JP5198908B2 - A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA). - Google Patents

A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA). Download PDF

Info

Publication number
JP5198908B2
JP5198908B2 JP2008061916A JP2008061916A JP5198908B2 JP 5198908 B2 JP5198908 B2 JP 5198908B2 JP 2008061916 A JP2008061916 A JP 2008061916A JP 2008061916 A JP2008061916 A JP 2008061916A JP 5198908 B2 JP5198908 B2 JP 5198908B2
Authority
JP
Japan
Prior art keywords
sofc
electrolyte layer
solid oxide
mea
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008061916A
Other languages
Japanese (ja)
Other versions
JP2009218126A (en
Inventor
高維欣
李茂傳
林泰男
王俊修
張揚状
林立夫
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to JP2008061916A priority Critical patent/JP5198908B2/en
Publication of JP2009218126A publication Critical patent/JP2009218126A/en
Application granted granted Critical
Publication of JP5198908B2 publication Critical patent/JP5198908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、高性能固体酸化物形燃料電池接合体に積層する電解質層の製造方法に関し、特にテープキャスティング法と、シルクスクリーン印刷法(Screen printing)、スパッタリングコーティング法(Sputtering coating)、スピンコーティング法(Spin coating)、プラズマ・スプレーコーティング法(Plasma spray Coating)などの薄膜塗布工程を組み合わせて行う薄膜製作方法に関する。   The present invention relates to a method for manufacturing an electrolyte layer to be laminated on a high performance solid oxide fuel cell assembly, and more particularly, a tape casting method, a silk screen printing method, a sputtering coating method, and a spin coating method. The present invention relates to a thin film manufacturing method in which thin film coating processes such as (Spin coating) and plasma spray coating are combined.

原油価格の高騰と環境保護意識の抬頭につれて、再生可能エネルギー技術も本世紀で最も重要な発展技術の一つとなっている。高性能固体酸化物燃料電池は高效率、低汚染及びエネルギー多元化を備えたエネルギー発電システムであり、かつ材料組成は簡単で、構造のモジュール化によって持続的安定な発電を提供できるなどの特色に基き、最も発展潜在力のある発電システムである。   Renewable energy technology has become one of the most important development technologies of this century as the price of crude oil has soared and the awareness of environmental protection has increased. The high-performance solid oxide fuel cell is an energy power generation system with high efficiency, low pollution and energy diversification, and the material composition is simple, and it can provide sustainable and stable power generation by modularizing the structure. Based on this, it is the power generation system with the most potential for development.

23をドープしたイットリア安定化ジルコニア(YSZ)を電解質材料にする電解質支持形基板電池(Electrolyte Supported Cell:略称ESC)の作動温度は800〜1000℃であり、その電解質層基板の厚さは150〜300μmであり、これは第一世代の固体酸化物形燃料電池電極接合体(SOFC-MEA)に属する。NiO+YSZを陽極材料にする陽極支持基板電池セル(Anode Supported Cell:略称ASC) の作動温度は650〜800℃であり、その電解質層(主にYSZを材料とし)の厚さは大よそ10μmであり、これは第二世代のSOFC-MEAに属する。NiO+8YSZはASC/ESCの陽極材料で、陰極材料は主にLa0.8Sr0.2MnO3(LSM)およびLa-Sr-Co-Fe-O系ペロブスカイト型酸化物(LSCF)であり、その厚さは30〜60μmである。これと同時に全世界の各研究室において新しい電解質材料および陰極材料の研究開発が進行しており、これら新材料が登場することによりSOFC-MEAの作動温度を500〜700 ℃に下げられることが望まれる。作動温度を下げることによってSOFCのスタック(Stack)に用いられる組立て部品、例えばインターコネクター(Inter-connector)などの構成材料を金属材料からセラミック材料に変えることができる。こうして電池の製造が容易になる上、その機械的強度/安定性/耐久性も向上し、SOFC全体のコストダウン(Cost down)も見込める。この技術の発展について、大学および国家の研究室では材料の研究開発に重点を置き、新世代の材料の開発によって電気抵抗を減少させ、イオン伝導/電気伝導性を増加することによりSOFCの発電能力を向上させることを目指している。
特開2005−149797号公報 特開2007−200664号公報 特開2007−313650号公報
Y 2 O 3 doped with yttria-stabilized zirconia (YSZ) electrolyte support type substrate batteries to electrolyte material: operating temperature (Electrolyte the Supported Cell abbreviated ESC) is 800 to 1000 ° C., the thickness of the electrolyte layer substrate Is 150-300 μm, which belongs to the first generation solid oxide fuel cell electrode assembly (SOFC-MEA). The operating temperature of the anode supported cell battery cell (Anode Supported Cell: ASC) using NiO + YSZ as the anode material is 650 to 800 ° C, and the thickness of the electrolyte layer (mainly YSZ is used as material) is approximately 10μm. This belongs to the second generation SOFC-MEA. NiO + 8YSZ is an anode material of ASC / ESC, and the cathode material is mainly La 0.8 Sr 0.2 MnO 3 (LSM) and La—Sr—Co—Fe—O based perovskite oxide (LSCF), and its thickness is 30 ~ 60 μm. At the same time, research and development of new electrolyte materials and cathode materials are progressing in laboratories around the world, and it is hoped that the operating temperature of SOFC-MEA can be lowered to 500-700 ° C by the appearance of these new materials. It is. By lowering the operating temperature, it is possible to change the construction material used in the SOFC stack, such as an inter-connector, from a metal material to a ceramic material. This makes it easier to manufacture the battery, improves its mechanical strength / stability / durability, and can reduce the cost of the SOFC as a whole. With regard to the development of this technology, the university and national laboratories will focus on material research and development, reduce the electrical resistance by developing a new generation of materials, increase the ionic conduction / conductivity, SOFC power generation capacity It aims to improve.
JP 2005-149797 A JP 2007-200634 A JP 2007-313650 A

本発明は、SOFC-MEAの電解質層を完全緻密な特性とすることにより、電池の作動性・耐久性・安定性を高めることを目標とする。その発明の効果は電池セルの性能試験(Performance test of SOFC-MEA)によって検証できる。   The present invention aims to improve the operability, durability, and stability of the battery by making the SOFC-MEA electrolyte layer completely dense. The effect of the invention can be verified by a battery cell performance test (Performance test of SOFC-MEA).

上記の目的を達成するために、本発明はテープキャスティング法に加えて、スパッタリングコーティング法(Sputtering coating)、シルクスクリーン印刷法(Screen printing)、スピンコーティング法(Spin coating)またはプラズマスプレーコーティング法(Plasma spray/Coating)などの薄膜製作工程を適用し、かつ1500℃の温度で5時間焼結を行い、温度昇降の速度率は0.1〜3℃/minという焼結条件をコントロールして、完全緻密な電解質を製作する方法である。   In order to achieve the above object, in addition to the tape casting method, the present invention provides a sputtering coating method, a screen printing method, a screen coating method, a spin coating method, or a plasma spray coating method (Plasma coating method). Applying a thin film manufacturing process such as spray / coating), sintering at 1500 ° C for 5 hours, and controlling the sintering condition of 0.1-3 ° C / min. This is a method of manufacturing an electrolyte.

陽極支持基板電池セル(Anode Supported Cell:略称ASC)を製造する場合、例えば、テープキャスティング法(tape casting)によって電解質のグリーンテープを成形して、ラミネート処理によりこの電解質グリーンテープを陽極と密着させる。この陽極/電解質の複合グリーンテープを高温焼結工程によって半電池(Half cell)とし、シルクスクリーン印刷法によって陰極層を半電池の電解質層上に塗布して、完全緻密な電解質層を有する陽極支持型固体酸化物燃料電池の電池セルを完成した。
こうして作られたSOFC-MEAは完全緻密/気密な特性を備えているから、燃料(例えばH2)や酸化剤気体(例えばAir)を完全に遮断して、酸素イオンだけ電解質層を通らせて電化学の発電反応を進行させ、その他の化学反応を一切起こらないようにする。これによって発電過程において電池セルの成分及び構造は化学反応によって破壊されることを免れ、理論値の開放電圧(OVC)の運転を維持することができる。この電池セルは、電気性能試験(Performance test of SOFC-MEA)によって高操作性、耐久性、安定性を検証できる。
When manufacturing an anode-supported substrate battery cell (Anode Supported Cell: abbreviated as ASC), for example, an electrolyte green tape is formed by a tape casting method, and the electrolyte green tape is brought into close contact with the anode by a laminating process. This anode / electrolyte composite green tape is made into a half cell by a high temperature sintering process, and a cathode layer is coated on the electrolyte layer of the half cell by a silk screen printing method, and an anode support having a completely dense electrolyte layer Type solid oxide fuel cell was completed.
The SOFC-MEA produced in this way has fully dense / airtight properties, so it completely shuts off the fuel (eg H 2 ) and oxidant gas (eg Air) and passes only oxygen ions through the electrolyte layer. Proceed with the electrochemical power generation reaction and prevent any other chemical reaction. As a result, the components and structure of the battery cell are prevented from being destroyed by a chemical reaction in the power generation process, and the operation of the theoretical open circuit voltage (OVC) can be maintained. This battery cell can be verified for high operability, durability and stability by a performance test of SOFC-MEA.

完全緻密(Fully dense)且つ気体透過率ゼロ(Zero gas leakage rate)、あるいは気密性(Air tight)の電解質(電解質の材料は8YSZ/GDC/YDC/LSGMなど)を有する平板型固体酸化物形燃料電池膜電極接合体(SOFC- MEA)、即ち電池セル(Unit cell)を製造するステップは以下のとおりである。   A flat solid oxide fuel with a fully dense and zero gas leakage rate or air tight electrolyte (the electrolyte material is 8YSZ / GDC / YDC / LSGM, etc.) The steps of manufacturing a battery membrane electrode assembly (SOFC-MEA), that is, a battery cell (Unit cell), are as follows.

ステップ1:テープキャスティング法によって平板型SOFC-MEAの陽極および電解質(材料はYSZ、GDC、YDC、SmDC、LSGMなどがある)のグリーンテープ(Green tapes)を成形し、ラミネート処理により両者を積層して電解質グリーンテープの層厚が5〜300μm、及び陽極グリーンテープの層厚が600〜1200μmのSOFCのグリーンテープ半電池(Half cell)を得る。この半電池を1200°C〜1600°Cの温度(1400℃〜1500°Cが最適)で数時間(3時間以上)の焼結を行い、第一段階のセラミック半電池が得られる。電子顕微鏡(SEM)で半電池のマイクロ構造(Microstructure)の解析を行い、電解質層のマイクロ構造が無孔質状態であって完全緻密(Fully dense)な状態に達したことを確認した。 Step 1: Flat tape SOFC-MEA anode and electrolyte (materials include YSZ, GDC, YDC, SmDC, LSGM, etc.) green tapes are formed by tape casting, and both are laminated by laminating. Thus, an SOFC green tape half cell having an electrolyte green tape layer thickness of 5 to 300 μm and an anode green tape layer thickness of 600 to 1200 μm is obtained. This half-cell is sintered for several hours (3 hours or more) at a temperature of 1200 ° C to 1600 ° C (optimally 1400 ° C to 1500 ° C) to obtain a first stage ceramic half-cell. An electron microscope (SEM) was used to analyze the microstructure of the half-cell, and it was confirmed that the microstructure of the electrolyte layer had reached a non-porous state and a fully dense state.

ステップ2: 完成した半電池の電解質層上に、シルクスクリーン印刷法によって多孔質(Porous)の陰極層(材料は一般的にLSMかLSCFなど)を形成して、1200°Cで3時間の仮焼を行い、SOFC-MEAを完成する。 Step 2: A porous cathode layer (generally LSM or LSCF, etc.) is formed on the electrolyte layer of the completed half-cell by silk screen printing, and is temporarily set at 1200 ° C for 3 hours. Bake and complete SOFC-MEA.

なお、上記方法は、完全緻密(Fully dense)/気密性(Air-tight)の電解質層を有するSOFC-MEAを製造する方法であり、ステップ1およびステップ2の概要を図一に示す。   The above method is a method for producing SOFC-MEA having a fully dense / air-tight electrolyte layer, and outlines of Step 1 and Step 2 are shown in FIG.

本発明の製法によって得られた平板型固体酸化物形燃料電池膜電極接合体(SOFC- MEA)は、その電解質層が完全緻密(Fully dense)/気密性(Air-tight)を具えているため、電気抵抗が小さく、イオン伝導/電気伝導性を向上することによりSOFCの発電能力を向上することができる。   The plate-type solid oxide fuel cell membrane / electrode assembly (SOFC-MEA) obtained by the production method of the present invention has a fully dense / air-tight electrolyte layer. The power generation capability of SOFC can be improved by reducing the electrical resistance and improving the ion conduction / electric conductivity.

本発明について代表的な例を示しさらに具体的に説明する。これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。   The present invention will be described more specifically with representative examples. These are merely illustrative examples, and the present invention is not limited thereto.

[実施例]
ステップ1:完全緻密/気密の電解質層(材料は8YSZ/ GDC/ LSGM)の固体酸化物型燃料電池接合体(SOFC-MEA)の電池セル(Unit Cell)を作るには、まず50wt% NiO+50wt% 8YSZ(8mol.% Yttria-Stablized Zirconia)の粉末及び気孔形成剤(Pore former)として所要量の石墨(Graphite)などで基本材料スラリーを調整し、適当な比率の溶剤(アルコール/ブタノン)、分散剤(トリエタノールアミン)、可塑剤(ポリエチレングリコール/フタル酸ジブチル)、及び粘着剤(ポリエチレンブチラール)をボールミルによって混合させて均一化し、テープキャスティング法によって電極グリーンテープを作り、更にラミネート処理に通して厚さ1000μm、サイズ5×5 cm2〜10×10cm2の陽極基板グリーンテープ(Anode Green Substrate)を完成する。
[Example]
Step 1: To make a unit cell of a solid oxide fuel cell assembly (SOFC-MEA) with a fully dense / airtight electrolyte layer (material is 8YSZ / GDC / LSGM), first 50wt% NiO + 50wt% Prepare 8YSZ (8mol.% Yttria-Stablized Zirconia) powder and pore former (Pore former) with basic material slurry with the required amount of Graphite, etc., solvent (alcohol / butanone), dispersant in appropriate ratio (Triethanolamine), plasticizer (polyethylene glycol / dibutyl phthalate), and pressure-sensitive adhesive (polyethylene butyral) are mixed by a ball mill and homogenized, and an electrode green tape is made by a tape casting method. Anode Green Substrate having a thickness of 1000 μm and a size of 5 × 5 cm 2 to 10 × 10 cm 2 is completed.

ステップ2:電解質層の材料としてYSZ、GDC、LSGM、SDC、又はYDC粉末を上記ステップ1の陽極材料と同様に溶剤、分散剤、可塑剤及び粘着剤をボールミルによって均一に混合してスラリーを調整し、テープキャスティング法によって電解質グリーンテープの薄膜(5〜300μm)を作成し、ステップ1で作成した電極グリーンテープにラミネート処理によって密着して積層させ、SOFCのグリーンテープ半電池(Half cell)を構成し、1200°C〜 1600°C間(1400°C〜1500℃が最適)で数時間(3時間以上)の焼結を行うことによって、第一段階のセラミック半電池を得る。
このようにして形成した半電池を、走査型電子顕微鏡(SEM)でマイクロ構造(Microstructure) を解析し、電解質層が無孔質(Open pore free)のマイクロ構造状態であることを確認した。図二に示したように、電解質層の厚さは約20μmで、すでに完全緻密な構造を達成して、気密性を備えており、SOFC-MEAの電解質層に必須の要求は満たされている。残存する極かな閉塞性の細孔は、気体透過率に影響を与えない。
Step 2: Prepare slurry by mixing YSZ, GDC, LSGM, SDC, or YDC powder as electrolyte layer material uniformly with ball mill in the same way as anode material in Step 1 above. Then, an electrolyte green tape thin film (5-300μm) is prepared by tape casting method, and the electrode green tape prepared in step 1 is adhered and laminated by laminating process to form a SOFC green tape half cell (Half cell) The first stage ceramic half-cell is obtained by sintering for several hours (3 hours or more) between 1200 ° C. and 1600 ° C. (1400 ° C. to 1500 ° C. is optimal).
The half-cell thus formed was analyzed for the microstructure by a scanning electron microscope (SEM), and it was confirmed that the electrolyte layer was in an open pore free microstructure. As shown in Fig. 2, the thickness of the electrolyte layer is about 20μm, has already achieved a completely dense structure, has airtightness, and the essential requirements for the SOFC-MEA electrolyte layer are satisfied . The remaining extremely obstructive pores do not affect the gas permeability.

ステップ3:電解質層が気密であることをさらに確認するため、ステップ2で得られた半電池の気体透過率を測定し、気体透過率は1×10-6 L/cm2/sec以下であって、この電解質層が完全緻密であることが確認された。この完全緻密な電解質層の半電池はHC-fdと称する。 Step 3: To further confirm that the electrolyte layer is airtight, the gas permeability of the half-cell obtained in Step 2 was measured, and the gas permeability was 1 × 10 −6 L / cm 2 / sec or less. Thus, it was confirmed that the electrolyte layer was completely dense. This fully dense electrolyte layer half-cell is called HC-fd.

ステップ4:HC-fd電解質層の上に、シルクスクリーン印刷法によって、LSM材料で多孔質の陰極層を形成し、更に1200 °C、/3 hrsの焼結工程を行った。焼結温度昇降の速度は3°C/minでよいが、これに限定されない。
以上により、高い作動性能のSOFC-MEA (Unit cell)を完成した。この電池セルのマイクロ構造のSEM像を図二に示す。完成したSOFC-MEAに対して電気性能試験を行った結果を図三に示す。この結果からOCV (1.037~1.016V)はすでに理論値に達しており、電力密度も150 mW/ cm2を上回っていることが分かる。
本発明は、支持基板となる陽極又は陰極層をテープキャスティング法によって形成することにより支持強度を得るために必要な厚さにし、
これに対して電解質層は、これらの支持強度を具えた電極層にラミネートして積層することにより、気密性を確保するために必要な厚さであって、かつ酸素イオンの透過に適した薄さとすることができる。
また、支持基板となる陽極又は陰極層に対する陰極又は陽極層はスクリーン印刷法などの薄膜形成法により形成することによって、通気性を得るに必要な薄い層とすることができる。
Step 4: A porous cathode layer was formed with an LSM material on the HC-fd electrolyte layer by a silk screen printing method, and a sintering process was further performed at 1200 ° C. for 3 hrs. The rate of raising and lowering the sintering temperature may be 3 ° C / min, but is not limited thereto.
As described above, SOFC-MEA (Unit cell) with high operating performance was completed. The SEM image of the microstructure of this battery cell is shown in FIG. Figure 3 shows the results of electrical performance tests on the completed SOFC-MEA. From this result, it can be seen that OCV (1.037 to 1.016V) has already reached the theoretical value, and the power density exceeds 150 mW / cm 2 .
In the present invention, the anode or cathode layer to be a support substrate is formed by a tape casting method to have a thickness necessary for obtaining a support strength,
On the other hand, the electrolyte layer is a thin layer suitable for the permeation of oxygen ions and having a thickness necessary for ensuring airtightness by laminating and laminating these electrode layers having supporting strength. It can be.
In addition, the cathode or anode layer corresponding to the anode or cathode layer serving as the support substrate can be formed as a thin layer necessary for obtaining air permeability by being formed by a thin film forming method such as a screen printing method.

本発明の高性能固体酸化物燃料電池接合体(電池セル)に完全緻密な電解質を製作する方法の一実施例の簡易説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified illustration of one embodiment of a method for producing a complete dense electrolyte in a high performance solid oxide fuel cell assembly (battery cell) of the present invention. 本発明の薄膜形成法と焼結条件によって得られた固体酸化物燃料電池の断面構造のSEMマイクロ構造分析図。(A):全電池截面、(B):プラス極截面、(C):マイナス極截面、(D):電解質表面。The SEM micro structure analysis figure of the section structure of the solid oxide fuel cell obtained by the thin film formation method and sintering conditions of the present invention. (A): All battery surfaces, (B): Positive electrode surface, (C): Negative electrode surface, (D): Electrolyte surface. 本発明の高性能固体酸化物燃料電池接合体(電池セル)を用いた固体酸化物燃料電池の電気性能試験結果。The electrical performance test result of the solid oxide fuel cell using the high performance solid oxide fuel cell assembly (battery cell) of this invention.

Claims (12)

平板型固体酸化物形燃料電池膜電極接合体を製造する方法であって、
(a) テープキャスティング法によってSOFCの電極及び電解質のグリーンテープをそれぞれ作製し、
(b) 電極グリーンテープ上に電解質グリーンテープを重ねて、真空雰囲気中で加圧するラミネート処理によってSOFCのグリーンテープの半電池を作成し、
(c) 上記bで形成した半電池グリーンテープを温度昇降速度0.1〜3℃/min、1200〜1600で3〜6時間の仮焼を行う高温焼結によって半電池基板(HC−fd)とし、
(d) 上記HC−fdの電解質層上にシルクスクリーン印刷法によって上記電極に対する電極層を形成し、12003時間、焼結の温度昇降速度3℃/minの焼結工程を経て電池セルを完成する、
(a)〜(d)の各工程からなることを特徴とする高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。
A method for producing a flat plate solid oxide fuel cell membrane electrode assembly,
(A) An SOFC electrode and an electrolyte green tape were respectively produced by a tape casting method.
(B) An electrolyte green tape is stacked on the electrode green tape, and a SOFC green tape half-cell is produced by a laminating process in which pressure is applied in a vacuum atmosphere.
(C) The half-cell substrate (HC-fd) is subjected to high-temperature sintering in which the half-cell green tape formed in b is calcined at a temperature rise / fall rate of 0.1 to 3 ° C./min and 1200 to 1600 ° C. for 3 to 6 hours. )age,
(D) An electrode layer for the electrode is formed on the HC-fd electrolyte layer by a silk screen printing method, and the battery cell is subjected to a sintering process at 1200 ° C. for 3 hours and a sintering temperature increase / decrease rate of 3 ° C./min. To complete the
A method for producing a complete dense electrolyte layer to be laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA), comprising the steps of (a) to (d).
上記電解質の材料としてYSZ、GDC、LSGM、SDC、又はYDCの内のいずれかであることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 The high-performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) according to claim 1, wherein the electrolyte material is any one of YSZ, GDC, LSGM, SDC, and YDC. A method for producing a completely dense electrolyte layer to be laminated. 前記(a)工程のSOFCの電極としての陽極材料は、YSZ+NiO、GDC+NiO、LSGM+NiO、SDC+NiO、又はYDC+NiOから選択した1種であり、電解質材料はYSZ、GDC、LSGM、SDC、又はYDCから選択し1種であることを特徴とする、請求項1記載の高性能固体酸化物形燃料形電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 The anode material as the SOFC electrode in the step (a) is one selected from YSZ + NiO, GDC + NiO, LSGM + NiO, SDC + NiO, or YDC + NiO, and the electrolyte material is selected from YSZ, GDC, LSGM, SDC, or YDC . The method for producing a complete dense electrolyte layer to be laminated on a high-performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) according to claim 1, wherein the electrolyte layer is a single type. 前記の(a)の工程において、SOFCの電極グリーンテープとしての陽極中の触媒作用をするNiOと電解質との重量百分率は50wt%であることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 2. The high performance solid oxide according to claim 1, wherein in the step (a), the weight percentage of NiO having a catalytic action in an anode as an SOFC electrode green tape and an electrolyte is 50 wt% . Of a completely dense electrolyte layer laminated on a fuel cell membrane electrode assembly (SOFC-MEA). 前記の(a)の工程において、SOFCの電極グリーンテープとしての陽極中の触媒作用物質がNiOであることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 2. The high performance solid oxide fuel cell membrane electrode assembly (SOFC) according to claim 1, wherein in the step (a), the catalytic agent in the anode as the SOFC electrode green tape is NiO. -Manufacturing method of a completely dense electrolyte layer laminated on MEA). 前記の(b)において、電極グリーンテープ上に電解質薄膜グリーンテープを積層又は電解質グリーンテープ上に電極薄膜グリーンテープ層を積層することを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 2. The high-performance solid oxide fuel cell according to claim 1, wherein an electrolyte thin film green tape is laminated on the electrode green tape or an electrode thin film green tape layer is laminated on the electrolyte green tape. A method for producing a completely dense electrolyte layer laminated on a membrane electrode assembly (SOFC-MEA). 前記の(c)において、半電池の焼結条件は1500、5時間とすることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 2. The high-performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) is laminated on the high-performance solid oxide fuel cell membrane electrode assembly according to claim 1, wherein the sintering condition of the half-cell is 1500 ° C. for 5 hours. A method for producing a completely dense electrolyte layer. 前記の(d)において、HC-fdの電解質層上に陰極層を形成する薄膜製作工程としてシルクスクリーン印刷法、スパッタリングコーティング法、プラズマ・スプレーコーティング法、又はスピンコーティング法によることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 In the above (d), the thin film manufacturing process for forming the cathode layer on the HC-fd electrolyte layer is performed by a silk screen printing method, a sputtering coating method, a plasma spray coating method, or a spin coating method. A method for producing a completely dense electrolyte layer laminated on the high-performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) according to Item 1. 前記の(d)において、焼結温度昇降速度は3/min、焼結条件は1200で3時間であることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 2. The high performance solid oxide fuel cell membrane electrode joint according to claim 1, wherein in (d), the sintering temperature raising / lowering speed is 3 ° C./min, and the sintering condition is 1200 ° C. for 3 hours. Manufacturing method of complete dense electrolyte layer laminated on body (SOFC-MEA). 前記の(d)において、HC-fdの電解質層上にシルクスクリーン印刷法によって形成する陰極層の材料は、LSM、又はLSCFであることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 2. The high-performance solid oxide form according to claim 1, wherein the material of the cathode layer formed by silk screen printing on the HC-fd electrolyte layer in (d) is LSM or LSCF. A method for producing a completely dense electrolyte layer laminated on a fuel cell membrane electrode assembly (SOFC-MEA). 前記の(d)において、HC-fdの電解質層上にシルクスクリーン印刷法によって形成する陰極層の厚さは30〜50μmであることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 2. The high-performance solid oxide fuel according to claim 1, wherein in (d), the thickness of the cathode layer formed on the HC-fd electrolyte layer by a silk screen printing method is 30 to 50 [mu] m. A method for producing a completely dense electrolyte layer laminated on a battery membrane electrode assembly (SOFC-MEA). 前記の(c)において、走査型電子顕微鏡(SEM)により半電池のマイクロ構造を検定して電解質層の緻密性を判定し、または気体透過率測定器によって気体透過率が1×10-6 l/cm 2 /sec以下であることを判断して、次の工程に進めることを特徴とする請求項1記載の高性能固体酸化物形燃料電池膜電極接合体(SOFC−MEA)に積層する完全緻密な電解質層の製造方法。 In the above (c), the micro structure of the half-cell is examined by a scanning electron microscope (SEM) to determine the denseness of the electrolyte layer, or the gas permeability is 1 × 10 −6 l by a gas permeability meter. The complete stacking on the high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA) according to claim 1, characterized in that it is determined to be / cm 2 / sec or less and proceeds to the next step. A method for producing a dense electrolyte layer.
JP2008061916A 2008-03-11 2008-03-11 A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA). Expired - Fee Related JP5198908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061916A JP5198908B2 (en) 2008-03-11 2008-03-11 A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA).

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061916A JP5198908B2 (en) 2008-03-11 2008-03-11 A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA).

Publications (2)

Publication Number Publication Date
JP2009218126A JP2009218126A (en) 2009-09-24
JP5198908B2 true JP5198908B2 (en) 2013-05-15

Family

ID=41189768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061916A Expired - Fee Related JP5198908B2 (en) 2008-03-11 2008-03-11 A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA).

Country Status (1)

Country Link
JP (1) JP5198908B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190104018A (en) * 2019-08-28 2019-09-05 전북대학교산학협력단 Experimental vascular platform using porous membrane bonding technique and Manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177621B1 (en) * 2010-06-25 2012-08-27 한국생산기술연구원 Manufacturing method of SOFC unit cell
KR101835891B1 (en) 2012-10-10 2018-03-07 포스코에너지 주식회사 Heat treatment method for solid oxide fuel cell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913982A (en) * 1986-12-15 1990-04-03 Allied-Signal Inc. Fabrication of a monolithic solid oxide fuel cell
JP3917717B2 (en) * 1997-07-04 2007-05-23 株式会社日本触媒 Solid electrolyte type electrolytic cell and method for producing the same
JP4232216B2 (en) * 1998-04-17 2009-03-04 東京電力株式会社 Method for producing fuel electrode of solid oxide fuel cell
JP2000281438A (en) * 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd Zirconia sheet and its production
CA2461097A1 (en) * 2001-09-26 2003-04-03 Ngk Insulators, Ltd. Ceramic laminated sintered bodies, a method of producing the same, electrochemical cells, conductive interconnectors for the same and electrochemical devices
JP4465175B2 (en) * 2003-10-07 2010-05-19 京セラ株式会社 Solid electrolyte fuel cell
JP4559068B2 (en) * 2003-12-26 2010-10-06 日本特殊陶業株式会社 Method for producing solid oxide fuel cell
JP2006185698A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
US7736787B2 (en) * 2005-09-06 2010-06-15 Nextech Materials, Ltd. Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
JP5179718B2 (en) * 2005-12-14 2013-04-10 日本特殊陶業株式会社 Solid oxide fuel cell, solid oxide fuel cell stack, and method for producing solid oxide fuel cell
JP4808074B2 (en) * 2006-05-23 2011-11-02 株式会社日本触媒 Manufacturing method of surface roughened ceramic green sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190104018A (en) * 2019-08-28 2019-09-05 전북대학교산학협력단 Experimental vascular platform using porous membrane bonding technique and Manufacturing method thereof
KR102031561B1 (en) 2019-08-28 2019-10-14 전북대학교산학협력단 Experimental vascular platform using porous membrane bonding technique and Manufacturing method thereof

Also Published As

Publication number Publication date
JP2009218126A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
Shen et al. Co-sintering anode and Y2O3 stabilized ZrO2 thin electrolyte film for solid oxide fuel cell fabricated by co-tape casting
EP1768208A2 (en) High performance anode-supported solid oxide fuel cell
Lee et al. Fabrication of solid oxide fuel cells (SOFCs) by solvent-controlled co-tape casting technique
US20220223880A1 (en) Solid oxide fuel cells with cathode functional layers
US20130078551A1 (en) Method for manufacturing unit cells of solid oxide fuel cell
Liu et al. Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique
Zhou et al. Metal-supported solid oxide fuel cells with in-situ sintered (Bi2O3) 0.7 (Er2O3) 0.3–Ag composite cathode
JP2015509277A (en) Design and manufacturing technology for solid oxide fuel cells with improved output performance in medium and low temperature operation
Liu et al. Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells
Baron et al. Dual ionic conductive membrane for molten carbonate fuel cell
Yuan et al. Fabrication and characterization of a cathode-support solid oxide fuel cell by tape casting and lamination
Zhao et al. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell
Timurkutluk et al. Novel structured electrolytes for solid oxide fuel cells
Zhao et al. Fabrication of a large area cathode-supported thin electrolyte film for solid oxide fuel cells via tape casting and co-sintering techniques
US20090151850A1 (en) Process for fabrication of a fully dense electrolyte layer embedded in membrane electrolyte assembly of solid oxide fuel cell
JP5198908B2 (en) A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA).
Han et al. Fabrication and properties of anode-supported solid oxide fuel cell
KR101178735B1 (en) Anode supported tubular unit cell for solid oxide fuel cell and manufacturing method thereof
Hwang et al. Plasma sprayed metal-supported solid oxide fuel cell and stack with nanostructured anodes and diffusion barrier layer
EP2083466A1 (en) Process for the fabrication of a sputter deposited fully dense electrolyte layer embedded in a high performance membrane electrolyte assembly of solid oxide fuel cell
DK2669984T3 (en) Layered anode system for electrochemical applications and processes for their preparation
CN113948732B (en) Gradient structure and pore anode, preparation method and battery
EP2083465B1 (en) A Process for Fabrication of a Fully Dense Electrolyte layer embedded in membrane electrolyte assembly of solid oxide fuel cell
Jin et al. Fabrication and characterization of Ni-SSZ/SSZ/LSM-SSZ anode-supported SOFCs by tape casting and single-step co-sintering techniques
US8920612B2 (en) Process for fabrication of a sputter deposited fully dense electrolyte layer embedded in a high performance membrane electrolyte assembly of solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees