction of the arrow A, and a fuel gas discharge communication hole (reaction gas communication hole) 24b for discharging the fuel gas and an oxidant gas are discharged. An oxidant gas discharge communication hole (reaction gas communication hole) 22b is provided. The oxidant gas supply communication hole 22a and the oxidant gas discharge communication hole 22b are provided so as to correspond to point-symmetrical positions, and the fuel gas supply communication hole 24a and the fuel gas discharge communication hole 24b are similarly point symmetric. Are provided corresponding to the positions.

燃料電池10の短辺方向(矢印B方向)の一端縁部には、矢印A方向に互いに連通して、冷却媒体を供給するための冷却媒体供給連通孔26aが設けられるとともに、短辺方向の他端縁部には、前記冷却媒体を排出するための冷却媒体排出連通孔26bが設けられる。   At one edge of the fuel cell 10 in the short side direction (arrow B direction), there is provided a cooling medium supply communication hole 26a that communicates with each other in the arrow A direction and supplies a cooling medium. A cooling medium discharge communication hole 26b for discharging the cooling medium is provided at the other end edge.

電解質膜・電極構造体16は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜28と、前記固体高分子電解質膜28を挟持するアノード側電極30及びカソード側電極32とを備える。アノード側電極30は、カソード側電極32よりも小さな表面積を有している。   The electrolyte membrane / electrode structure 16 includes, for example, a solid polymer electrolyte membrane 28 in which a perfluorosulfonic acid thin film is impregnated with water, and an anode side electrode 30 and a cathode side electrode 32 that sandwich the solid polymer electrolyte membrane 28. With. The anode side electrode 30 has a smaller surface area than the cathode side electrode 32.

アノード側電極30及びカソード側電極32は、カーボンペーパ等からなるガス拡散層(図示せず)と、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層の表面に一様に塗布して形成される電極触媒層(図示せず)とを有する。電極触媒層は、固体高分子電解質膜28の両面に形成される。   The anode-side electrode 30 and the cathode-side electrode 32 are uniformly coated with a gas diffusion layer (not shown) made of carbon paper or the like and porous carbon particles carrying a platinum alloy on the surface thereof. An electrode catalyst layer (not shown). The electrode catalyst layers are formed on both surfaces of the solid polymer electrolyte membrane 28.

第1金属セパレータ18の電解質膜・電極構造体16に向かう面18aには、燃料ガス供給連通孔24aと燃料ガス排出連通孔24bとを連通する燃料ガス流路34が形成される。この燃料ガス流路34は、図3に示すように、矢印C方向に延在する複数の波状流路溝34aを有し、前記波状流路溝34aの矢印C方向上端及び下端に位置して入口バッファ部36a及び出口バッファ部36bが設けられる。   A fuel gas flow path 34 that connects the fuel gas supply communication hole 24 a and the fuel gas discharge communication hole 24 b is formed on the surface 18 a of the first metal separator 18 facing the electrolyte membrane / electrode structure 16. As shown in FIG. 3, the fuel gas channel 34 has a plurality of wave-like channel grooves 34a extending in the direction of arrow C, and is located at the upper and lower ends of the wave-like channel groove 34a in the direction of arrow C. An inlet buffer part 36a and an outlet buffer part 36b are provided.

入口バッファ部36a及び出口バッファ部36bは、互いに点対称の略三角形状を有するとともに、複数のエンボス38a、38bを設ける。入口バッファ部36a及び出口バッファ部36bの三角形の頂点は、燃料ガス流路34の幅範囲内に配設される。後述するように、入口バッファ部36a及び出口バッファ部36bの平均圧損は、燃料ガス流路34の平均圧損以下に設定される。   The inlet buffer portion 36a and the outlet buffer portion 36b have a substantially triangular shape that is point-symmetric with each other, and are provided with a plurality of embosses 38a and 38b. The apexes of the triangles of the inlet buffer portion 36 a and the outlet buffer portion 36 b are disposed within the width range of the fuel gas flow path 34. As will be described later, the average pressure loss of the inlet buffer portion 36a and the outlet buffer portion 36b is set to be equal to or lower than the average pressure loss of the fuel gas passage 34.

より具体的には、入口バッファ部36aの平均圧損及び出口バッファ部36bの平均圧損は、それぞれ燃料ガス流路34の平均圧損の1/2以上に、換言すれば、前記燃料ガス流路34の平均圧損は、入口バッファ部36aの平均圧損又は出口バッファ部36bの平均圧損の2倍以下に設定される。燃料ガス流路34の平均圧損が、入口バッファ部36aの平均圧損の2倍を越えると、流量分配の効果が変化しない一方、前記入口バッファ部36aの占める面積が大きくなってしまうからである。   More specifically, the average pressure loss of the inlet buffer portion 36a and the average pressure loss of the outlet buffer portion 36b are each ½ or more of the average pressure loss of the fuel gas flow channel 34, in other words, the fuel gas flow channel 34. The average pressure loss is set to not more than twice the average pressure loss of the inlet buffer portion 36a or the average pressure loss of the outlet buffer portion 36b. This is because if the average pressure loss of the fuel gas passage 34 exceeds twice the average pressure loss of the inlet buffer portion 36a, the flow distribution effect does not change, but the area occupied by the inlet buffer portion 36a increases.

第1金属セパレータ18の面18aには、燃料ガス供給連通孔24aと入口バッファ部36aとを連通する連通路形成用の複数の受け部41aと、燃料ガス排出連通孔24bと出口バッファ部36bとを連通する連通路形成用の複数の受け部41bとが形成される。受け部41a、41bの近傍には、それぞれ複数の供給孔部42a及び排出孔部42bが形成される。供給孔部42aは、面18b側で燃料ガス供給連通孔24aに連通する一方、排出孔部42bは、同様に前記面18b側で燃料ガス排出連通孔24bに連通する。   The surface 18a of the first metal separator 18 has a plurality of receiving portions 41a for forming a communication path that communicates the fuel gas supply communication hole 24a and the inlet buffer portion 36a, a fuel gas discharge communication hole 24b, and an outlet buffer portion 36b. And a plurality of receiving portions 41b for forming communication passages communicating with each other. A plurality of supply hole portions 42a and discharge hole portions 42b are formed in the vicinity of the receiving portions 41a and 41b, respectively. The supply hole portion 42a communicates with the fuel gas supply communication hole 24a on the surface 18b side, while the discharge hole portion 42b similarly communicates with the fuel gas discharge communication hole 24b on the surface 18b side.

図4に示すように、第2金属セパレータ20の電解質膜・電極構造体16に向かう面20aには、酸化剤ガス供給連通孔22aと酸化剤ガス排出連通孔22bとを連通して酸化剤ガス流路44が形成される。この酸化剤ガス流路44は、矢印C方向に延在する複数の波状流路溝44aを有し、前記波状流路溝44aの矢印C方向上端及び下端に位置して入口バッファ部46a及び出口バッファ部46bが設けられる。   As shown in FIG. 4, an oxidant gas supply communication hole 22a and an oxidant gas discharge communication hole 22b are communicated with the surface 20a of the second metal separator 20 facing the electrolyte membrane / electrode structure 16 through an oxidant gas. A flow path 44 is formed. The oxidant gas channel 44 has a plurality of wave-like channel grooves 44a extending in the direction of the arrow C, and is located at the upper and lower ends of the wave-like channel groove 44a in the direction of the arrow C. A buffer unit 46b is provided.

入口バッファ部46a及び出口バッファ部46bは、互いに点対称の略三角形状を有するとともに、エンボス48a、48bを設ける。後述するように、入口バッファ部46a及び出口バッファ部46bの平均圧損は、酸化剤ガス流路44の平均圧損以下に設定される。   The inlet buffer part 46a and the outlet buffer part 46b have substantially triangular shapes that are point-symmetric with each other, and are provided with embosses 48a and 48b. As will be described later, the average pressure loss of the inlet buffer portion 46 a and the outlet buffer portion 46 b is set to be equal to or lower than the average pressure loss of the oxidant gas channel 44.

より具体的には、入口バッファ部46aの平均圧損及び出口バッファ部46bの平均圧損は、それぞれ酸化剤ガス流路44の平均圧損の1/2以上に、換言すれば、前記酸化剤ガス流路44の平均圧損は、入口バッファ部46aの平均圧損又は出口バッファ部46bの平均圧損の2倍以下に設定される。   More specifically, the average pressure loss of the inlet buffer portion 46a and the average pressure loss of the outlet buffer portion 46b are each ½ or more of the average pressure loss of the oxidant gas flow channel 44, in other words, the oxidant gas flow channel. The average pressure loss of 44 is set to not more than twice the average pressure loss of the inlet buffer portion 46a or the average pressure loss of the outlet buffer portion 46b.

面20aには、酸化剤ガス供給連通孔22aと入口バッファ部46aとを連通する連通路形成用の複数の受け部51aと、酸化剤ガス排出連通孔22bと出口バッファ部46bとを連通する連通路形成用の複数の受け部51bとが設けられる。   The surface 20a communicates with a plurality of receiving portions 51a for communicating with the oxidant gas supply communication hole 22a and the inlet buffer portion 46a, and with the oxidant gas discharge communication hole 22b and the outlet buffer portion 46b. A plurality of receiving portions 51b for forming a passage are provided.

図1に示すように、第2金属セパレータ20の面20bと、第1金属セパレータ18の面18bとの間には、冷却媒体供給連通孔26aと冷却媒体排出連通孔26bとに連通する冷却媒体流路54が形成される。この冷却媒体流路54は、燃料ガス流路34の裏面形状と酸化剤ガス流路44の裏面形状とが重なり合うことによって、矢印B方向に延在して形成される。   As shown in FIG. 1, the cooling medium communicating with the cooling medium supply communication hole 26 a and the cooling medium discharge communication hole 26 b between the surface 20 b of the second metal separator 20 and the surface 18 b of the first metal separator 18. A flow path 54 is formed. The cooling medium channel 54 is formed to extend in the direction of arrow B by overlapping the back surface shape of the fuel gas channel 34 and the back surface shape of the oxidant gas channel 44.

第1金属セパレータ18の面18a、18bには、この第1金属セパレータ18の外周端縁部を周回して第1シール部材56が一体成形される。第2金属セパレータ20の面20a、20bには、この第2金属セパレータ20の外周端縁部を周回して第2シール部材58が一体成形される。第1及び第2シール部材56、58としては、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材が用いられる。   A first seal member 56 is integrally formed on the surfaces 18 a and 18 b of the first metal separator 18 around the outer peripheral edge of the first metal separator 18. A second seal member 58 is integrally formed on the surfaces 20 a and 20 b of the second metal separator 20 so as to go around the outer peripheral edge of the second metal separator 20. As the first and second sealing members 56, 58, for example, EPDM, NBR, fluorine rubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene or acrylic rubber or the like, cushion material, Alternatively, a packing material is used.

図1及び図3に示すように、第1シール部材56は、面18a側に燃料ガス流路34を囲繞して設けられるシール部56aと、このシール部56aの外方に設けられるシール部56bとを有する。シール部56aは、燃料ガス流路34、入口バッファ部36a、出口バッファ部36b、供給孔部42a及び排出孔部42bを周回する凸状シールを構成する。   As shown in FIGS. 1 and 3, the first seal member 56 includes a seal portion 56a provided on the surface 18a side so as to surround the fuel gas flow path 34, and a seal portion 56b provided outside the seal portion 56a. And have. The seal portion 56a constitutes a convex seal that goes around the fuel gas flow path 34, the inlet buffer portion 36a, the outlet buffer portion 36b, the supply hole portion 42a, and the discharge hole portion 42b.

図4に示すように、第2シール部材58は、第2金属セパレータ20の面20a側に酸化剤ガス流路44、入口バッファ部46a、出口バッファ部46b、酸化剤ガス供給連通孔22a及び酸化剤ガス排出連通孔22bを囲繞して形成されるシール部58aを有する。   As shown in FIG. 4, the second seal member 58 is formed on the surface 20a side of the second metal separator 20 with the oxidant gas flow path 44, the inlet buffer part 46a, the outlet buffer part 46b, the oxidant gas supply communication hole 22a, and the oxidation gas. A seal portion 58a is formed so as to surround the agent gas discharge communication hole 22b.

このように構成される燃料電池10の動作について、以下に説明する。   The operation of the fuel cell 10 configured as described above will be described below.

先ず、図1に示すように、燃料電池10では、酸化剤ガス供給連通孔22aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス供給連通孔24aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体供給連通孔26aに純水やエチレングリコール等の冷却媒体が供給される。   First, as shown in FIG. 1, in the fuel cell 10, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas supply communication hole 22a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas supply communication hole 24a. Is supplied. Further, a coolant such as pure water or ethylene glycol is supplied to the coolant supply passage 26a.

酸化剤ガスは、酸化剤ガス供給連通孔22aから第2金属セパレータ20の酸化剤ガス流路44に導入され、電解質膜・電極構造体16のカソード側電極32に沿って移動する。   The oxidant gas is introduced into the oxidant gas flow path 44 of the second metal separator 20 from the oxidant gas supply communication hole 22 a and moves along the cathode side electrode 32 of the electrolyte membrane / electrode structure 16.

その際、図4に示すように、第2金属セパレータ20の面20aでは、酸化剤ガス供給連通孔22aを流れる酸化剤ガスは、複数の受け部51a間を通って入口バッファ部46aに供給される。この入口バッファ部46aに供給された酸化剤ガスは、矢印B方向に分散されるとともに、酸化剤ガス流路44を構成する複数の波状流路溝44aに沿って鉛直下方向に流動し、電解質膜・電極構造体16のカソード側電極32に供給される。   At that time, as shown in FIG. 4, on the surface 20a of the second metal separator 20, the oxidant gas flowing through the oxidant gas supply communication hole 22a is supplied to the inlet buffer part 46a through the plurality of receiving parts 51a. The The oxidant gas supplied to the inlet buffer 46a is dispersed in the direction of arrow B and flows vertically downward along the plurality of undulating channel grooves 44a constituting the oxidant gas channel 44. It is supplied to the cathode side electrode 32 of the membrane / electrode structure 16.

一方、燃料ガスは、図1及び図3に示すように、第1金属セパレータ18の面18bにおいて、燃料ガス供給連通孔24aから複数の供給孔部42aを通って面18a側に供給される。この燃料ガスは、受け部41a間を通って入口バッファ部36aに導入される。入口バッファ部36aで矢印B方向に分散された燃料ガスは、燃料ガス流路34を構成する複数の波状流路溝34aに沿って鉛直下方向に移動し、電解質膜・電極構造体16のアノード側電極30に供給される。   On the other hand, as shown in FIGS. 1 and 3, the fuel gas is supplied to the surface 18 a side through the plurality of supply holes 42 a from the fuel gas supply communication holes 24 a on the surface 18 b of the first metal separator 18. The fuel gas is introduced into the inlet buffer portion 36a through the receiving portion 41a. The fuel gas dispersed in the direction of the arrow B by the inlet buffer portion 36a moves vertically downward along the plurality of wave-like channel grooves 34a constituting the fuel gas channel 34, and the anode of the electrolyte membrane / electrode structure 16 It is supplied to the side electrode 30.

従って、各電解質膜・電極構造体16では、カソード側電極32に供給される酸化剤ガスと、アノード側電極30に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費され、発電が行われる(図2参照)。   Therefore, in each electrolyte membrane / electrode structure 16, the oxidant gas supplied to the cathode side electrode 32 and the fuel gas supplied to the anode side electrode 30 are consumed by an electrochemical reaction in the electrode catalyst layer, Power generation is performed (see FIG. 2).

次いで、カソード側電極32に供給されて消費された酸化剤ガスは、図4に示すように、酸化剤ガス流路44の下部に連通する出口バッファ部46bに送られる。さらに、酸化剤ガスは、出口バッファ部46bから複数の受け部51b間に沿って酸化剤ガス排出連通孔22bに排出される。   Next, the oxidant gas consumed by being supplied to the cathode side electrode 32 is sent to an outlet buffer part 46 b communicating with the lower part of the oxidant gas flow path 44 as shown in FIG. 4. Further, the oxidant gas is discharged from the outlet buffer part 46b to the oxidant gas discharge communication hole 22b along the space between the plurality of receiving parts 51b.

同様に、アノード側電極30に供給されて消費された燃料ガスは、図1及び図3に示すように、燃料ガス流路34の下部に連通する出口バッファ部36bに送られた後、複数の受け部41b間を流れる。燃料ガスは、複数の排出孔部42bを通って面18b側に移動し、燃料ガス排出連通孔24bに排出される。   Similarly, as shown in FIGS. 1 and 3, the fuel gas that is consumed by being supplied to the anode electrode 30 is sent to an outlet buffer portion 36 b that communicates with the lower portion of the fuel gas flow path 34, and then a plurality of fuel gases are supplied. It flows between the receiving parts 41b. The fuel gas passes through the plurality of discharge holes 42b and moves toward the surface 18b, and is discharged to the fuel gas discharge communication hole 24b.

また、冷却媒体は、冷却媒体供給連通孔26aから第1及び第2金属セパレータ18、20間の冷却媒体流路54に導入された後、矢印B方向(水平方向)に沿って流動する。この冷却媒体は、電解質膜・電極構造体16を冷却した後、冷却媒体排出連通孔26bから排出される。   The cooling medium flows in the direction of arrow B (horizontal direction) after being introduced into the cooling medium flow path 54 between the first and second metal separators 18 and 20 from the cooling medium supply communication hole 26a. The cooling medium is discharged from the cooling medium discharge communication hole 26b after the electrolyte membrane / electrode structure 16 is cooled.

この場合、本実施形態では、例えば、入口バッファ部36a及び出口バッファ部36bの平均圧損は、燃料ガス流路34の平均圧損以下に設定されている。具体的には、入口バッファ部36a及び出口バッファ部36bは、互いに点対称の略三角形状を有しており、燃料ガス流路34を流れる燃料ガスの流量が均等であるとすると、前記入口バッファ部36a及び前記出口バッファ部36bの燃料ガス流れは、図5に示す燃料ガス流れ場60と略同等とみなすことができる。   In this case, in this embodiment, for example, the average pressure loss of the inlet buffer portion 36 a and the outlet buffer portion 36 b is set to be equal to or lower than the average pressure loss of the fuel gas flow channel 34. Specifically, the inlet buffer portion 36a and the outlet buffer portion 36b have substantially triangular shapes that are point-symmetric with respect to each other, and assuming that the flow rate of the fuel gas flowing through the fuel gas flow path 34 is equal, The fuel gas flow in the part 36a and the outlet buffer part 36b can be regarded as substantially equivalent to the fuel gas flow field 60 shown in FIG.

燃料ガス流れ場60は、実質的に入口バッファ部36a及び出口バッファ部36bの燃料ガス流路34側の各辺(稜線)を、共通の底辺62として接合した平行四辺形状を有する。燃料ガス流れ場60は、入口バッファ部36a及び出口バッファ部36bの底辺62から離間する各頂点64a、64bが、一方の対角位置に設定されるとともに、前記底辺62と前記頂点64a、64bを結ぶ長辺側の稜線66a、66b及び短辺側の稜線68a、68bを有する。   The fuel gas flow field 60 has a parallelogram shape in which each side (ridge line) of the inlet buffer portion 36 a and the outlet buffer portion 36 b on the fuel gas flow path 34 side is joined as a common base 62. In the fuel gas flow field 60, each vertex 64a, 64b spaced from the bottom side 62 of the inlet buffer part 36a and the outlet buffer part 36b is set at one diagonal position, and the bottom side 62 and the vertexes 64a, 64b are connected to each other. Long side ridge lines 66a and 66b to be connected and short side ridge lines 68a and 68b are provided.

ここで、図5において、燃料ガス流れ場60の底辺62に沿った対角線長さW、バッファ部深さd、前記底辺62から各頂点64a、64bまでの高さh、稜線66a、66bと底辺62とのなす角度θ、前記対角線長さWの分割定数t(0<t<1)、燃料ガスの流量Q及び粘性係数μとする。実際上、対角線長さWは50mm〜300mm、バッファ部深さdは0.1mm〜1.0mm、高さhは5mm〜40mm及び角度θは5°〜30°に設定されることが好ましい。   Here, in FIG. 5, the diagonal length W along the bottom side 62 of the fuel gas flow field 60, the buffer portion depth d, the height h from the bottom side 62 to the vertices 64a and 64b, the ridge lines 66a and 66b and the bottom side. An angle θ formed by 62, a division constant t (0 <t <1) of the diagonal length W, a fuel gas flow rate Q, and a viscosity coefficient μ. In practice, the diagonal length W is preferably set to 50 mm to 300 mm, the buffer depth d is set to 0.1 mm to 1.0 mm, the height h is set to 5 mm to 40 mm, and the angle θ is set to 5 ° to 30 °.

そこで、燃料ガス流れ場60の平均流速uは、u=Q/Wdsinθから得られる。さらに、d<<W、hであるため、二次元ポアズイユ流とみなすことにより、燃料ガス流れ場60の片側での平均圧力損失ΔPは、
ΔP=1/2×12μ/d2×h/sinθ×u=6μhQ/Wd3sin2θが得られる。
Therefore, the average flow velocity u of the fuel gas flow field 60 is obtained from u = Q / Wdsinθ. Further, since d << W, h, the average pressure loss ΔP on one side of the fuel gas flow field 60 can be calculated as a two-dimensional Poiseuille flow.
ΔP = 1/2 × 12 μ / d 2 × h / sin θ × u = 6 μh Q / Wd 3 sin 2 θ is obtained.

次いで、平均圧力損失ΔPは、燃料ガス流路34の平均圧力損失ΔP0よりも小さいとすると、sin2θ≧6μhQ/Wd3ΔP0となる。さらに、h=tWtanθを代入して、sin2θ≧12tμQ/ΔP03が得られる。 Next, assuming that the average pressure loss ΔP is smaller than the average pressure loss ΔP 0 of the fuel gas flow path 34, sin 2 θ ≧ 6 μhQ / Wd 3 ΔP 0 is satisfied. Further, by substituting h = tWtanθ, sin 2θ ≧ 12 tμQ / ΔP 0 d 3 is obtained.

従って、上記の式を満たすt、θに基づいて、入口バッファ部36a及び出口バッファ部36bの形状が設定される。   Accordingly, the shapes of the inlet buffer unit 36a and the outlet buffer unit 36b are set based on t and θ satisfying the above formula.

これにより、本実施形態では、入口バッファ部36a及び出口バッファ部36bの形状を設定することによって、燃料ガス流路34を流れる燃料ガスの流量を均等化することができる。このため、簡単な構成で、燃料ガスを燃料ガス供給連通孔24aから燃料ガス流路34全面に均一に供給することが可能になり、所望の発電性能を確保することができるという効果が得られる。   Thereby, in this embodiment, the flow volume of the fuel gas which flows through the fuel gas flow path 34 can be equalized by setting the shape of the inlet buffer part 36a and the outlet buffer part 36b. For this reason, it becomes possible to supply fuel gas uniformly from the fuel gas supply communication hole 24a to the entire surface of the fuel gas flow path 34 with a simple configuration, and an effect that desired power generation performance can be secured is obtained. .

しかも、入口バッファ部36a及び出口バッファ部36bの寸法を可及的に小型化することが可能になる。従って、燃料電池10全体を軽量且つコンパクトに構成するとともに、所望の発電性能を確保することができる。   Moreover, the dimensions of the inlet buffer portion 36a and the outlet buffer portion 36b can be reduced as much as possible. Accordingly, the entire fuel cell 10 can be configured to be lightweight and compact, and desired power generation performance can be ensured.

なお、本実施形態では、燃料ガス流路34及び酸化剤ガス流路44が複数の波状流路溝34a、44aにより構成されているが、これに限定されるものではなく、複数の直線状流路溝により構成されても、同様の効果が得られる。   In the present embodiment, the fuel gas flow path 34 and the oxidant gas flow path 44 are configured by a plurality of wave-shaped flow path grooves 34a, 44a. However, the present invention is not limited to this, and a plurality of linear flow paths. Even if it is constituted by a road groove, the same effect can be obtained.

本発明の実施形態に係る燃料電池の分解斜視図である。1 is an exploded perspective view of a fuel cell according to an embodiment of the present invention. 前記燃料電池の、図1中、II−II線断面説明図である。FIG. 2 is a sectional view of the fuel cell taken along line II-II in FIG. 1. 前記燃料電池を構成する第1金属セパレータの正面図である。It is a front view of the 1st metal separator which comprises the said fuel cell. 前記燃料電池を構成する第2金属セパレータの正面図である。It is a front view of the 2nd metal separator which comprises the said fuel cell. 燃料ガス流れ場の説明図である。It is explanatory drawing of a fuel gas flow field. 特許文献1のシートメタルエレメントの説明図である。It is explanatory drawing of the sheet metal element of patent document 1. FIG.

符号の説明Explanation of symbols

10…燃料電池 16…電解質膜・電極構造体
18、20…金属セパレータ 22a…酸化剤ガス供給連通孔
22b…酸化剤ガス排出連通孔 24a…燃料ガス供給連通孔
24b…燃料ガス排出連通孔 26a…冷却媒体供給連通孔
26b…冷却媒体排出連通孔 28…固体高分子電解質膜
30…アノード側電極 32…カソード側電極
34…燃料ガス流路 34a、44a…波状流路溝
36a、46a…入口バッファ部 36b、46b…出口バッファ部
42a…供給孔部 42b…排出孔部
44…酸化剤ガス流路 54…冷却媒体流路
60…燃料ガス流れ場 62…底辺
64a、64b…頂点 66a、66b、68a、68b…稜線
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 16 ... Electrolyte membrane electrode assembly 18, 20 ... Metal separator 22a ... Oxidant gas supply communication hole 22b ... Oxidant gas discharge communication hole 24a ... Fuel gas supply communication hole 24b ... Fuel gas discharge communication hole 26a ... Cooling medium supply communication hole 26b ... Cooling medium discharge communication hole 28 ... Solid polymer electrolyte membrane 30 ... Anode side electrode 32 ... Cathode side electrode 34 ... Fuel gas flow path 34a, 44a ... Wave-shaped flow path grooves 36a, 46a ... Inlet buffer section 36b, 46b ... outlet buffer portion 42a ... supply hole portion 42b ... discharge hole portion 44 ... oxidant gas flow channel 54 ... cooling medium flow channel 60 ... fuel gas flow field 62 ... bottom 64a, 64b ... apex 66a, 66b, 68a, 68b ... Ridge line

Claims (4)

電解質膜の両側に一対の電極を設けた電解質膜・電極構造体とセパレータとが積層され、電極面に沿って反応ガスを供給する反応ガス流路が形成されるとともに、前記反応ガスを積層方向に流通させる反応ガス連通孔が形成される燃料電池であって、
前記セパレータは、前記反応ガス流路の入口側に位置する略三角形状の入口バッファ部と、
前記反応ガス流路の出口側に位置し、略三角形状の出口バッファ部と、
を備えるとともに、
前記入口バッファ部及び前記出口バッファ部の平均圧損は、前記反応ガス流路の平均圧損以下に設定されることを特徴とする燃料電池。
An electrolyte membrane / electrode structure provided with a pair of electrodes on both sides of the electrolyte membrane and a separator are laminated to form a reaction gas flow path for supplying a reaction gas along the electrode surface, and the reaction gas is arranged in the lamination direction. A fuel cell in which a reaction gas communication hole to be circulated is formed,
The separator is a substantially triangular inlet buffer portion located on the inlet side of the reaction gas flow path,
Located on the outlet side of the reaction gas flow path, a substantially triangular outlet buffer section;
With
The fuel cell according to claim 1, wherein an average pressure loss of the inlet buffer portion and the outlet buffer portion is set to be equal to or lower than an average pressure loss of the reaction gas flow path.
請求項1記載の燃料電池において、前記出口バッファ部は、前記入口バッファ部と点対称をなすことを特徴とする燃料電池。   2. The fuel cell according to claim 1, wherein the outlet buffer portion is point-symmetric with the inlet buffer portion. 請求項1又は2記載の燃料電池において、前記反応ガス流路は、直線状又は波状を有して一方向に延在する複数の流路溝を備えることを特徴とする燃料電池。   3. The fuel cell according to claim 1, wherein the reaction gas flow path includes a plurality of flow path grooves having a straight shape or a wave shape and extending in one direction. 4. 請求項1〜3のいずれか1項に記載の燃料電池において、前記入口バッファ部及び前記出口バッファ部は、前記反応ガス流路側を底辺とし前記底辺から離間する頂点の位置と、前記底辺及び前記頂点を結ぶ長辺側の稜線と前記底辺とのなす角度とに基づいて、形状が設定されることを特徴とする燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein the inlet buffer portion and the outlet buffer portion are located at a vertex position separated from the bottom side with the reactive gas flow channel side as a bottom side, the bottom side, and the bottom side. A fuel cell, wherein a shape is set based on an angle formed between a ridge line on a long side connecting apexes and the bottom side.
JP2007163970A 2007-06-21 2007-06-21 Fuel cell Active JP5128861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163970A JP5128861B2 (en) 2007-06-21 2007-06-21 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163970A JP5128861B2 (en) 2007-06-21 2007-06-21 Fuel cell

Publications (2)

Publication Number Publication Date
JP2009004230A true JP2009004230A (en) 2009-01-08
JP5128861B2 JP5128861B2 (en) 2013-01-23

Family

ID=40320388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163970A Active JP5128861B2 (en) 2007-06-21 2007-06-21 Fuel cell

Country Status (1)

Country Link
JP (1) JP5128861B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272360A (en) * 2009-05-21 2010-12-02 Honda Motor Co Ltd Fuel cell
JP2011054404A (en) * 2009-09-01 2011-03-17 Honda Motor Co Ltd Fuel cell
WO2011033745A1 (en) 2009-09-16 2011-03-24 パナソニック株式会社 Solid polymer fuel cell
WO2011058677A1 (en) 2009-11-12 2011-05-19 トヨタ自動車株式会社 Fuel cell
JP2013157094A (en) * 2012-01-27 2013-08-15 Honda Motor Co Ltd Fuel cell
US20160111746A1 (en) * 2010-03-17 2016-04-21 Nissan Motor Co., Ltd. Fuel cell
US20170263952A1 (en) * 2016-03-09 2017-09-14 Honda Motor Co., Ltd. Resin-framed stepped membrane electrode assembly for fuel cell
WO2022153059A1 (en) 2021-01-15 2022-07-21 Afc Energy Plc Corralled air inflow manifold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184879B2 (en) 2014-01-10 2017-08-23 本田技研工業株式会社 Fuel cell stack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172594A (en) * 1996-12-05 1998-06-26 Tokyo Gas Co Ltd Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type
JP2004186138A (en) * 2002-11-20 2004-07-02 Honda Motor Co Ltd Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172594A (en) * 1996-12-05 1998-06-26 Tokyo Gas Co Ltd Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type
JP2004186138A (en) * 2002-11-20 2004-07-02 Honda Motor Co Ltd Fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272360A (en) * 2009-05-21 2010-12-02 Honda Motor Co Ltd Fuel cell
US8735015B2 (en) 2009-09-01 2014-05-27 Honda Motor Co., Ltd. Fuel cell
JP2011054404A (en) * 2009-09-01 2011-03-17 Honda Motor Co Ltd Fuel cell
WO2011033745A1 (en) 2009-09-16 2011-03-24 パナソニック株式会社 Solid polymer fuel cell
US8053140B2 (en) 2009-09-16 2011-11-08 Panasonic Corporation Solid polymer fuel cell
WO2011058677A1 (en) 2009-11-12 2011-05-19 トヨタ自動車株式会社 Fuel cell
US8877393B2 (en) 2009-11-12 2014-11-04 Toyota Jidosha Kabushiki Kaisha Fuel cell
US20160111746A1 (en) * 2010-03-17 2016-04-21 Nissan Motor Co., Ltd. Fuel cell
US10033058B2 (en) * 2010-03-17 2018-07-24 Nissan Motor Co., Ltd. Fuel cell
JP2013157094A (en) * 2012-01-27 2013-08-15 Honda Motor Co Ltd Fuel cell
US9368815B2 (en) 2012-01-27 2016-06-14 Honda Motor Co., Ltd. Fuel cell
US20170263952A1 (en) * 2016-03-09 2017-09-14 Honda Motor Co., Ltd. Resin-framed stepped membrane electrode assembly for fuel cell
US10476086B2 (en) * 2016-03-09 2019-11-12 Honda Motor Co., Ltd. Resin-framed stepped membrane electrode assembly for fuel cell
WO2022153059A1 (en) 2021-01-15 2022-07-21 Afc Energy Plc Corralled air inflow manifold

Also Published As

Publication number Publication date
JP5128861B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5216240B2 (en) Fuel cell
JP5128861B2 (en) Fuel cell
JP5197995B2 (en) Fuel cell
JP2009059513A (en) Fuel cell
JP5132980B2 (en) Fuel cell
JP5180513B2 (en) Fuel cell
JP5280468B2 (en) Fuel cell
JP4664097B2 (en) Fuel cell
JP5912579B2 (en) Fuel cell
JP5227680B2 (en) Fuel cell
JP5297990B2 (en) Fuel cell
JP5060169B2 (en) Fuel cell
JP5180946B2 (en) Fuel cell
JP2015002061A (en) Fuel cell stack
JP4803957B2 (en) Internal manifold fuel cell
JP5122865B2 (en) Fuel cell
JP5127422B2 (en) Fuel cell
JP4989080B2 (en) Fuel cell
JP5872995B2 (en) Fuel cell stack
JP5749703B2 (en) Fuel cell stack
JP5583824B2 (en) Fuel cell
JP5021219B2 (en) Fuel cell stack
JP5886739B2 (en) Fuel cell stack
JP5350948B2 (en) Fuel cell
JP2015079565A (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250