JP2009266765A - Method for manufacturing electrolyte layer of high performance solid oxide fuel cell membrane-electrode assembly (sofc-mea) by sputtering method - Google Patents

Method for manufacturing electrolyte layer of high performance solid oxide fuel cell membrane-electrode assembly (sofc-mea) by sputtering method Download PDF

Info

Publication number
JP2009266765A
JP2009266765A JP2008118218A JP2008118218A JP2009266765A JP 2009266765 A JP2009266765 A JP 2009266765A JP 2008118218 A JP2008118218 A JP 2008118218A JP 2008118218 A JP2008118218 A JP 2008118218A JP 2009266765 A JP2009266765 A JP 2009266765A
Authority
JP
Japan
Prior art keywords
sofc
electrolyte layer
mea
fuel cell
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008118218A
Other languages
Japanese (ja)
Other versions
JP5231080B2 (en
Inventor
Tai-Nan Lin
林泰男
Maw-Chawin Lee
李茂傳
Wei-Xin Kao
高維欣
Yang-Chuang Chang
張揚状
Chun-Hsiu Wang
王俊修
Li-Fu Lin
林立夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Nuclear Energy Research
Original Assignee
Institute of Nuclear Energy Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Nuclear Energy Research filed Critical Institute of Nuclear Energy Research
Priority to JP2008118218A priority Critical patent/JP5231080B2/en
Publication of JP2009266765A publication Critical patent/JP2009266765A/en
Application granted granted Critical
Publication of JP5231080B2 publication Critical patent/JP5231080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell membrane-electrode assembly (battery cell) having a completely dense/airtight electrolyte layer. <P>SOLUTION: A thin membrane electrolyte layer is formed by a magnetron sputtering method on an anode electrode support substrate wherein a designated thickness is formed by laminating a green tape formed by a tape casting method, the thin membrane electrolyte layer becomes a half cell by sintering, and a cathode electrode layer is formed by a silk screen printing method on this membrane electrolyte layer and it is sintered in order to form a battery cell. Here, a gas permeable rate of the electrolyte layer is 1×10<SP>-6</SP>L/cm<SP>2</SP>/sec or below, an open circuit voltage of the whole battery is 1.0V or more, and electric power density at a power generation test is 500mW/cm<SP>2</SP>or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体酸化物形燃料電池電解質層の製造方法であり、特に、薄膜の製作方法に係り、シングルターゲットスパッタ(single-gun sputter)とマルチターゲットスパッタ(multi-gun co-sputter)を含み、直流(Direct Current)と高周波(Radio Frequency)の二つの電源供給タイプで分類される反応性マグネトロンスパッタリング法(Magnetron Sputtering)を以って、テープキャスティング法(Tape casting)・ラミネート法(Lamination)・シルクスクリーン印刷法(Screen printing)・スピンコーティング法(Spin coating)・プラスマスプレーコーティング法(Plasma spray coating)などの燃料電池膜電極接合体(Membrane Electrode Assembly, MEA)の製造工程と合わせて、最適化された焼結技術によって完全緻密な電解質層を製作し、固体酸化物形燃料電池の気密電解質層を製造することを目的とする。   The present invention relates to a method for producing a solid oxide fuel cell electrolyte layer, and more particularly to a method for producing a thin film, and includes a single-target sputter and a multi-target co-sputter. The reactive magnetron sputtering method (Magnetron Sputtering), which is classified into two types of power supply, direct current and radio frequency, tape casting, laminating, Optimized together with the manufacturing process of fuel cell membrane assembly (MEA) such as screen printing, spin coating, and plasma spray coating. It is an object of the present invention to manufacture a completely dense electrolyte layer by using the sintered technique and to manufacture an airtight electrolyte layer of a solid oxide fuel cell.

原油価格の高騰と環境保護意識の抬頭につれて、再生可能エネルギー技術も本世紀で最も重要な発展技術の一つとなっている。固体酸化物形燃料電池は高效率、低汚染及びエネルギー多元化の特長を備えるエネルギー発電システムであり、かつ材料組成は簡単であって、構造のモジュール化により持続的に安定な発電を提供できたりする特色を備えていることから、最も発展潜在力のある発電システムとなる。   Renewable energy technology has become one of the most important development technologies of this century as the price of crude oil rises and the consciousness of environmental protection increases. A solid oxide fuel cell is an energy power generation system with the features of high efficiency, low pollution and energy diversification. The material composition is simple, and the modularization of the structure can provide sustainable and stable power generation. Because of this feature, it will be a power generation system with the most potential for development.

第一世代のSOFC-MEAに属する電解質支持基板電池セル(Electrolyte Supported Cell: 略称ESC)の作動温度は800 ~ 1000℃であり、その電解質基板の厚さは150〜300μmである。
第二世代のSOFC-MEAに属する陽極支持基板電池セル(Anode Supported Cell: 略称ASC)の作動温度は650~ 800℃であり、その電解質基板の厚さは10μmである。
これらASC/ESCにおいて、陽極材料は(NiO+8YSZ(yttrium stabilized zirconia))であり、陰極の主要材料はLSM及びLSCFであって、その厚さは30〜60μmである。新たな電解質材料及び陰極材料は、現在世界中の研究機関・研究室で開発が進められており、新たな材料の登場することによって、さらにSOFC-MEAの作動温度を500〜700 ℃に下げることが望まれる。
その時SOFCの電池スタック(Stack)の組立て部品、例えばインターコネクター(Inter-connector)などの構成材料として金属材料をセラミック材料の代わりとして使用でき、製造が容易になる上、その機械的強度/安定性/耐久性も向上し、SOFC全体のコストダウン(Cost down)も見込める。これらの技術的発展は大学および国家の研究室・研究機関において材料の研究開発に重点を置かれており、材料の開発により抵抗を減少させて、イオン伝導/電気伝導性を向上することによるSOFCの発電能力の向上が期待されている。
特開2005−149797号公報 特開平5−174850号公報
The operating temperature of an Electrolyte Supported Cell (abbreviated as ESC) belonging to the first generation SOFC-MEA is 800 to 1000 ° C., and the thickness of the electrolyte substrate is 150 to 300 μm.
The operating temperature of the anode supported cell battery cell (Anode Supported Cell: abbreviated as ASC) belonging to the second generation SOFC-MEA is 650 to 800 ° C., and the thickness of the electrolyte substrate is 10 μm.
In these ASC / ESC, the anode material is (NiO + 8YSZ (yttrium stabilized zirconia)), the main materials of the cathode are LSM and LSCF, and the thickness thereof is 30-60 μm. New electrolyte materials and cathode materials are currently being developed in research institutes and laboratories around the world. By introducing new materials, the operating temperature of SOFC-MEA will be further reduced to 500-700 ° C. Is desired.
At that time, metal materials can be used instead of ceramic materials as assembly materials for SOFC battery stacks, for example, inter-connectors, etc., making it easy to manufacture and its mechanical strength / stability / Durability is also improved, and cost reduction of the entire SOFC can be expected. These technological developments are focused on materials research and development in universities and national laboratories and research institutes, and SOFC by reducing resistance and improving ion conduction / electric conductivity by developing materials. The power generation capacity is expected to improve.
JP 2005-149797 A JP-A-5-174850

本発明は、完全緻密なSOFC-MEA電解質層を有する固体酸化物形燃料電池を製造する方法を提供する。こうして作られるSOFC-MEAは、高操作性・耐久性・安定性を備え、電池セルの電気性能試験(Performance test of SOFC-MEA)によって検証できる。   The present invention provides a method of manufacturing a solid oxide fuel cell having a fully dense SOFC-MEA electrolyte layer. The SOFC-MEA produced in this way has high operability, durability and stability, and can be verified by a battery cell electrical performance test (Performance test of SOFC-MEA).

上記目標を達成するためには、マグネトロンスパッタリング法を中心とし、燃料電池膜電極接合体(Membrane Electrode Assembly, MEA)の製造に係わる膜形成方法のテープキャスティング法(Tape casting)・シルクスクリーン印刷法(Screen printing)・スピンコーティング法(Spin coating)・プラスマスプレーコーティング法(Plasma spray coating)など及び膜を積層するラミネート法(Lamination)を併用して、焼結技術の設計やコントロールに合わせて、完全緻密/気密電解質層(材料は8YSZ・GDC (Gd doped ceria)・LSGM (strontium and magnesium doped lanthana gallat)などから選択する。) を製作する製造方法を提供する。   In order to achieve the above goal, the tape casting method and the silk screen printing method of the film formation method related to the manufacture of the fuel cell membrane electrode assembly (MEA), centering on the magnetron sputtering method ( Screen printing, spin coating, plasma spray coating, etc. and laminating methods for laminating films are used in combination with sintering technology design and control. / Provides a manufacturing method for manufacturing an airtight electrolyte layer (material is selected from 8YSZ, GDC (Gd doped ceria), LSGM (strontium and magnesium doped lanthana gallat), etc.).

本発明に示したマグネトロンスパッタリング法は(1)酸化物標的(oxide target)をスパッタリングするRFマグネトロンスパッタリング法(Radio frequency magnetron Sputtering)及び(2)直流(Direct Current)と高周波(Radio Frequency)の2タイプの反応性マグネトロンスパッタリング法で金属合金標的をスパッタリングする、という二種類がある。なお、酸化物標的の材料は、YSZ+NiO、GDC+NiO、LSGM+NiO、SDC+NiO、YDC+NiO、YSZ、GDC、LSGM、SDC、YDCであり、金属合金標的の材料は、Zrx-Y1-x、Zrx-Sc1-x、Cex-Gd1-x、Cex-Sm1-x、Cex-Y1-x (80<x<100 wt.%)、LSGMである。
例えば、陽極支持基板電池セル(Anode Supported Cell略称ASC)の場合は、本発明は、マグネトロンスパッタリング法により電解質の薄膜を陽極基板上に形成し、高温焼結過程を経て半電池の構造が得られる。更に、シルクスクリーン印刷法により陰極層を半電池構造に形成し、完全緻密な電解質層を有する陽極支持型固体酸化物形燃料電池を完成する。
The magnetron sputtering method shown in the present invention includes (1) RF magnetron sputtering method (Radio frequency magnetron sputtering) for sputtering an oxide target, and (2) two types of direct current and radio frequency. There are two types of sputtering of a metal alloy target by the reactive magnetron sputtering method. The oxide target materials are YSZ + NiO, GDC + NiO, LSGM + NiO, SDC + NiO, YDC + NiO, YSZ, GDC, LSGM, SDC, YDC, and the metal alloy target materials are Zr x -Y 1-x , Zr x -Sc 1-x, Ce x -Gd 1 -x, Ce x -Sm 1-x, Ce x -Y 1-x (80 <x <100 wt.%), a LSGM.
For example, in the case of an anode supported cell battery cell (ASC), the present invention forms a thin-cell electrolyte on the anode substrate by a magnetron sputtering method, and a half-cell structure is obtained through a high-temperature sintering process. . Further, a cathode layer is formed in a half-cell structure by a silk screen printing method, and an anode-supported solid oxide fuel cell having a completely dense electrolyte layer is completed.

本発明は、完全緻密(Full dense)並びに気体透過率ゼロ(Zero gas leakage rate)・或いは気密(Air tight)の電解質層を有する平板形固体酸化物形燃料電池膜電極接合体(SOFC-MEA)、即ち電池セル(Unit cell))を製作する方法である。電解質の材料は8YSZ・GDC・YDC・LSGMなどから選択する。本発明の完全緻密な電解質層を有する平板形固体酸化物形燃料電池膜電極接合体の作製方法を以下に説明する。   The present invention relates to a flat solid oxide fuel cell membrane electrode assembly (SOFC-MEA) having an electrolyte layer with full dense and zero gas leakage rate or air tight. That is, it is a method of manufacturing a battery cell (Unit cell). The electrolyte material is selected from 8YSZ, GDC, YDC, LSGM, etc. A method for producing a flat solid oxide fuel cell membrane electrode assembly having a completely dense electrolyte layer according to the present invention will be described below.

ステップ1:平板形SOFC-MEAの電極基板(Electrode Substrate)上に、マグネトロンスパッタリング(Magnetron Sputtering)法により電解質薄膜を形成する。電極基板上に5〜15μmの電解質薄膜を形成してSOFCの半電池(Half cell)を形成し、1200℃〜1600℃において数時間(3時間以上)の焼結を行い、第一段階の半電池が得られる。この段階の電解質の材料はYSZ・GDC・YDC・SmDC・LSGMなどから選択する。走査型電子顕微鏡(SEM)で半電池のマイクロ構造(Micro-structure)を解析して、無孔質(Open-pore free)のマイクロ構造及び完全緻密な状態を達成したことを確認する。   Step 1: An electrolyte thin film is formed on an electrode substrate (Electrode Substrate) of a flat plate SOFC-MEA by a magnetron sputtering method. A 5-15 μm electrolyte thin film is formed on the electrode substrate to form a SOFC half cell, and sintering is performed at 1200 ° C. to 1600 ° C. for several hours (over 3 hours). A battery is obtained. The electrolyte material at this stage is selected from YSZ, GDC, YDC, SmDC, and LSGM. Analyze the micro-structure of the half-cell with a scanning electron microscope (SEM) to confirm that an open-pore free microstructure and a fully dense state have been achieved.

ステップ2:半電池の電解質層の上にシルクスクリーン印刷法で多孔質(Porous)の陰極層を構築する。陰極層の材料は一般的にLSMかLSCFを適用する。1200℃において3時間の仮焼を行い、SOFC-MEAを完成する。   Step 2: A porous cathode layer is constructed on the half-cell electrolyte layer by silk screen printing. The material of the cathode layer is generally LSM or LSCF. Perform calcination for 3 hours at 1200 ℃ to complete SOFC-MEA.

本発明について代表的な例を挙げてさらに具体的に説明する。上記製作方法のステップ1およびステップ2の過程は図一に示す。これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。   The present invention will be described more specifically with typical examples. The process of Step 1 and Step 2 of the manufacturing method is shown in FIG. These are merely illustrative examples, and the present invention is not limited thereto.

〔実施例〕
ステップ1:完全緻密(Full dense)で気密性(Air tight)の電解質(材料は8YSZ/GDC/LSGMなどを採用。) 層を有する平板形固体酸化物形燃料電池膜電極接合体 (SOFC-MEA) 、即ち電池セル (Unit cell) を製作するためには、まず50 wt% のNiO+50 wt% の8YSZ及び特定量の造孔剤 (Pore former) と石墨(Graphite)で基本材料を構成し、テープキャスティング法によって5×5cm2〜 12×12 cm2のサイズに成形し、ラミネートにより1000μmの厚さに積層する。
〔Example〕
Step 1: Full dense and air tight electrolyte (material is 8YSZ / GDC / LSGM, etc.) Plate type solid oxide fuel cell membrane electrode assembly (SOFC-MEA) In order to manufacture a unit cell, the basic material is first composed of 50 wt% NiO + 50 wt% 8YSZ and a specific amount of pore former (Pore former) and graphite. It is formed into a size of 5 × 5 cm 2 to 12 × 12 cm 2 by a casting method and laminated to a thickness of 1000 μm by lamination.

ステップ2:RFマグネトロンスパッタリング法(標的物の材料は8YSZの酸化物)又はDCマグネトロンスパッタリング法(標的物の材料はZrxY1-x合金)によって電解質材料を電極基板上に堆積(deposit )させて、厚さ5〜10μmのSOFCの半電池(Half cell)を形成し、1200℃〜1600℃(1400℃が最適)において数時間(3時間以上)の焼結を行い、第一段階の半電池を得る。この半電池をSEM(走査型電子顕微鏡)でマイクロ構造を解析し、電解質層が無孔質(Open-pore free)のマイクロ構造になっていることを確認する。図二に示したように、電解質層の厚さは約5〜10μmで完全緻密な構造となり、気密性を備えていてSOFC-MEAの電解質層に対する要求を満たしている。残存する極くわずかな閉塞性の細孔は、気体透過率に影響を与えない。 Step 2: Deposit electrolyte material on the electrode substrate by RF magnetron sputtering method (target material is 8YSZ oxide) or DC magnetron sputtering method (target material is Zr x Y 1-x alloy) Then, form a SOFC half cell (Half cell) with a thickness of 5 to 10 μm, and sinter for several hours (3 hours or more) at 1200 ° C to 1600 ° C (1400 ° C is optimal). Get a battery. This half-cell is analyzed for microstructure by SEM (scanning electron microscope), and it is confirmed that the electrolyte layer has a non-porous (open-pore free) microstructure. As shown in FIG. 2, the thickness of the electrolyte layer is about 5 to 10 μm and has a completely dense structure, which is airtight and satisfies the requirements for the SOFC-MEA electrolyte layer. The very few obstructive pores that remain do not affect the gas permeability.

ステップ3:電解質の気密性能が完全であることを確認するため、ステップ2で得られた半電池の気体透過率を測定する。気体透過率が1×10-6 l/cm2/sec以下であれば、電解質は完全緻密性と認める。 Step 3: Measure the gas permeability of the half-cell obtained in Step 2 to confirm that the electrolyte's hermetic performance is complete. If the gas permeability is 1 × 10 −6 l / cm 2 / sec or less, the electrolyte is considered to be completely dense.

ステップ4:ステップ3で確認した完全緻密な半電池構造に対してシルクスクリーン印刷法によってLSM材料で多孔質の陰極層を形成して、1100℃において3時間の焼結を行い、高動作性能のSOFC-MEA(Unit cell)を得る。この電池セルのマイクロ構造の横断面をSEMで解析した結果を図3に示す。完成したSOFC-MEAの電気性能試験を行った。
発電試験の温度は700/750/800℃で、試験気体は100%のH2/O2、流量は200/300/400 cc/minであった。試験中に電力は、減衰することなく120時間以上持続した。試験過程を、図4に示す。電池セルの開回路電圧(Open circuit voltage, OCV)は理論値に近く、最大数値は1.06 Vに達する。800℃における出力密度は最大限515 mW/cm2に達する(図5に示す)。これらの実験結果により、スパッタリング法によって製作した電解質層は緻密性を備え、作動が安定していて、電池セルの発電性能も優れていることが明らかとなった。
Step 4: Form a porous cathode layer with LSM material by silk screen printing on the fully dense half-cell structure confirmed in Step 3 and sinter at 1100 ° C for 3 hours. Obtain SOFC-MEA (Unit cell). FIG. 3 shows the result of SEM analysis of the cross section of the microstructure of the battery cell. The electrical performance test of the completed SOFC-MEA was conducted.
The temperature of the power generation test was 700/750/800 ° C., the test gas was 100% H 2 / O 2 , and the flow rate was 200/300/400 cc / min. During the test, power lasted over 120 hours without decay. The test process is shown in FIG. The open circuit voltage (OCV) of the battery cell is close to the theoretical value, and the maximum value reaches 1.06 V. The power density at 800 ° C reaches a maximum of 515 mW / cm 2 (shown in Figure 5). From these experimental results, it has been clarified that the electrolyte layer manufactured by the sputtering method has denseness, the operation is stable, and the power generation performance of the battery cell is excellent.

本発明の製作方法の簡易過程図。The simplified process figure of the manufacturing method of this invention. 薄膜技術を焼結条件に合わせた固体酸化物形燃料電池の横断面構造のSEM像のマイクロ構造分析図:(a)酸化物標的を以って電解質を製作した半電池構造図、(b) 酸化物標的を以って電解質を製作した電解質層の表面模様、(c)合金標的を反応性スパッタリング法によって電解質層を作製した半電池構造図、(d) 合金標的の反応性スパッタリング法によって電解質層を作製した電解質層の表面状態。Microstructure analysis diagram of SEM image of cross-sectional structure of solid oxide fuel cell with thin film technology adapted to sintering conditions: (a) Half-cell structure diagram of electrolyte fabricated with oxide target, (b) Surface pattern of the electrolyte layer where the electrolyte was fabricated with an oxide target, (c) Half-cell structure diagram of the electrolyte layer produced by reactive sputtering of the alloy target, (d) Electrolyte by reactive sputtering of the alloy target The surface state of the electrolyte layer that produced the layer. 酸化物標的によって電解質層を作製した固体酸化物形燃料電池の全電池構造図。The whole battery structure figure of the solid oxide form fuel cell which produced the electrolyte layer with the oxide target. 酸化物標的(target)を以って電解質層を作製した固体酸化物形燃料電池の全電池の電気性能測定図。The electrical performance measurement figure of all the cells of the solid oxide fuel cell which produced the electrolyte layer with the oxide target (target). 固体酸化物形燃料電池の電気性能測定結果のJVP図(電流密度/電圧/出力密度の関係を示す図)(a)は電池セルを異なる温度において測定した結果(700/750/800℃)(b)は電池セルを異なるH2/O2の流量において測定した結果(100% H2/O2の流速は200/300/400cc/min)JVP diagram of electrical performance measurement results of solid oxide fuel cell (showing the relationship between current density / voltage / power density) (a) shows the results of measuring battery cells at different temperatures (700/750/800 ° C) ( b) Results of measuring battery cells at different H 2 / O 2 flow rates (100% H 2 / O 2 flow rate is 200/300/400 cc / min)

Claims (9)

平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法であって、
(a) テープキャスティング法などにより、SOFCの陽極電極基板を形成する、
(b) 該電極基板上に酸化物標的をスパッタリングする高周波(RF)マグネトロンスパッタリング法又は金属合金標的をスパッタリングする反応性マグネトロンスパッタリング法により電解質薄膜層を形成する、
(c) 上記工程により作成した陽極/電解質の半電池構造体を1400℃において6時間の高温焼結を行って、電解質層の気体透過率が1×10-6 L/cm2 /sec以下の半電池基板を得る、
(d) 上記工程により得られた電解質層を有する半電池(略称HC-fd)の電解質層上にシルクスクリーン印刷法(Screen printing)、スピンコーティング法(Spin coating)、或いはプラスマスプレーコーティング法(Plasma spray coating)によって陰極材料層を形成し、1000℃において3時間の焼結を行って全電池を得る、
工程からなることを特徴とする平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。
A method for producing a flat plate solid oxide fuel cell membrane electrode assembly (SOFC-MEA), comprising:
(a) A SOFC anode electrode substrate is formed by a tape casting method or the like.
(b) forming an electrolyte thin film layer on the electrode substrate by a radio frequency (RF) magnetron sputtering method for sputtering an oxide target or a reactive magnetron sputtering method for sputtering a metal alloy target;
(c) The anode / electrolyte half-cell structure produced by the above process was sintered at 1400 ° C. for 6 hours at a high temperature, and the gas permeability of the electrolyte layer was 1 × 10 −6 L / cm 2 / sec or less. Get a half-cell board,
(d) On the electrolyte layer of a half-cell (abbreviated HC-fd) having an electrolyte layer obtained by the above process, a silk screen printing method, a spin coating method, or a plasma spray coating method (Plasma spray coating method) A cathode material layer is formed by spray coating), and sintering is performed at 1000 ° C. for 3 hours to obtain an entire battery.
A process for producing a plate-type solid oxide fuel cell membrane electrode assembly (SOFC-MEA), characterized by comprising steps.
上記電解質の材料は、YSZ、GDC、LSGM、SDC (Sm doped ceria)、又はYDC (Y doped ceria)であることを特徴とする請求項1記載の平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。   2. The plate type solid oxide fuel cell membrane electrode assembly according to claim 1, wherein the electrolyte material is YSZ, GDC, LSGM, SDC (Sm doped ceria), or YDC (Y doped ceria). (SOFC-MEA) manufacturing method. 前記平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA)の電解質層の製造方法において、
上記ステップaの陽極基板材料はYSZ+NiO、GDC+NiO、LSGM+NiO、SDC+NiO、又はYDC+NiOであり、
電解質基板の材料は、YSZ(yttrium stabilized zirconia)、GDC(Gd doped ceria)、LSGM(strontium and magnesium doped lanthana gallat)、SDC(Sm doped ceria)、又はYDC(Y doped ceria)であって、電解質(例えばYSZ)と電極触媒材料NiOとの重量比の百分率は30〜65%であることを特徴とする請求項1記載の平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。
In the method for producing an electrolyte layer of the flat plate type solid oxide fuel cell membrane electrode assembly (SOFC-MEA),
The anode substrate material of the above step a is YSZ + NiO, GDC + NiO, LSGM + NiO, SDC + NiO, or YDC + NiO,
The material of the electrolyte substrate is YSZ (yttrium stabilized zirconia), GDC (Gd doped ceria), LSGM (strontium and magnesium doped lanthana gallat), SDC (Sm doped ceria), or YDC (Y doped ceria). The percentage of the weight ratio of, for example, YSZ) to the electrode catalyst material NiO is 30 to 65%, and the production of a plate type solid oxide fuel cell membrane electrode assembly (SOFC-MEA) according to claim 1 Method.
上記ステップbのマグネトロンスパッタリング法は、
陽極電極基板上に電解質層または機能界面層(functional interlayer)を積層したマルチターゲットスパッタリング法(multi-gun co-sputter)、又は電解質基板に電解質層或いは機能界面層を積層したマルチターゲットスパッタリング法(multi-gun co-sputter)によって行い、SOFC電解質層上に電極層を形成する方法は、スパッタリング法、シルクスクリーン印刷法、スピンコーティング法、又はプラスマスプレーコーティング法によることを特徴とする請求項1記載の平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。
The magnetron sputtering method of step b above is
Multi-target sputtering method (multi-gun co-sputter) in which an electrolyte layer or functional interface layer is laminated on an anode electrode substrate, or multi-target sputtering method (multi-target sputtering method in which an electrolyte layer or functional interface layer is laminated on an electrolyte substrate) The method of forming an electrode layer on a SOFC electrolyte layer by using a -gun co-sputter) is based on a sputtering method, a silk screen printing method, a spin coating method, or a plasma spray coating method. A method for producing a plate-type solid oxide fuel cell membrane electrode assembly (SOFC-MEA).
上記ステップbにおける、酸化物標的法のRFマグネトロンスパッタリング法(Radio frequency magnetron Sputtering)に使う酸化物標的の材料は、YSZ+NiO、GDC+NiO、LSGM+NiO、SDC+NiO、YDC+NiO、YSZ、GDC、LSGM、SDC、YDCであり、
金属合金標的をスパッタリングする反応性マグネトロンスパッタリング法に使う金属合金標的の材料は、Zrx-Y1-x、Zrx-Sc1-x、Cex-Gd1-x、Cex-Sm1-x、Cex-Y1-x (80<x<100 wt.%)、LSGMであることを特徴とする請求項1記載の平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。
The oxide target materials used in the radio frequency magnetron sputtering method of the oxide target method in Step b above are YSZ + NiO, GDC + NiO, LSGM + NiO, SDC + NiO, YDC + NiO, YSZ, GDC, LSGM, SDC, YDC. ,
Reactive magnetron sputtering to sputter metal alloy targets The metal alloy target materials used in the sputtering method are Zr x -Y 1-x , Zr x -Sc 1-x , Ce x -Gd 1-x , Ce x -Sm 1- x, Ce x -Y 1-x (80 <x <100 wt.%), a flat plate type solid oxide fuel cell membrane electrode assembly according to claim 1, characterized in that the LSGM (SOFC-MEA) Manufacturing method.
前記高性能固体酸化物形燃料電池膜電極接合体(SOFC-MEA)の電解質層の製造方法において、
ステップbの電解質層を製作する方法は、標的物の材料を8YSZの酸化物としたRFマグネトロンスパッタリング法、又は標的物の材料をZrxY1-x合金としたDCマグネトロンスパッタリング法によって電解質材料を電極基板上に堆積(deposit )させることを特徴とする請求項1記載の平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。
In the method for producing an electrolyte layer of the high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA),
The electrolyte layer of step b is manufactured by RF magnetron sputtering using 8YSZ as the target material or DC magnetron sputtering using Zr x Y 1-x alloy as the target material. 2. The method for producing a flat plate type solid oxide fuel cell membrane electrode assembly (SOFC-MEA) according to claim 1, wherein the deposition is performed on an electrode substrate.
上記ステップcの半電池焼結工程は、1400℃において6時間行い、焼結温度昇降の速度率は1〜5℃/min、大気雰囲気中で行うことを特徴とする請求項1記載の平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。   2. The flat plate mold according to claim 1, wherein the half-cell sintering step of step c is performed at 1400 [deg.] C. for 6 hours, and the rate of temperature increase / decrease is 1-5 [deg.] C./min in an air atmosphere. A method for producing a solid oxide fuel cell membrane electrode assembly (SOFC-MEA). 上記ステップdのHC-fdの電解質層に陰極層を積層する方法は、シルクスクリーン印刷法、スパッタリング法、スピンコーティング法、又はプラスマスプレーコーティング法であって、その陰極材料としてLSM、又はLSCFを用いて厚さは30〜50μmとし、その焼結条件は1100℃において3時間の焼結を行い、焼結温度昇降の速度変化率は1〜3℃/minであることを特徴とする請求項1記載の平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。   The method of laminating the cathode layer on the HC-fd electrolyte layer in step d above is a silk screen printing method, sputtering method, spin coating method, or plasma spray coating method, using LSM or LSCF as the cathode material. The thickness is 30 to 50 μm, the sintering condition is sintering at 1100 ° C. for 3 hours, and the rate of change in the rate of increase and decrease of the sintering temperature is 1 to 3 ° C./min. A method for producing a flat plate solid oxide fuel cell membrane electrode assembly (SOFC-MEA) as described. 上記ステップcにおいて、SEMによって半電池のマイクロ構造を解析して電解質層の緻密性を確認し、気体透過率測定装置によって気体透過率を判定することを特徴とする請求項1記載の平板型固体酸化物形燃料電池膜電極接合体(SOFC-MEA) の製造方法。   The flat solid according to claim 1, wherein in step c, the microstructure of the half-cell is analyzed by SEM to confirm the denseness of the electrolyte layer, and the gas permeability is determined by a gas permeability measuring device. A process for producing an oxide fuel cell membrane electrode assembly (SOFC-MEA).
JP2008118218A 2008-04-30 2008-04-30 A method for producing an electrolyte layer of a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) by sputtering. Active JP5231080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118218A JP5231080B2 (en) 2008-04-30 2008-04-30 A method for producing an electrolyte layer of a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) by sputtering.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118218A JP5231080B2 (en) 2008-04-30 2008-04-30 A method for producing an electrolyte layer of a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) by sputtering.

Publications (2)

Publication Number Publication Date
JP2009266765A true JP2009266765A (en) 2009-11-12
JP5231080B2 JP5231080B2 (en) 2013-07-10

Family

ID=41392311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118218A Active JP5231080B2 (en) 2008-04-30 2008-04-30 A method for producing an electrolyte layer of a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) by sputtering.

Country Status (1)

Country Link
JP (1) JP5231080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207371A (en) * 2022-07-21 2022-10-18 清华大学 Porous electrode, magnetron sputtering preparation method thereof and solid oxide fuel cell

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381966A (en) * 1989-08-24 1991-04-08 Meidensha Corp Solid electrolyte fuel cell
JPH04101360A (en) * 1990-08-20 1992-04-02 Matsushita Electric Ind Co Ltd Manufacture of solid electrolyte-type fuel cell
JPH06325787A (en) * 1993-05-12 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> Solid electrolytic fuel cell
JPH07135002A (en) * 1993-11-11 1995-05-23 Tokyo Gas Co Ltd Manufacture of ysz film integrally formed with porous substrate
JPH0982343A (en) * 1995-09-18 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> Ceria type solid electrolyte having protective layer
JP2000182628A (en) * 1998-12-15 2000-06-30 Matsushita Electric Ind Co Ltd Manufacture of porous electrode for thin film solid electrolyte element
JP2002329509A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Single cell for solid electrolyte fuel cell
JP2002373675A (en) * 2001-06-18 2002-12-26 Toyota Central Res & Dev Lab Inc Electrode assembly for solid electrolyte fuel cell, and manufacturing method of the same
JP2003059523A (en) * 2001-08-14 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell
WO2003027041A1 (en) * 2001-09-26 2003-04-03 Ngk Insulators, Ltd. Laminated ceramic sintered compact, method for producing laminated ceramic sintered compact, electrochemical cell, electroconductive joining member for electrochemical cell, and electrochemical device
JP2003109613A (en) * 2001-09-28 2003-04-11 Mitsubishi Heavy Ind Ltd Method of manufacturing fuel cell pipe and ceramics manufacturing device
JP2003346817A (en) * 2002-05-27 2003-12-05 Nissan Motor Co Ltd Solid electrolyte fuel cell and method for manufacturing the same
JP2005078951A (en) * 2003-09-01 2005-03-24 Nissan Motor Co Ltd Single cell for solid oxide fuel battery and its manufacturing method
JP2005527370A (en) * 2002-05-29 2005-09-15 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Submicron electrolyte thin films formed on nanoporous substrates by oxidation of metal films
JP2005327507A (en) * 2004-05-12 2005-11-24 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2006059611A (en) * 2004-08-18 2006-03-02 Mitsui Mining & Smelting Co Ltd Ceria based solid electrolyte fuel cell and its manufacturing method
JP2006073401A (en) * 2004-09-03 2006-03-16 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2006185698A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2006244913A (en) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2007012361A (en) * 2005-06-29 2007-01-18 Nissan Motor Co Ltd Solid-oxide fuel cell
JP2007123247A (en) * 2005-09-30 2007-05-17 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2007165143A (en) * 2005-12-14 2007-06-28 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell, solid electrolyte fuel cell stack, and manufacturing method of the solid electrolyte fuel cell
JP2008505452A (en) * 2004-06-30 2008-02-21 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Submicron solid oxide electrolyte membrane manufacturing method

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381966A (en) * 1989-08-24 1991-04-08 Meidensha Corp Solid electrolyte fuel cell
JPH04101360A (en) * 1990-08-20 1992-04-02 Matsushita Electric Ind Co Ltd Manufacture of solid electrolyte-type fuel cell
JPH06325787A (en) * 1993-05-12 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> Solid electrolytic fuel cell
JPH07135002A (en) * 1993-11-11 1995-05-23 Tokyo Gas Co Ltd Manufacture of ysz film integrally formed with porous substrate
JPH0982343A (en) * 1995-09-18 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> Ceria type solid electrolyte having protective layer
JP2000182628A (en) * 1998-12-15 2000-06-30 Matsushita Electric Ind Co Ltd Manufacture of porous electrode for thin film solid electrolyte element
JP2002329509A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Single cell for solid electrolyte fuel cell
JP2002373675A (en) * 2001-06-18 2002-12-26 Toyota Central Res & Dev Lab Inc Electrode assembly for solid electrolyte fuel cell, and manufacturing method of the same
JP2003059523A (en) * 2001-08-14 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell
WO2003027041A1 (en) * 2001-09-26 2003-04-03 Ngk Insulators, Ltd. Laminated ceramic sintered compact, method for producing laminated ceramic sintered compact, electrochemical cell, electroconductive joining member for electrochemical cell, and electrochemical device
JP2003109613A (en) * 2001-09-28 2003-04-11 Mitsubishi Heavy Ind Ltd Method of manufacturing fuel cell pipe and ceramics manufacturing device
JP2003346817A (en) * 2002-05-27 2003-12-05 Nissan Motor Co Ltd Solid electrolyte fuel cell and method for manufacturing the same
JP2005527370A (en) * 2002-05-29 2005-09-15 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Submicron electrolyte thin films formed on nanoporous substrates by oxidation of metal films
JP2005078951A (en) * 2003-09-01 2005-03-24 Nissan Motor Co Ltd Single cell for solid oxide fuel battery and its manufacturing method
JP2005327507A (en) * 2004-05-12 2005-11-24 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2008505452A (en) * 2004-06-30 2008-02-21 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Submicron solid oxide electrolyte membrane manufacturing method
JP2006059611A (en) * 2004-08-18 2006-03-02 Mitsui Mining & Smelting Co Ltd Ceria based solid electrolyte fuel cell and its manufacturing method
JP2006073401A (en) * 2004-09-03 2006-03-16 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2006185698A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2006244913A (en) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2007012361A (en) * 2005-06-29 2007-01-18 Nissan Motor Co Ltd Solid-oxide fuel cell
JP2007123247A (en) * 2005-09-30 2007-05-17 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2007165143A (en) * 2005-12-14 2007-06-28 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell, solid electrolyte fuel cell stack, and manufacturing method of the solid electrolyte fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207371A (en) * 2022-07-21 2022-10-18 清华大学 Porous electrode, magnetron sputtering preparation method thereof and solid oxide fuel cell
CN115207371B (en) * 2022-07-21 2023-06-13 清华大学 Porous electrode, magnetron sputtering preparation method thereof and solid oxide fuel cell

Also Published As

Publication number Publication date
JP5231080B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US8241812B2 (en) Solid oxide fuel cell and manufacturing method thereof
US20110003235A1 (en) Solid oxide fuel cell and manufacturing method thereof
Shen et al. Co-sintering anode and Y2O3 stabilized ZrO2 thin electrolyte film for solid oxide fuel cell fabricated by co-tape casting
US11817589B2 (en) Solid oxide fuel cells with cathode functional layers
Ansar et al. Metal supported solid oxide fuel cells and stacks for auxilary power units-progress, challenges and lessons learned
CN103887549B (en) A kind of Solid Oxide Fuel Cell composite electrolyte film and preparation thereof
EP1875539B1 (en) Method for fabricating a micro-sized electrode for solid oxide fuel cell
KR101429944B1 (en) Solid oxide fuel cell comprising post heat-treated composite cathode and preparing method for thereof
Zhao et al. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell
JP2016524282A (en) Multi-layer arrangement for solid electrolyte
Han et al. Fabrication and properties of anode-supported solid oxide fuel cell
US20090151850A1 (en) Process for fabrication of a fully dense electrolyte layer embedded in membrane electrolyte assembly of solid oxide fuel cell
EP2083466A1 (en) Process for the fabrication of a sputter deposited fully dense electrolyte layer embedded in a high performance membrane electrolyte assembly of solid oxide fuel cell
Hwang et al. Plasma sprayed metal-supported solid oxide fuel cell and stack with nanostructured anodes and diffusion barrier layer
JP5198908B2 (en) A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA).
JP5231080B2 (en) A method for producing an electrolyte layer of a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) by sputtering.
EP2083465B1 (en) A Process for Fabrication of a Fully Dense Electrolyte layer embedded in membrane electrolyte assembly of solid oxide fuel cell
US8920612B2 (en) Process for fabrication of a sputter deposited fully dense electrolyte layer embedded in a high performance membrane electrolyte assembly of solid oxide fuel cell
KR20160058275A (en) Metal-supported solid oxide fuel cell and method of manufacturing the same
TWI441384B (en) A novel process for fabrication of a sputter deposited fully dense electrolyte layer embedded in a high performance membrane electrolyte assembly (mea) (unit cell) of solid oxide fuel cell
TWI441385B (en) A novel process for fabrication of a fully dense electrolyte layer embedded in a high performance membrane electrolyte assembly (mea) (unit cell) of solid oxide fuel cell
JP2009218146A (en) Processing method of positive electrode increasing output density of solid oxide fuel cell membrane electrode assembly (sofc-mea)
Chen et al. Cost-effective, Thin-film SOFCs for Reliable Power Generation
Tsai et al. Development and Evaluation of Thin Flexible Metal-Supported Solid Oxide Fuel Cells
KR100707117B1 (en) Anode-supported solid oxide fuel cells using the same, and fabricating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250