JPH04101360A - Manufacture of solid electrolyte-type fuel cell - Google Patents

Manufacture of solid electrolyte-type fuel cell

Info

Publication number
JPH04101360A
JPH04101360A JP2219295A JP21929590A JPH04101360A JP H04101360 A JPH04101360 A JP H04101360A JP 2219295 A JP2219295 A JP 2219295A JP 21929590 A JP21929590 A JP 21929590A JP H04101360 A JPH04101360 A JP H04101360A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
fuel cell
fuel
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219295A
Other languages
Japanese (ja)
Inventor
Noboru Taniguchi
昇 谷口
Junji Niikura
順二 新倉
Kazuhito Hado
一仁 羽藤
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2219295A priority Critical patent/JPH04101360A/en
Publication of JPH04101360A publication Critical patent/JPH04101360A/en
Priority to US07/942,373 priority patent/US5244753A/en
Priority to US08/074,784 priority patent/US5314508A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To make manufacturing processes simple and lower the manufacturing cost by making a solid electrolyte by tape casting method and unitedly forming electrodes on the solid electrolyte. CONSTITUTION:A solid electrolyte is prepared by tape casting method and a unitedly formed electrode-electrolyte plate consisting of a fuel electrodel and an air electrode 3 formed unitedly on both sides of the electrolyte by tape casting method, respectively is used for a solid electrolyte-type fuel cell. As the solid electrolyte material 2 of a proton conductive solid electrolyte, SrCe0.98 Y0.1Ox((x)=1-3) is used and a Ni cermet is used for the fuel electrode 1 and LaCo0.9Cr0.1O3 for the air electrode 3. As a result, solid electrolyte-type fuel cells are manufactured in a large quantity at low cost with a simple manufacturing process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明1表 固体電解質型燃料電池の作製法に関L 特
に固体電解質、燃料極および空気極の作製法に関すム 従来の技術 固体電解質型燃料電池は 他の燃料電池に比べ液漏れ 
液補充などの問題がなくメンテナンスフリーであるなど
の特徴を有していも また固体電解質型燃料電池(よ 
固体電解質の特性に依存して200℃以下で作動する低
温型タイプと、 1000℃程度で作動する高温型タイ
プとがあ4 高温型の燃料電池1戴 エネルギー変換効
率が高く、良質の排熱を利用することもでき、コジェネ
レーションシステムとして有望なエネルギー変換機であ
ム さらに無触孤 燃料ガスの多様性があるなど優れた
特徴を持っていも これら高温型燃料電池の固体電解質や燃料楓空気極(以
下単に電極と称する)ζ友 普通酸化物(セラミクス)
で構成されている。現在、これら酸化物の合成には 塗
布 溶鉱 テープキャスティング法 物理的あるいは化
学的膜成長法などの手法が一般的に用いられている。こ
れらの方法で作製された酸化物の強度や緻密度、そして
固体電解質、電極そのものの性能を向上させるた数 上
記手法に改良が加えられてい4 例えば 溶射法では 
通常の大気圧プラズマ溶射に換えて減圧溶射を行なった
り、またC、  V、  D、  法で(戴 試料にバ
イアス電圧を印加するE、  V、  D法などが用い
られていも また特にテープキャスティング法では 固
体電解質だけを一旦テーブ成蕉 焼結させ、その後電極
を作製する方式である。これらの手法は 電池の形状に
よっても変わってくる。つまり、現在考案されている電
池形状は大きく分けて3つあム 円筒旭 平板慇 モノ
リシック形である力t 特にモノリシック形ζよ 複雑
な構造となるため特別な製造工程を必要とす4 また円
筒形では 通常基体管とよばれる構造材の表面または内
部に固体電解質や電極が形成されも 一方電池構成材料は 固体電解質にYSZ(イツトリア
安定化ジルコニア)力(空気極の材料として、La−C
o系、 La−Cr系、 La−Mn系の酸化物 さら
に燃料極には セラミックス(ジルコニア)と金属(N
i)を混合化したサーメットが一般に用いられていも 発明が解決しようとする課題 しかしながら前記固体電解質燃料電池の従来の製造法に
は次のような課題がある。つまりモノリシック形や円筒
形の形状のものは 製造工程も多くなり、円筒形で用い
られるE、  V、  D法などの気相膜成長法では 
1本の電池を作製するのに3日から1週間の時間を要す
も 最も構造が簡単な平板形でL 固体電解質(焼結体
)を作製してか収 その両側に電極を片方づつ形成させ
ているので製造に時間を要し コスト的にも他の燃料電
池(燐酸瓢 溶融炭酸塩型)に比べて割高になっていも
 本発明はこのような課題を解決するもので、作製が簡
便で、低コストで大面積のものを大量に生産できる固体
電解質型燃料電池の作製法を提供することを目的とすa 課題を解決するための手段 本発明の固体電解質型燃料電池の作製法は上記課題を解
決するた数 固体電解質をテープキャスティング法で作
成し その上ζミ 電極を同様にテープキャスティング
法または物理的もしくは化学的に薄膜を形成させ固体電
解質と電極を一体化成形することを特徴とし また一体
化した後燃料極に還元ガス、 空気極に酸化剤ガスを供
給して固体電解質型燃料電池を組み上?云 その状態で
前記固体電解液型燃料電池を焼結させるもので、望まし
くは前記固体電解質をプロトン伝導体酸化物より構成す
るものであも 作用 この作製法により、本発明の固体電解質型燃料電池の作
製法は固体電解質をテープキャスティング法で作成し 
その上へ 電極を同様にテープキャスティング法または
物理的もしくは化学的に薄膜を形成させ、固体電解質と
電極を一体化成形することと、また一体化した後に燃料
極に還元ガス、空気極に酸化剤ガスを供給して電池を組
み上Cデ、その状態で電池を焼結させることにより固体
電解質型燃料電池を作製するものであム 実施例 以下本発明の一実施例の固体電解質型燃料電池の作製法
について図面を基にして説明すも 本発明により作製し
た固体電解質型燃料電池の特性を検討した実施例を第1
図に示す。単電池の構成は一体化した燃料極1、固体電
解質2および空気極3からなるテープ状のもの(5cm
x 5 cm)と、電流を取り出すPtリード線4と、
ガスを供給するアルミナ管5.多孔質支持板6とからな
っている。
[Detailed Description of the Invention] Industrial Application Fields of the Present Invention Table 1 Related to the manufacturing method of solid oxide fuel cells Particularly related to the manufacturing methods of solid electrolytes, fuel electrodes, and air electrodes Conventional technology Solid oxide fuel cells is less leaky than other fuel cells
Although they have characteristics such as being maintenance-free and not having problems such as fluid replenishment, they also have solid electrolyte fuel cells (like
Depending on the characteristics of the solid electrolyte, there is a low-temperature type that operates at temperatures below 200℃ and a high-temperature type that operates at around 1000℃.4 High-temperature type fuel cell 1 High energy conversion efficiency and high quality waste heat It is a promising energy converter as a cogeneration system.Also, it has excellent features such as non-contact and diversity of fuel gas. (hereinafter simply referred to as electrode) ζ friend Ordinary oxide (ceramics)
It is made up of. Currently, methods such as coating, melting, tape casting, and physical or chemical film growth are commonly used to synthesize these oxides. Improvements have been made to the above methods to improve the strength and density of the oxides produced by these methods, as well as the performance of the solid electrolytes and electrodes themselves.4 For example, thermal spraying methods
Low-pressure spraying can be used instead of ordinary atmospheric pressure plasma spraying, or C, V, D, etc. methods (E, V, D methods that apply a bias voltage to the sample) are used, and especially tape casting methods. In this method, only the solid electrolyte is once sintered in a table, and then the electrodes are made.These methods also vary depending on the shape of the battery.In other words, there are roughly three types of battery shapes currently being devised. A cylindrical shape flat plate t A monolithic shape t Especially a monolithic type ζ requires a special manufacturing process because it has a complicated structure 4 In addition, in a cylindrical shape, there is usually a solid on the surface or inside of the structural material called the base tube. While the electrolyte and electrodes are formed, the battery constituent materials are solid electrolyte and YSZ (yttria stabilized zirconia) (La-C as the material for the air electrode).
o-based, La-Cr-based, and La-Mn-based oxides, and ceramics (zirconia) and metals (N
Problems to be Solved by the Invention Even though cermets containing i) are generally used, the conventional manufacturing method of the solid electrolyte fuel cell has the following problems. In other words, monolithic or cylindrical shapes require more manufacturing steps, and vapor phase film growth methods such as E, V, and D methods, which are used for cylindrical shapes, require less manufacturing steps.
It takes 3 days to 1 week to make one battery, but it can be done by making L solid electrolyte (sintered body) in the flat plate type, which has the simplest structure, and forming one electrode on each side of the L solid electrolyte. The present invention solves these problems and is easy to manufacture, although it takes time to manufacture and is relatively expensive compared to other fuel cells (phosphoric acid molten carbonate type). It is an object of the present invention to provide a method for manufacturing a solid oxide fuel cell that can be produced in large quantities at low cost and with a large area. A method for solving the above problems is to create a solid electrolyte using a tape casting method, and then form an electrode using the same tape casting method or physically or chemically to form a thin film to integrally mold the solid electrolyte and the electrode. And after integrating, supply reducing gas to the fuel electrode and oxidizing gas to the air electrode to assemble a solid oxide fuel cell? In this state, the solid electrolyte fuel cell is sintered, and preferably the solid electrolyte is made of a proton conductor oxide. The manufacturing method is to create a solid electrolyte using tape casting method.
On top of that, the electrodes can be formed using tape casting or physically or chemically to form a thin film, and the solid electrolyte and electrode can be integrally molded, and after the integration, a reducing gas can be applied to the fuel electrode, and an oxidizing agent can be applied to the air electrode. A solid oxide fuel cell is manufactured by supplying gas, assembling a battery, and sintering the battery in this state.Example: Hereinafter, a solid oxide fuel cell according to an embodiment of the present invention will be described. Although the manufacturing method will be explained based on the drawings, the first embodiment will discuss the characteristics of the solid oxide fuel cell manufactured according to the present invention.
As shown in the figure. The structure of the unit cell is a tape-shaped one (5 cm) consisting of an integrated fuel electrode 1, solid electrolyte 2 and air electrode 3.
x 5 cm), a Pt lead wire 4 for taking out the current,
Alumina tube for supplying gas 5. It consists of a porous support plate 6.

燃料極lに燃料ガスとして水素ガス80尾 炭酸ガス1
9販 水蒸気1%の組成の混合ガスを、空気極3に酸化
剤ガスとして空気を用(\ それぞれのガス利を200
cc/min、  の流量で供給した I−V特性の測
定を、直流2端子法で行なっ九 (実施例1) 本実施例ζよ 固体電解質2をテープキャスティングに
より作製し その両側に燃料極1と空気極3をテープキ
ャスティングにより重ね合わせ一体化成形した電極電解
質板を固体電解質型燃料電池に用いた事例である。
80 tails of hydrogen gas and 1 carbon dioxide gas as fuel gas at the fuel electrode l
9 sales Use a mixed gas with a composition of 1% water vapor and air as an oxidizing gas at the air electrode 3 (\ Each gas usage is 200%
The I-V characteristics were measured using the direct current two terminal method (Example 1). In this example, a solid electrolyte 2 was prepared by tape casting, and a fuel electrode 1 was placed on both sides of the solid electrolyte 2. This is an example in which an electrode electrolyte plate in which the air electrode 3 is overlaid and integrally molded by tape casting is used in a solid oxide fuel cell.

本実施例では プロトン伝導性固体電解質からなる固体
電解質2に5rCes 、 * m Y@ 、 10x
(xは1〜3)を、また燃料極1としてNiサーメット
、空気極3としてLaCo5 、 a Cry 、 1
0gを考えた まず固体電解質2のスラリー調整1;!
、、  5rCOs、Ce20g、YaO*の粉末を所
定の組成になるように遊星ボールミル混合し 仮塊粉砕
混合を2回繰り返した後、エタノールとトルエンの混合
溶媒に溶解させた 燃料極1(瓜 混合溶媒中Ni粉末
とAlp’s粉末を遊星ボールミル混合してスラリー化
し 空気極3(主 固体電解質2と同様にしてLaCo
1 、 Q Crs 、 10sのスラリーを作製した
これらのスラリーをテープキャスティング装置に移し 
まず電解質テープをキャリアシート上に厚さ1mmで作
製し このテープを乾燥器で乾燥した抵 均一にプレス
加圧してテープ中の気泡や隙間をできるだけ無くすよう
にしf、  つぎにこの電解質テープ上に燃料極1をテ
ープキャストして重ね合わせた このテープが乾いてか
らテープをキャリアシートから剥し 逆に燃料極側が下
に来るようにキャリアシート上にセットし4角をビニル
テープなどで固定した この状態で、空気極スラリーを
上部からテープキャストで重ね合わせ、空気極/固体電
解質/燃料極の一体化テープを作製した なお電極の厚
さ(よ 双方とも0.5mmにし九 本実施例からも明らかなよう級 スラリー試料調整は同
時並行作業で行なわれ 作製工程は簡便かつ時間短縮さ
れている。さらに作製したテープは幅30c+u、  
長さ2mmであり、大面積化 量産化に適していること
がわかム この工程で作製した一体化テープの固体電解質型燃料電
池が従来と変わらない性能を示すかどうかを前記記載の
単電池試験により調べ池 この結果を、第2図に示す。
In this example, 5rCes, * m Y@, 10x are applied to the solid electrolyte 2 made of a proton-conducting solid electrolyte.
(x is 1 to 3), Ni cermet as the fuel electrode 1, and LaCo5, aCry, 1 as the air electrode 3
Considering 0g First, slurry preparation of solid electrolyte 2 1;!
,, Powders of 5rCOs, 20 g of Ce, and YaO* were mixed in a planetary ball mill to a predetermined composition, and after repeating the lump-pulverization and mixing twice, they were dissolved in a mixed solvent of ethanol and toluene.Fuel electrode 1 (melon mixed solvent) Medium Ni powder and Alp's powder are mixed in a planetary ball mill to form a slurry.
1, QCrs, and 10s were prepared. These slurries were transferred to a tape casting device.
First, an electrolyte tape with a thickness of 1 mm is prepared on a carrier sheet. This tape is dried in a dryer and pressed uniformly to eliminate air bubbles and gaps in the tape as much as possible. Next, fuel is placed on this electrolyte tape. Pole 1 was tape cast and overlapped. After this tape was dry, I peeled it off from the carrier sheet and set it on the carrier sheet so that the fuel electrode side was facing down, and fixed the four corners with vinyl tape etc. In this state. The air electrode slurry was layered from above by tape casting to create an integrated air electrode/solid electrolyte/fuel electrode tape. The preparation of the slurry sample is done in parallel, making the manufacturing process simple and time-saving.Furthermore, the manufactured tape has a width of 30c+u.
It has a length of 2 mm and is suitable for large-area mass production.The above-mentioned single cell test was conducted to determine whether the solid oxide fuel cell of the integrated tape produced by this process shows the same performance as conventional ones. The results of this investigation are shown in Figure 2.

但し本実施例で(よ −株化テープを電池組込み前に1
200℃で24時間焼結したものであ&  I−V特性
の結果をみる限りでは 従来作製法(固体電解質を粉末
状態から焼結させ、その後電極を塗布)のものと差異は
なかった (実施例2) 本実施例ζよ 固体電解質をテープキャスティングによ
り作製し その片側に電極をスパッタにより形成させ一
体化成形した事例であム 本実施例で(よ 固体電解質2にYSZ (イツトリア
安定化ジルコニア)を、また燃料極1としてNiサーメ
ット、空気極3としてLaCo5 、9 Cr@、 1
0aを考え九  固体電解質2のスラリー調整+i、遊
星ボールミルによりYSZ粉末をエタノールとトルエン
の混合溶媒に溶解させな っぎに 上記実施例1と同様
にして、厚さ1mmの電解質テープを作製し九 あらか
じ嵌 スパッタ装置で1ぬ 空気極組成LaCo5 、
 acrl、 + Oxになる焼結ターゲットを用意し
ておき電解質テープができあが時点でその上に厚さが1
0μmになるまでスパッタした 燃料極1ζよ 混合溶
媒中Ni粉末とA1aOs粉末を遊星ボールミル混合し
てスラリー化し これを−株化テプに重ねてテープキャ
スティング(0,5mm)した このようにして空気極
/固体電解質/燃料極の一体化テープは フレキシビリ
ティをもっているので、所望の触 大きさに成形し易(
−本実施例でもわかるよう圏 作製工程は簡便かつ時間
短縮されており、更番二 大面積化 量産化にも適して
いることがわかム この工程で作製した一体化テープの固体電解質型燃料電
池が従来と変わらない性能を示すかどうかを前記記載の
単電池試験により調べた この結果 従来作製法(固体
電解質を粉末状態から焼結させ、その後電極を塗布)の
ものと差異はなかった (実施例3) 本実施例4友 上記実施例1の一体化テープ作製法に加
え さらに簡便かつ安価に固体電解質型燃料電池を作製
する事例である。上記実施例1で作製した一体化テープ
(5cmx5 cm)を直接電池を組み込へ 燃料極1
に還元ガス100cc/m i n、  空気極3に酸
化剤ガス100cc/min、を供給して、その状態で
加熱して、 1000℃まで昇温し九 この工程で作製
した一株化テブの固体電解質型燃料電池が従来と変わら
ない性能を示すかどうかを調べた 昇温しで24時間後
のI−V結果を、第3図に示す。この結果をみる限りで
(よ 従来作製法(固体電解質を粉末状態から焼結させ
、その後電極を塗布)のものと、また前記実施例1 (
あらかじめ電池を組み込む前に焼結)のものと差異はな
かった 本実施例で明らかなように 電極と電解質とを一体成形
したテープ(よ この工程で電池を組み上げることで、
さらに工程の簡略化を押し進めも以上 実施例1では酸
化物プロトン電解質として5rCea、・Ys 、 1
0xを用いた固体電解質型燃料電池の場合に付いて述べ
ている力交 その他の固体電解質、たとえばYSZ、 
4元監 5元系のプロトン伝導性固体電解質を用いても
もちろん良(t また実施例2では 電解質テープの片
側にだけ物理的気相膜形成法(スパッタ)により膜形成
させ一体化した力丈 両面を物理的膜形成法で一体化し
ても良いし またいずれか−人 または両方が化学的膜
成形法であっても良t、%  要するに 固体電解質を
テプキャスティングにより作製し そのテープ状態の上
に電極を形成することが本発明の重要な点であり、電極
を形成させる手段(よ どのようなものでも良いし も
ちろん電極の材料も本実施例で用いたもの以外でも良(
t 実施例3では 実施例1で用いた一体化テープにつ
いて示した力丈 電池に組み込んでの焼結は −株化テ
ープである必要はなく、固体電解質と電極が分離してい
る状態でも良(〜 さら番ミ  固体電解質、電極の材
料は実施例で示すもの以外でも良いし 電池に組み込む
前の固体電解質、および電極の作製法はどのようなもの
であっても良(℃ な耘 上記実施例では 電池作動温度およびたち上げ(
焼結)温度を、 1000℃で行なった例を示している
力丈 電池の作動温度およびたち上げ(焼結)温度(よ
 固体電解質がイオン伝導性を示す温度または焼結する
温度であれば 何度でも良1、% 発明の効果 以上の実施例の説明で明らかなように本発明の固体電解
質型燃料電池の作製法(よ 固体電解質をテープキャス
ティング法で作成し その上く 電極を一体化成形する
ことにより、また−株化した後に燃料極に還元ガス、 
空気極に酸化剤ガスを供給して電池を組み上広 その状
態で電池を焼結させることにより固体電解質型燃料電池
を作製すaこの作製法により、作製工程を簡便にし か
つ作製コストを大幅に下げることができも さらに大面
積のものを大量に生産することを可能にす
However, in this example (1) before installing the battery,
It was sintered at 200℃ for 24 hours, and as far as the results of the I-V characteristics were concerned, there was no difference from the conventional manufacturing method (sintering the solid electrolyte from the powder state and then applying the electrodes). Example 2) This is a case in which a solid electrolyte was produced by tape casting, and an electrode was formed on one side by sputtering and integrally molded. Also, Ni cermet was used as the fuel electrode 1, and LaCo5, 9 Cr@, 1 as the air electrode 3.
Considering 0a9. Slurry adjustment of solid electrolyte 2+i, YSZ powder was dissolved in a mixed solvent of ethanol and toluene using a planetary ball mill. Next, an electrolyte tape with a thickness of 1 mm was prepared in the same manner as in Example 1 above. Air electrode composition LaCo5,
Prepare a sintering target that becomes acrl, +Ox, and when the electrolyte tape is completed, add a sintered target with a thickness of 1
The fuel electrode was sputtered until it became 0 μm.Ni powder and A1aOs powder in a mixed solvent were mixed in a planetary ball mill to form a slurry, and this was layered on a stock tape and tape cast (0.5 mm).In this way, the air electrode/ The solid electrolyte/fuel electrode integrated tape has flexibility, so it can be easily molded to the desired size (
-As can be seen in this example, the manufacturing process is simple and time-saving, and is suitable for large-area mass production. We conducted a single cell test as described above to determine whether the electrolyte exhibited the same performance as the conventional method.The results were similar to the conventional manufacturing method (sintering the solid electrolyte from a powder state and then applying the electrodes). Example 3) This example 4 is an example of manufacturing a solid oxide fuel cell more simply and inexpensively in addition to the integrated tape manufacturing method of Example 1 above. Directly incorporate the integrated tape (5 cm x 5 cm) produced in Example 1 above into the battery Fuel electrode 1
100 cc/min of reducing gas and 100 cc/min of oxidizing gas were supplied to the air electrode 3 and heated in that state to raise the temperature to 1000°C. Figure 3 shows the I-V results after 24 hours of increasing the temperature to determine whether the solid oxide fuel cell exhibits the same performance as conventional fuel cells. As far as this result is concerned, it is different from that of the conventional manufacturing method (sintering the solid electrolyte from a powder state, and then applying the electrodes) and that of Example 1 (
As is clear from this example, which is no different from the tape that is sintered before assembling the battery, the electrode and electrolyte are integrally molded into a tape.By assembling the battery in this process,
Furthermore, the process was simplified. In Example 1, 5rCea, .Ys, 1 was used as the oxide proton electrolyte.
The power exchange described in the case of a solid electrolyte fuel cell using 0x.Other solid electrolytes, such as YSZ,
Of course, it is also possible to use a 4-component or 5-component proton-conducting solid electrolyte.In addition, in Example 2, a film was formed on only one side of the electrolyte tape using a physical vapor phase film formation method (sputtering). Both surfaces may be integrated using a physical film forming method, or one or both may be formed using a chemical film forming method. Forming the electrodes is an important point of the present invention, and any means for forming the electrodes may be used. Of course, the material of the electrodes may also be other than those used in this example.
In Example 3, the strength shown for the integrated tape used in Example 1. Sintering after being incorporated into a battery does not need to be a integrated tape, and the solid electrolyte and electrode may be separated ( 〜Sara Banmi Materials for the solid electrolyte and electrodes may be other than those shown in the examples, and any method for manufacturing the solid electrolyte and electrodes before being incorporated into the battery may be used (℃ na 耘 The above examples Now let's talk about battery operating temperature and startup (
The operating temperature of the battery and the start-up (sintering) temperature (sintering) temperature is 1000℃. Effects of the Invention As is clear from the description of the embodiments above, the method for producing a solid electrolyte fuel cell of the present invention (i.e., producing a solid electrolyte by a tape casting method and then integrally molding an electrode thereon) By doing so, reducing gas,
A solid oxide fuel cell is manufactured by supplying an oxidizing gas to the air electrode, assembling the battery, and then sintering the battery in this state. This manufacturing method simplifies the manufacturing process and significantly reduces the manufacturing cost. This makes it possible to produce larger quantities of products with even larger areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の固体電解質型燃料電池の作
製法により作製した単電池α 試験用装置の断面医 第
2図は同第1の実施例による一体化テープを用いた電池
のI−V特性を示すグラフ、第3図は同第3の実施例に
よる電池自焼結により立ち上げたI−V特性を示すグラ
フであムト・・燃料極、2・・・固体電解質、 3・・
空気極 代理人の氏名 弁理士 粟野重孝 ほか1名電流呵友/ 帆A/c常2 第 臼 電邊簸膚 / ?7LA / c戯1
Figure 1 shows a cross section of a single cell α manufactured by the solid oxide fuel cell manufacturing method according to the first embodiment of the present invention. Graph showing IV characteristics. FIG. 3 is a graph showing IV characteristics established by self-sintering of the battery according to the third embodiment.・・・
Name of air electrode agent: Patent attorney Shigetaka Awano and one other person 7LA/c play 1

Claims (6)

【特許請求の範囲】[Claims] (1)一対の燃料極と空気極からなるガス拡散電極間に
、固体電解質を配設し、前記燃料極に還元ガス、前記空
気極に酸化剤ガスを供給して電力を取り出す燃料電池に
おいて、前記固体電解質をテープキャスティング法で作
成し、その上に、前記燃料極と空気極を同様に前記テー
プキャスティング法により重ね合わせ前記固体電解質と
前記燃料極と空気極を一体化成形する固体電解質型燃料
電池の作製法。
(1) A fuel cell in which a solid electrolyte is disposed between a gas diffusion electrode consisting of a pair of fuel electrodes and an air electrode, and electricity is extracted by supplying reducing gas to the fuel electrode and oxidizing gas to the air electrode, A solid electrolyte fuel in which the solid electrolyte is created by a tape casting method, and the fuel electrode and the air electrode are stacked on top of the solid electrolyte by the tape casting method, thereby integrally molding the solid electrolyte, the fuel electrode, and the air electrode. How to make a battery.
(2)固体電解質をプロトン伝導体酸化物より構成する
請求項1記載の固体電解質型燃料電池の作製法。
(2) The method for producing a solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte is composed of a proton conductor oxide.
(3)一対の燃料極と空気極からなるガス拡散電極間に
、固体電解質を配設し、前記燃料極に還元ガス、前記空
気極に酸化剤ガスを供給して電力を取り出す燃料電池に
おいて、前記固体電解質をテープキャスティング法で作
成し、その上に物理的もしくは化学的に薄膜を形成し、
前記固体電解質と前記燃料極と空気極を一体化成形する
固体電解質型燃料電池の作製法。
(3) A fuel cell in which a solid electrolyte is disposed between a gas diffusion electrode consisting of a pair of fuel electrodes and an air electrode, and electricity is extracted by supplying reducing gas to the fuel electrode and oxidizing gas to the air electrode, The solid electrolyte is created by a tape casting method, and a thin film is physically or chemically formed thereon,
A method for manufacturing a solid electrolyte fuel cell in which the solid electrolyte, the fuel electrode, and the air electrode are integrally molded.
(4)固体電解質をプロトン伝導体酸化物より構成する
請求項3記載の固体電解質型燃料電池の作製法。
(4) The method for producing a solid electrolyte fuel cell according to claim 3, wherein the solid electrolyte is composed of a proton conductor oxide.
(5)固体電解質をテープキャスティング法で作成し、
その両側に燃料極と空気極を重ね合わせて、固体電解質
型燃料電池を構成し、前記燃料極に還元ガス、前記空気
極に酸化剤ガスを供給して固体電解質型燃料電池を立ち
上げる過程で前記固体電解質型電池を焼結する固体電解
質型燃料電池の作製法。
(5) Create a solid electrolyte by tape casting method,
A fuel electrode and an air electrode are stacked on both sides to form a solid oxide fuel cell, and in the process of starting up the solid oxide fuel cell, a reducing gas is supplied to the fuel electrode and an oxidizing gas is supplied to the air electrode. A method for manufacturing a solid oxide fuel cell by sintering the solid oxide battery.
(6)固体電解質をプロトン伝導体酸化物より構成する
請求項5記載の固体電解質型燃料電池の作製法。
(6) The method for producing a solid electrolyte fuel cell according to claim 5, wherein the solid electrolyte is composed of a proton conductor oxide.
JP2219295A 1990-05-29 1990-08-20 Manufacture of solid electrolyte-type fuel cell Pending JPH04101360A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2219295A JPH04101360A (en) 1990-08-20 1990-08-20 Manufacture of solid electrolyte-type fuel cell
US07/942,373 US5244753A (en) 1990-05-29 1992-09-09 Solid electrolyte fuel cell and method for manufacture of same
US08/074,784 US5314508A (en) 1990-05-29 1993-07-30 Solid electrolyte fuel cell and method for manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219295A JPH04101360A (en) 1990-08-20 1990-08-20 Manufacture of solid electrolyte-type fuel cell

Publications (1)

Publication Number Publication Date
JPH04101360A true JPH04101360A (en) 1992-04-02

Family

ID=16733261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219295A Pending JPH04101360A (en) 1990-05-29 1990-08-20 Manufacture of solid electrolyte-type fuel cell

Country Status (1)

Country Link
JP (1) JPH04101360A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300483B1 (en) * 1996-08-28 2002-06-20 이.씨.알.-일렉트로-케미컬 리서치 리미티드 Non-liquid proton conductors for use in electrochemical systems under ambient conditions
WO2005001980A1 (en) * 2003-06-30 2005-01-06 Japan Energy Corporation Fuel cell with reformer
WO2007013567A1 (en) * 2005-07-27 2007-02-01 Nippon Shokubai Co., Ltd. Method for producing solid electrolyte sheet and solid electrolyte sheet
JP2009266765A (en) * 2008-04-30 2009-11-12 Inst Nuclear Energy Research Rocaec Method for manufacturing electrolyte layer of high performance solid oxide fuel cell membrane-electrode assembly (sofc-mea) by sputtering method
JP2012079506A (en) * 2010-09-30 2012-04-19 Nippon Shokubai Co Ltd Solid oxide fuel cell electrolyte sheet manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300483B1 (en) * 1996-08-28 2002-06-20 이.씨.알.-일렉트로-케미컬 리서치 리미티드 Non-liquid proton conductors for use in electrochemical systems under ambient conditions
WO2005001980A1 (en) * 2003-06-30 2005-01-06 Japan Energy Corporation Fuel cell with reformer
WO2007013567A1 (en) * 2005-07-27 2007-02-01 Nippon Shokubai Co., Ltd. Method for producing solid electrolyte sheet and solid electrolyte sheet
JP5145043B2 (en) * 2005-07-27 2013-02-13 株式会社日本触媒 Method for producing solid electrolyte sheet and solid electrolyte sheet
JP2009266765A (en) * 2008-04-30 2009-11-12 Inst Nuclear Energy Research Rocaec Method for manufacturing electrolyte layer of high performance solid oxide fuel cell membrane-electrode assembly (sofc-mea) by sputtering method
JP2012079506A (en) * 2010-09-30 2012-04-19 Nippon Shokubai Co Ltd Solid oxide fuel cell electrolyte sheet manufacturing method

Similar Documents

Publication Publication Date Title
RU2342740C2 (en) Solid oxide fuel cells with bearing anode and cermet ionogen
Peng et al. Intermediate-temperature SOFCs with thin Ce0. 8Y0. 2O1. 9 films prepared by screen-printing
JPH04301369A (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the electrode
Liu et al. Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation
JP2007510255A (en) Manufacture of solid oxide fuel cells
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP2706197B2 (en) Method of forming ceramic thin film
Liu et al. Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells
CN111009675B (en) Solid oxide fuel cell and preparation method thereof
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
Devi et al. Solid oxide fuel cell materials: a review
JP2004152762A (en) Solid oxide fuel cell having gas channel
KR100941976B1 (en) Thick-film electrolyte-supported solid oxide fuel cells and manufacturing method thereof
JPH04101360A (en) Manufacture of solid electrolyte-type fuel cell
JPH0769721A (en) Zirconia solid-electrolytic material having high strength partially stabilized by scandia
JP3392995B2 (en) Method for manufacturing solid oxide fuel cell
JP2003331874A (en) Interconnector for solid oxide fuel cell and its formation method
JP2848551B2 (en) Method for producing electrolyte membrane for solid oxide fuel cell
JPH1186886A (en) Solid electrolyte fuel cell
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JPH04324251A (en) Manufacture of interconnector for solid electrolyte fuel cell
JPS62268063A (en) Manufacture of solid electrolyte
JP2771090B2 (en) Solid oxide fuel cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JPH03238758A (en) Fuel cell of solid electrolyte type