JP4232216B2 - Method for producing fuel electrode of solid oxide fuel cell - Google Patents

Method for producing fuel electrode of solid oxide fuel cell Download PDF

Info

Publication number
JP4232216B2
JP4232216B2 JP12394698A JP12394698A JP4232216B2 JP 4232216 B2 JP4232216 B2 JP 4232216B2 JP 12394698 A JP12394698 A JP 12394698A JP 12394698 A JP12394698 A JP 12394698A JP 4232216 B2 JP4232216 B2 JP 4232216B2
Authority
JP
Japan
Prior art keywords
fuel electrode
raw material
solid oxide
green sheet
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12394698A
Other languages
Japanese (ja)
Other versions
JPH11307105A (en
Inventor
日出夫 道畑
敦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP12394698A priority Critical patent/JP4232216B2/en
Publication of JPH11307105A publication Critical patent/JPH11307105A/en
Application granted granted Critical
Publication of JP4232216B2 publication Critical patent/JP4232216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質型燃料電池用セルの燃料極の製造方法に係り、特に電解質層との熱膨張係数の差が小さく、厚さ方向に成分組成が変化する多層構造の燃料極を、層間の界面を形成することなく効率的に形成することが可能であり、かつ従来の気相法で製作する場合と比較して製造コストを大幅に削減できる固体電解質型燃料電池用セルの燃料極の製造方法に関する。
【0002】
【従来の技術】
水素などの燃料と空気中の酸素などの酸化剤を電気化学的に反応させて、その反応エネルギーを電気として直接取り出す直流発電装置として各種の燃料電池が開発実用化されている。この燃料電池は通常、電解質層を挟んで一対の多孔質電極(燃料極、空気極)を配置するとともに、一方の電極(燃料極)の背面に水素などの燃料ガスを接触させ、また他方の電極(空気極)の背面に空気や酸素などの酸化剤ガスを接触させ、このときに発生する電気化学的反応を利用して、上記電極間から電気エネルギーを取り出すようにしたものである。このように構成された燃料電池においては、前記燃料ガスと酸化剤ガスが供給されている限り、高い変換効率で電気エネルギーを取り出すことができる。
【0003】
上記燃料電池は使用する電解質の種類や作動温度によって、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)および高温固体電解質燃料電池(SOFC)などが実用化されているが、特に電解質として安定化ジルコニア(ZrO2 )などの固体の金属酸化物を用いた固体酸化物燃料電池(SOFC:Solid Oxide Fuel Cell )は、電池形状の制約が少ないことから、発電用燃料電池や電解セルとして広く普及しつつある現状である。
【0004】
一般に、固体電解質型燃料電池の構成要素である燃料極の電池特性および耐久性は、その導電性と電解質層に対する熱膨張率の整合性とによって決定される。すなわち、燃料極の導電性が高くなると熱膨張係数が大きくなり、電解質層を構成するジルコニア(ZrO2 )との熱膨張係数の差が拡大され、熱サイクルの負荷によって内部応力が発生し易くなり、燃料極の割れや剥離を生じて電池反応の進行が困難になる。反対に、燃料極の熱膨張係数を電解質層構成材に近付けると導電性が低くなり、電極性能が急激に低下してしまう。
【0005】
上記2つの相反する特性を共に満足させるために、燃料極が燃料と接する表面部にはニッケルなどの高導電成分を配置する一方、電解質層と接する部位にはジルコニアなどの電解質層構成材に近い低熱膨張材を配置し、厚さ方向に高導電成分と低熱膨張成分との組成比が変化するように、いわゆる傾斜組成(濃度勾配)を有するように形成した燃料極も実用化されている。この傾斜組成を有する燃料極は、従来、一般に、プラズマ溶射法などの気相法によって製造されていた。この気相法によれば、高導電成分と低熱膨張成分とを組成比を変えて混合した各原料を順次溶射して積層するのみで傾斜組成を有する燃料極を形成できる利点がある。
【0006】
【発明が解決しようとする課題】
しかしながら、上記プラズマ溶射法などの気相法を利用して傾斜組成を有する燃料極を製造する場合、溶射設備の運転コストが高い上に、設備費自体が極めて高価であるため、いずれにしても製造コストが大幅に上昇し、安価な燃料極を製造することが困難であるという問題点があった。
【0007】
上記高コストの問題点から本願発明者は、より低コスト化の実現可能性が高い湿式法に着目し、高導電性と低熱膨張特性とを併有する高性能の燃料極であり、かつ傾斜組成を有する燃料極を湿式法を用いて製造する可能性を追求した。しかしながら、一般に、構成材スラリーを成形後、焼結して形成する湿式法においては、燃料極の厚膜化およびその組成の傾斜化は困難とされていた。
【0008】
そこで、本願発明者は高導電成分と低熱膨張成分との組成比を順次変えた複数のグリーンシートを調製し、各グリーンシートをその組成比が厚さ方向で順次変化するように、すなわち傾斜組成を有するように積層した後に、乾燥焼成を実施して多層構造の燃料極を作成した。
【0009】
しかしながら、上記のように、組成比(混合比)が異なるグリーンシートは、膨張係数および収縮係数が異なるため、これらのグリーンシートを積層して、焼成した場合に、その収縮率の差異に起因してシート間相互の強固な接合が困難になり、層間剥離や割れなどが発生し易い難点があった。
【0010】
また、複数のグリーンシートを積層させた場合には層間に界面が生じてしまい、各成分の濃度勾配(傾斜組成)を連続的に形成することが極めて困難であり、いずれにしても電池特性および耐久性が良好な燃料極を製造することが困難であるという問題点があった。
【0011】
本発明は上記問題点を解決するためになされたものであり、電解質層との熱膨張係数の差が小さく、厚さ方向に成分組成が変化する多層構造の燃料極を、層間の界面を形成することなく効率的に形成することが可能であり、かつ従来の気相法で製作する場合と比較して製造コストを大幅に削減できる固体電解質型燃料電池用セルの燃料極の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため本願発明者は、特に傾斜組成を有する多層構造の燃料極において、電池特性や耐久性に大きな影響を及ぼす層間の界面形成を防止できる対策を種々検討した。その結果、組成が異なる複数のグリーンシートを積層した積層体を溶媒雰囲気中において所定時間保持することにより、隣接するグリーンシートを相互になじませることができ、その結果、焼成終了時には構成成分組成が、厚さ方向にほぼ連続的に変化し、かつ界面の形成が全くない良好な燃料極が初めて得られるという知見を得た。本発明は上記知見に基づいて完成されたものである。
【0013】
すなわち本発明に係る固体電解質型燃料電池用セルの燃料極の製造方法は、燃料極を構成する2種以上の成分原料粉の組成比を変えた原料混合体を溶媒と混合することにより成分組成が異なる複数種類の原料スラリーを調製する工程と、成分組成が異なる各原料スラリーを成形して、成分組成が異なる複数種類のグリーンシートを調製する工程と、得られた各グリーンシートをその成分組成が厚さ方向に順次変化するように積層して積層体を形成する工程と、得られた積層体を溶媒雰囲気中で所定時間保持することにより、隣接した各グリーンシートを相互になじませる工程と、得られた積層体を乾燥後、焼成する工程とを備え、上記積層体を厚さ方向に均一に加圧した状態で溶媒雰囲気中で24時間以上保持することを特徴とする。
【0014】
また、上記製造方法において、各グリーンシートの厚さが20μm以下であることが好ましい。
【0015】
さらに、上記製造方法において、原料スラリーの粘度を2000〜3000cPの範囲に設定するとよい。
【0016】
ここで本発明方法で使用される原料スラリーとしては、特に限定されるものでなく、酸化ニッケル(NiO)などの導電成分とジルコニア(ZrO2 )などの低熱膨張成分との混合粉など燃料極を構成する原料粉を、結合剤(バインダー),可塑剤,分散剤とともに溶媒中に均一分散混合したものが使用される。上記原料粉は水分や不純物を低減するために、105℃で24時間程度、乾燥したものを使用する。
【0017】
上記溶媒としては、特に限定されるものではないが、例えばイソプロピルアルコール,エタノール,アセトンまたはこれらの混合溶液が使用できる。また、結合剤(バインダー)は成形したグリーンシートの成形形状を保持するために添加されるものてあり、例えば、カルボキシメチルセルロース,ポリビニルエーテル,ポリビニルブチラール樹脂,エチルセルロース,アセチルセルロースなどが使用でき、スラリー原料粉100gに対して2〜10g程度添加される。また可塑剤として、例えばジエチルフタレート(DEP),ジブチルフタレート(DBP),フタル酸ジ−n−ブチル,ジオクチルフタレート(DOP)などが使用でき、スラリー原料粉100g当り、10〜40ml添加される。さらに、分散剤としては、例えばジエチルアミン,トリエチルアミン,OP−83RATなどが使用でき、スラリー原料粉100g当り2〜10mlの割合で添加される。
【0018】
上記のように、乾燥した各原料粉を、その組成比を変えて秤量した後に、結合剤,可塑剤,分散剤とともに溶媒中に添加し、十分に混合した後に脱泡し、成分組成が異なる複数種類の原料スラリーを調製する。各原料スラリーの粘度は2000〜3000cPの範囲に調整することが好ましい。原料スラリーの粘度が2000cP未満と低い場合には、この原料スラリーを成形して得られるグリーンシートの構造強度が不足してハンドリング特性が低下するとともに、成形性も悪化する。一方、スラリーの粘度が3000cPを超えた場合においても成形性が低下し、均一な厚さを有するグリーンシートが得られなくなる。
【0019】
本願発明に係る固体電解質型燃料電池用セルの燃料極の製造方法においては、まず上記のように成分組成が異なる複数種類の原料スラリーを調製する工程と、その各原料スラリーを成形して成分組成が異なる複数種類のグリーンシートを調製する工程とを有する。
【0020】
各グリーンシートに対応する原料スラリーの種類数は、特に限定されないが、最終的に得られる燃料極の厚さ方向の組成変化を滑かにするために、3〜5種類にすることが好ましい。
【0021】
また、原料スラリーの成形法についても、特に限定されず、汎用のドクターブレード法、スラリーディッピング法などの各種シート成形法でグリーンシートを形成することが可能である。さらに、各グリーンシートの厚さは最終的に形成される燃料極の厚さ(通常40〜70μm)にもよるが、やはり燃料極の厚さ方向の組成変化を滑かにするために20μm以下が好ましい。
【0022】
次に、上記のように得られた各グリーンシートを、その成分組成が厚さ方向に順次変化するように積層して積層体を形成する。すなわち、電解質層に接触する側にはZrO2 などの低熱膨張成分を多く含むグリーンシートを配置する一方、燃料と接触する側にはNiOなどの高導電成分を相対的に多く含むグリーンシートを配置し、その中間部には中間組成のグリーンシートを配置するように順次積層する。なお、これら燃料極を構成する各グリーンシートを、電解質層を構成するグリーンシートと一体に積層して、さらに燃料極と電解質層とを同時焼成(共焼成)して一体化してもよい。
【0023】
次に上記のように調製したグリーンシートの積層体を、溶媒雰囲気中で所定時間保持する。具体的には、グリーンシートに含有されている溶媒が揮散しないようらに、積層体をビニール袋等の収納袋に収容して出入口をシールした状態で保持する。
【0024】
このように溶媒雰囲気中で所定時間保持することにより、隣接したグリーンシートに含有されていた溶媒が揮散することがなく、さらに各グリーンシートの界面において溶媒および構成成分が相互に拡散して浸透するため、界面における急激な組成変化が緩和されて厚さ方向に連続的な濃度勾配が形成されると同時に、組織の均質化(なじみ)が進行し、実質的に界面が存在しない組織形状となる。その結果、乾燥・焼成後においても、界面が存在せず、構成成分の連続した濃度勾配を有する燃料極が形成される。
【0025】
なお、上記のように溶媒雰囲気中で積層体を保持する際に、積層体を厚さ方向に均一に加圧した状態で保持操作を行うことにより、上記の濃度勾配の連続化、組織の均質化(なじみ)効果および界面の消失効果をより高めることが可能である。具体的な加圧方法としては収納袋内に収容して密封した積層体上面に平板を介して重錘を載置する操作で十分である。
【0026】
また、上記溶媒雰囲気中で積層体を保持する時間は、室温下で1昼夜(24時間)以上であることが望ましい。この保持時間が24時間未満であると、積層体の各界面での相互拡散が不十分となり、濃度勾配の連続化、組織の均質化等の効果が得られにくい。
【0027】
次に上記のように溶媒雰囲気中で保持された積層体は、大気中で室温下で乾燥され、さらに室温でグリーンシートが堅くなるまで十分に乾燥される。さらに乾燥された積層体は所定の燃料極サイズに切断された後に、乾燥され、さらに高温焼成炉において温度1100〜1500℃で3〜6時間焼成されて燃料極が形成される。
【0028】
上記構成に係る固体電解質型燃料電池用セルの燃料極の製造方法によれば、成分組成が異なる複数種類のグリーンシートを積層して形成した積層体を、溶媒雰囲気中で所定時間保持しているため、隣接したグリーンシートに含有されていた溶媒が揮散することがなく、さらに各グリーンシートの界面において溶媒および構成成分が相互に拡散して浸透するため、界面における急激な組成変化が緩和されて厚さ方向に連続的な濃度勾配が形成されると同時に、組織の均質化(なじみ)が進行し、実質的に界面が存在しない組織形状となる。その結果、乾燥・焼成後においても、界面が存在せず、構成成分の連続した濃度勾配を有する燃料極を低コストで製造することが可能になる。
【0029】
【発明の実施の形態】
次に本発明の実施形態について添付図面を参照して具体的に説明する。
【0030】
表1に示すように、燃料極および電解質層を形成するための高導電成分として、平均粒径2μmの酸化ニッケル(NiO)原料粉、低膨張性成分として平均粒径0.4μmのイットリア安定化ジルコニア(YSZ:5%Y2 3 −ZrO2 )原料粉,および平均粒径0.2μmのYSZ粉と平均粒径0.5μmのYSZ粉を50重量%(wt.%)ずつ含有するYSZ原料粉を用意し、温度105℃で24時間加熱処理して乾燥した。
【0031】
次に上記平均粒径が0.2μmと0.5μmとの原料粉を等量混合したYSZ原料粉と、NiO原料粉との配合比率を重量比で95:5,90:10,70:30,50:50となるようにそれぞれ配合した4種類の原料混合体を調製した。次に各原料混合体に対して、結合剤としてのカルボキシメチルセルロースを5g、可塑剤としてのジエチルフタレートを10ml,分散剤としてのジエチルアミンを2ml添加し、さらに溶媒としてのイソプロピルアルコールを160ml配合し、十分に混合後、脱泡することにより、粘度が2500〜2800cPである4種類の原料スラリーをそれぞれ調製した。
【0032】
次に得られた4種類のスラリーをドクターブレード法により成形して、それぞれ組成が異なる厚さ18μmの燃料極用グリーンシートを作成した。
【0033】
一方、YSZ原料スラリーをドクターブレード法により成形して厚さ0.67mmの電解質層用グリーンシートを調製した。そして、この電解質層用グリーンシート表面に、前記のように調製した各燃料極用グリーンシートを、そのYSZ含有比率が高い順に積層して、積層体を形成した。
【0034】
次に、溶媒であるイソプロピルアルコールを封入した収容袋内に上記積層体を収容し、収容袋内の余剰雰囲気を排出した後にシールし、さらに収容袋に平板を介して重錘を載置した状態(面圧力=80kg/m2 )で室温で一昼夜(24時間)保持した。その後、積層体を大気中で室温でグリーンシートが堅くなるまで十分に乾燥した。さらに、乾燥機により、温度70℃から100℃まで5時間かけて昇温し、100℃で1時間保持する乾燥処理を行った。
【0035】
次に、乾燥した積層体を円盤形状に切断して多数の燃料極/電解質ハーフセル成形体を形成した。次に、各成形体を100℃の雰囲気温度に調整した乾燥機に入れ48時間乾燥した後に、さらに120℃で48時間乾燥した。さらに、各成形体を高温焼成炉に移し、54℃/Hrの平均昇温速度で加熱し、1300℃の焼結温度で5時間保持した後に、平均降温速度54℃/Hrで冷却することにより、4層の多層構造を有する実施例に係る燃料極を備えたハーフセルを製造した。
【0036】
実施例に係る燃料極を備えたハーフセルは、図2に示すように、直径15mmで厚さが500μmであるYSZ電解質層2とを一体に形成した構造を有する。各ハーフセルの燃料極および電解質層を詳細に目視調査しても、割れや剥離は殆ど観察されなかった。
【0037】
図1は、実施例に係る多層燃料極を備えたハーフセル(電池セル)の断面の粒子構造を示す電子顕微鏡写真である。図1からも明らかなように、実施例に係る燃料極においては、成形体の段階では多層(4層)構造を有しているにも拘らず、焼成後においては組織の均質化(なじみ)が十分に進行して実質的に界面が存在しない組織構造が得られることが確認できた。
【0038】
比較例1
実施例において、積層体を溶媒雰囲気中で一昼夜保持する操作を実施しない点以外は実施例と同一条件で乾燥・焼成処理を実施することにより、実施例と同一寸法を有する燃料極を備えたハーフセルを製造した。
【0039】
しかしながら、比較例1に係る燃料極においては、グリーンシートを製造した直後から、各シートの表面部において溶媒の揮散が始まり、シート表面の硬化が進行していたために、積層界面での拡散による組織の均質化が十分に進行せず、焼成後においても界面がそのまま残り、かつ割れおよび剥離が多発したことから、電池構成要素としての実用化は困難であることが改めて確認できた。
【0040】
次に従来製法によって形成した燃料極と本願製法による燃料極との比較を行うために、以下のような比較例2〜3に係る燃料極を製造した。
【0041】
比較例2
表1に示すように実施例で使用したNiO粉末と平均粒径0.4μmのYSZ原料粉を重量比で60:40の割合で配合した原料混合体100gに対して、結合剤としてのポリビニルブチラール樹脂の代りにアクリル樹脂を5gとその他実施例で使用した溶媒,可塑剤,分散剤を配合して原料スラリーを調製した。この原料スラリーをドクターブレード法で処理して厚さ70μmの燃料極用グリーンシートを調製した。
【0042】
一方、平均粒径が0.4μmのYSZ原料粉から成る電解質層用グリーンシートを用意し、この表面に上記燃料極用グリーンシートを積層し、2層構造のハーフセル成形体とした。さらに得られたハーフセル成形体について、焼成時の平均昇降温速度を186℃/Hrとした点以外は実施例と同一条件で乾燥、切断した後に焼成することにより、比較例2に係る厚さ50μmの単層の燃料極を有するハーフセルを製造した。
【0043】
この比較例2に係る単層の燃料極は、厚さが50μmである点以外は、図2に示す実施例の燃料極と同一寸法・形状を有している。
【0044】
比較例3
一方、下記表1に示すように、実施例において使用したNiO原料粉とYSZ原料粉との配合割合を重量比で60:40に設定した原料混合体から厚さ70μmのグリーンシートを調製した点、この単層の燃料極用グリーンシートを、図3に示すように、電解質層用グリーンシートに帯状に貼り付けた点および貼り付けた後には溶媒雰囲気中での保持を実施しない点以外は実施例と同一条件で乾燥,切断,焼成処理を実施することにより、比較例3に係る単層の燃料極を有するハーフセルを製造した。
【0045】
【表1】

Figure 0004232216
【0046】
比較例3に係る燃料極を備えたハーフセルは、図3に示すように、厚さが50μmで単層で、かつ帯状の燃料極1aと、直径が15mmで厚さが500μmであるYSZ電解質層2aとを一体化した構造を有する。また、電解質層2aと帯状の燃料極1aとの境界部には段差が存在する。
【0047】
次に、燃料極を製造した段階で不良率が極めて大きい比較例1を除き、実施例および比較例2,3に係る燃料極の耐久性および電解質層との適合性を評価するために、以下のような比較試験を実施した。
【0048】
まず、実施例および比較例2,3において調製した50個のハーフセルについて、室温から100℃/Hrの昇温速度で1100℃まで加熱して3時間保持した後に100℃/Hrの降温速度で室温まで冷却する熱サイクルを繰り返して付加するヒートサイクル試験を還元雰囲気中で実施した。そして、剥離や割れなどの不良が発生するヒートサイクル数から試料全数に不良が発生するまでのヒートサイクル数を測定するとともに、試験後における割れや剥離のパターンをSEMで観察して、下記表2に示す結果を得た。
【0049】
【表2】
Figure 0004232216
【0050】
上記表2に示す結果から明らかなように、本実施例に係る燃料極においては、30回までのヒートサイクル負荷条件では表面割れも界面剥離も生じなかったが、ヒートサイクルが30回を超えると、電解質層の端面から僅かに割れが発生したに過ぎず、本実施例に係る製造方法によって燃料極の組成分布を傾斜化し多層化することによって、耐剥離・割れ特性が大幅に改善されることが判明した。
【0051】
一方、比較例2においては、1回のヒートサイクルで燃料極表層に亀甲模様の割れが多数均一に発生したが、その割れは表層部にとどまり、電解質層には達していなかった。しかしながら、5回のヒートサイクルでは、殆どの表面割れは電解質層との界面まで達しており、耐久性が低いことが判明した。
【0052】
また、比較例3においては、比較例2と比較すると、燃料極の表面割れの数は極めて少なかった。しかしながら、ヒートサイクルが10回を超えると、燃料極端部から割れが電解質側に界面に対して約45°の角度で発生し(電解質の段差割れ)、その後、割れは界面直下を界面に対して平行に進展した(界面直下の電解質の平面割れ)。電解質の平面割れは、界面から50〜75μm下部で進展していた。電解質の段差割れの発生により平面割れが進展し、燃料極と電解質の界面剥離へと進展が変化したと思われる剥離も数は少ないが観察された。
【0053】
次に、実施例および比較例2,3のハーフセルについて、昇降温速度25℃/Hrで1200℃まで加熱して100〜500時間保持する高温加速試験を実施し、各保持時間における燃料極および電解質層の剥離・割れパターンをSEMで観察して下記表3に示す結果を得た。
【0054】
【表3】
Figure 0004232216
【0055】
上記表3に示す結果から明らかなように、本実施例に係る燃料極においては、高温保持300時間までは、殆ど剥離・割れは発生せず、優れた耐久性を有していることが実証された。しかしながら、300時間を超えると、ヒートサイクル試験と同様な割れが、電解質の端面から発生していた。また燃料極膜間の層間剥離が、セル周辺部の端部から僅かに進展していた。
【0056】
一方、比較例2においては、1200℃で100時間保持した段階で、燃料極の表面に不規則な亀甲模様の粗大な表面割れが発生し、多くの表面割れが電解質層との界面に達し、割れを起点として、燃料極と電解質層の界面の剥離が発生していた。界面剥離の進展とともに、燃料極膜は捲れ上がり、割れ開口部は広がった(ヒートサイクルによる表面割れに比べて、割れ開口部の幅は著しく広い)。これらの割れと剥離は、燃料極中のNiのシンタリングに起因する凝集力(引張り)によって生じるためと考えられる。
【0057】
また、比較例3においては、比較例2と比較して、燃料極の表面割れの数は極めて少なかった。ヒートサイクル試験で生じたような、段差割れを起点とする界面直下の電解質の平面割れや、段差部(燃料極端部)を起点すとる界面剥離も見られた。一方、前述の試験結果では観察されなかったが、燃料極の表面割れが電解質界面まで達した後、界面剥離を発生することなく、電解質内の割れが進展する場合(貫通割れ)も多数観察され、高温耐久性が低いことが確認された。
【0058】
次に、実施例および比較例2,3のハーフセルについて、燃料極と電解質膜との接合強度(密着力)を評価するために、下記のようなスクラッチ試験を実施した。
【0059】
AEセンサー付き自動スクラッチ試験機(CSEM社製)を用い、燃料極膜面上にダイアモンド圧子(半径0.2mm)を接触させ、一定の速度で加重を増加させながら、セルを移動させることにより、摩擦力の変化、摩擦係数の変化、AEの発生を計測した。測定条件は、負荷速度100N/min 、テーブルスピード(移動速度)10mm/min とした。また、試験後は顕微鏡、SEMでスクラッチ痕および燃料極膜の剥離した箇所を観察した。
【0060】
すなわち、スクラッチ試験で膜に加重を増大させていくと、摩擦係数が大きく変化する加重(臨界加重1とする)とともに、AEが急激に検出される加重(臨界加重2とする)が観察される。これらの加重は膜が剥離し始めるときの加重と関連する。そこで、これらの加重を測定するとともに、スクラッチ試験後、顕微鏡観察を行い、膜の剥離が開始したと判断される箇所の加重(臨界加重3とする)をも測定して、下記表4に示す結果を得た。
【0061】
【表4】
Figure 0004232216
【0062】
上記表4に示す結果から明らかなように、比較例2の燃料極においては、顕微鏡で剥離が観察される加重(臨界加重3)は7N以下であり、摩擦係数が大きく変化した加重(臨界加重1)7Nが剥離に関連する加重であった。
【0063】
一方、比較例3の燃料極においては、臨界加重1,2,3が、いずれもほぼ同じ数値であり、剥離が発生する臨界加重は45〜49Nと判断される。なお、比較例3では、剥離が生じた後、そのままスクラッチ試験を続けると、加重の増大により直ちに電解質に割れ(平面状割れ)が発生した。
【0064】
一方、実施例に係る燃料極においては、AEが急激に発生し始める加重は55Nであり、顕微鏡で剥離らしき現象が観察された加重は58Nであったが、58Nでは電解質にも割れが生じており、剥離だけが観察される加重を確認することは不可能であった。したがって、実際の剥離臨界加重は58N以上と判断される。また、実施例のスクラッチ試験では、摩擦係数は加重の増大に従って一様に増大し(62Nまで測定)、摩擦係数が急激に大きく変化することはなかった。実施例における上記の現象は、燃料極組成が厚さ方向に徐々に変化し、電解質に近似した組成になっていくためである。以上のことから、膜の密着力は、
実施例(多層膜)>比較例3>>比較例2
の順で大きいと判断される。
【0065】
実施例(多層膜)の密着力が高い理由は、電解質に接する燃料膜のYSZ混合比が高いため、YSZ(電解質)とYSZ(燃料極)との間の結合が比較例より強いためと、電解質に接する燃料極膜の気孔率が小さかったため、その分、電解質と良く結合しているためと推定される。すなわち、YSZ/YSZ間の結合力はYSZ/Ni間の結合力より大きいため、多層電極の電解質層と燃料極との界面では、燃料極面でのYSZが占める割合が大きいため密着力も大きくなった。
【0066】
【発明の効果】
以上説明の通り、本発明に係る固体電解質型燃料電池用セルの燃料極の製造方法によれば、成分組成が異なる複数種類のグリーンシートを積層して形成した積層体を、溶媒雰囲気中で所定時間保持しているため、隣接したグリーンシートに含有されていた溶媒が揮散することがなく、さらに各グリーンシートの界面において溶媒および構成成分が相互に拡散して浸透するため、界面における急激な組成変化が緩和されて厚さ方向に連続的な濃度勾配が形成されると同時に、組織の均質化が進行し、実質的に界面が存在しない組織形状となる。その結果、乾燥・焼成後においても、界面が存在せず、構成成分の連続した濃度勾配を有する燃料極を低コストで製造することが可能になる。
【図面の簡単な説明】
【図1】実施例に係る多層燃料極を備えた電池セルの断面の粒子構造を示す電子顕微鏡写真。
【図2】実施例に係る多層燃料極を備えた電池セルの形状例を示す斜視図。
【図3】比較例3に係る単層の燃料極を備えた電池セルの形状例を示す斜視図。
【符号の説明】
1,1a 燃料極
2,2a 電解質層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a fuel electrode for a solid oxide fuel cell, and in particular, a multilayered fuel electrode having a small difference in thermal expansion coefficient from the electrolyte layer and having a composition change in the thickness direction is provided between layers. Manufacture of a fuel electrode of a cell for a solid oxide fuel cell that can be formed efficiently without forming an interface and can significantly reduce the manufacturing cost compared to the case of manufacturing by a conventional gas phase method Regarding the method.
[0002]
[Prior art]
Various fuel cells have been developed and put into practical use as direct current power generators that allow a fuel such as hydrogen and an oxidant such as oxygen in the air to react electrochemically and directly extract the reaction energy as electricity. In this fuel cell, a pair of porous electrodes (fuel electrode, air electrode) are usually disposed with an electrolyte layer interposed therebetween, and a fuel gas such as hydrogen is brought into contact with the back surface of one electrode (fuel electrode). An oxidant gas such as air or oxygen is brought into contact with the back surface of the electrode (air electrode), and electric energy is taken out between the electrodes by utilizing an electrochemical reaction generated at this time. In the fuel cell configured as described above, as long as the fuel gas and the oxidant gas are supplied, electric energy can be extracted with high conversion efficiency.
[0003]
Depending on the type of electrolyte used and the operating temperature, the fuel cell has been put into practical use, such as a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a high temperature solid electrolyte fuel cell (SOFC). In particular, stabilized zirconia (ZrO2Solid oxide fuel cells (SOFCs) using solid metal oxides such as) are currently becoming widespread as fuel cells and electrolysis cells for power generation because of their limited battery shape. is there.
[0004]
In general, the cell characteristics and durability of a fuel electrode, which is a constituent element of a solid oxide fuel cell, are determined by its conductivity and the consistency of the thermal expansion coefficient with the electrolyte layer. That is, as the conductivity of the fuel electrode increases, the coefficient of thermal expansion increases, and the zirconia (ZrO) constituting the electrolyte layer is increased.2) And the thermal expansion coefficient, the internal stress is likely to occur due to the load of the thermal cycle, the fuel electrode is cracked and peeled, and the cell reaction is difficult to proceed. On the other hand, when the thermal expansion coefficient of the fuel electrode is brought close to the electrolyte layer constituent material, the conductivity is lowered and the electrode performance is drastically lowered.
[0005]
In order to satisfy both of the above two contradictory characteristics, a highly conductive component such as nickel is disposed on the surface portion where the fuel electrode is in contact with the fuel, while the portion in contact with the electrolyte layer is close to an electrolyte layer constituent material such as zirconia. A fuel electrode having a so-called gradient composition (concentration gradient) in which a low thermal expansion material is disposed and the composition ratio of the high conductivity component and the low thermal expansion component changes in the thickness direction has been put into practical use. Conventionally, a fuel electrode having such a gradient composition has been generally manufactured by a gas phase method such as a plasma spraying method. According to this vapor phase method, there is an advantage that a fuel electrode having a gradient composition can be formed only by sequentially spraying and laminating raw materials obtained by mixing high conductivity components and low thermal expansion components with different composition ratios.
[0006]
[Problems to be solved by the invention]
However, in the case of manufacturing a fuel electrode having a gradient composition using a gas phase method such as the above-mentioned plasma spraying method, the operating cost of the spraying equipment is high and the equipment cost itself is extremely expensive. There has been a problem that the manufacturing cost has increased significantly and it is difficult to manufacture an inexpensive fuel electrode.
[0007]
The inventors of the present application pay attention to a wet method that is highly feasible for cost reduction from the above-mentioned problem of high cost, is a high-performance fuel electrode having both high conductivity and low thermal expansion characteristics, and a gradient composition We pursued the possibility of manufacturing fuel electrodes with a wet process. However, in general, in the wet method in which the constituent material slurry is molded and then sintered, it has been difficult to increase the thickness of the fuel electrode and to make the composition gradient.
[0008]
Therefore, the inventor of the present application prepares a plurality of green sheets in which the composition ratio of the high conductive component and the low thermal expansion component is sequentially changed, and the composition ratio of each green sheet is sequentially changed in the thickness direction, that is, the gradient composition. After laminating so as to have a multilayer structure, dry firing was performed to prepare a fuel electrode having a multilayer structure.
[0009]
However, as described above, the green sheets having different composition ratios (mixing ratios) have different expansion coefficients and shrinkage coefficients. Therefore, when these green sheets are laminated and fired, they are caused by the difference in the shrinkage ratios. Thus, it is difficult to firmly bond the sheets to each other, and there is a difficulty that delamination or cracking is likely to occur.
[0010]
In addition, when a plurality of green sheets are laminated, an interface is formed between the layers, and it is extremely difficult to continuously form a concentration gradient (gradient composition) of each component. There has been a problem that it is difficult to produce a fuel electrode with good durability.
[0011]
The present invention has been made in order to solve the above-mentioned problems. A fuel electrode having a multilayer structure in which the difference in thermal expansion coefficient from the electrolyte layer is small and the composition of the component changes in the thickness direction is formed, and an interface between the layers is formed. Provided is a method for manufacturing a fuel electrode for a solid oxide fuel cell, which can be formed efficiently without the need for manufacturing and can significantly reduce the manufacturing cost compared to the case of manufacturing by a conventional gas phase method. The purpose is to do.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the inventor of the present application has studied various measures that can prevent the formation of an interface between layers that has a great influence on battery characteristics and durability, particularly in a fuel electrode having a gradient composition. As a result, by holding a laminated body in which a plurality of green sheets having different compositions are laminated for a predetermined time in a solvent atmosphere, adjacent green sheets can be blended with each other. It was found that a good fuel electrode that changes almost continuously in the thickness direction and has no interface formation can be obtained for the first time. The present invention has been completed based on the above findings.
[0013]
  That is, the method for producing a fuel electrode of a solid oxide fuel cell according to the present invention comprises mixing a raw material mixture in which the composition ratio of two or more component raw material powders constituting the fuel electrode is changed with a solvent. Preparing a plurality of types of raw material slurries with different composition, forming a plurality of raw material slurries with different component compositions to prepare a plurality of types of green sheets with different component compositions, and preparing each obtained green sheet as a component composition Forming a laminate by sequentially laminating in the thickness direction, and maintaining the obtained laminate in a solvent atmosphere for a predetermined time, so that each adjacent green sheet is made to conform to each other. And drying the obtained laminate, followed by firing.The laminate is kept in a solvent atmosphere for 24 hours or more in a state of being uniformly pressurized in the thickness direction.It is characterized by that.
[0014]
  Moreover, in the said manufacturing method, the thickness of each green sheet is 20 micrometers or less.Is preferred.
[0015]
Furthermore, in the said manufacturing method, it is good to set the viscosity of a raw material slurry in the range of 2000-3000 cP.
[0016]
Here, the raw material slurry used in the method of the present invention is not particularly limited, and a conductive component such as nickel oxide (NiO) and zirconia (ZrO).2) And the like are mixed with a binder (binder), a plasticizer, and a dispersant in a solvent in a uniform dispersion and mixed together. The raw material powder is dried at 105 ° C. for about 24 hours in order to reduce moisture and impurities.
[0017]
Although it does not specifically limit as said solvent, For example, isopropyl alcohol, ethanol, acetone, or these mixed solutions can be used. In addition, a binder (binder) is added to maintain the molded shape of the molded green sheet. For example, carboxymethyl cellulose, polyvinyl ether, polyvinyl butyral resin, ethyl cellulose, acetyl cellulose, etc. can be used. About 2 to 10 g is added to 100 g of powder. As the plasticizer, for example, diethyl phthalate (DEP), dibutyl phthalate (DBP), di-n-butyl phthalate, dioctyl phthalate (DOP) or the like can be used, and 10 to 40 ml is added per 100 g of slurry raw material powder. Furthermore, as a dispersing agent, for example, diethylamine, triethylamine, OP-83RAT, etc. can be used, and it is added at a rate of 2 to 10 ml per 100 g of slurry raw material powder.
[0018]
As described above, each dried raw material powder is weighed by changing its composition ratio, then added to a solvent together with a binder, a plasticizer and a dispersant, thoroughly mixed, defoamed, and different in component composition A plurality of types of raw material slurries are prepared. It is preferable to adjust the viscosity of each raw material slurry to a range of 2000 to 3000 cP. When the viscosity of the raw material slurry is as low as less than 2000 cP, the structural strength of the green sheet obtained by forming this raw material slurry is insufficient, the handling characteristics are lowered, and the moldability is also deteriorated. On the other hand, when the viscosity of the slurry exceeds 3000 cP, the moldability is lowered and a green sheet having a uniform thickness cannot be obtained.
[0019]
In the method for producing a fuel electrode of a solid oxide fuel cell according to the present invention, first, a step of preparing a plurality of types of raw material slurries having different component compositions as described above, and forming each of the raw material slurries to form a component composition And a step of preparing a plurality of types of green sheets different from each other.
[0020]
The number of types of raw material slurry corresponding to each green sheet is not particularly limited, but is preferably 3 to 5 in order to smooth the composition change in the thickness direction of the fuel electrode finally obtained.
[0021]
Also, the forming method of the raw material slurry is not particularly limited, and the green sheet can be formed by various sheet forming methods such as a general-purpose doctor blade method and a slurry dipping method. Furthermore, although the thickness of each green sheet depends on the final thickness of the fuel electrode (usually 40 to 70 μm), it is still less than 20 μm to smooth the composition change in the thickness direction of the fuel electrode. Is preferred.
[0022]
Next, the green sheets obtained as described above are laminated so that the component composition sequentially changes in the thickness direction, thereby forming a laminate. That is, on the side in contact with the electrolyte layer, ZrO2A green sheet containing a large amount of a low thermal expansion component such as NiO is disposed on the side in contact with the fuel, and a green sheet containing a relatively large amount of a highly conductive component such as NiO is disposed on the intermediate portion. Are sequentially stacked. Each green sheet constituting the fuel electrode may be laminated integrally with the green sheet constituting the electrolyte layer, and the fuel electrode and the electrolyte layer may be simultaneously fired (co-fired) to be integrated.
[0023]
Next, the green sheet laminate prepared as described above is held in a solvent atmosphere for a predetermined time. Specifically, the laminated body is housed in a storage bag such as a plastic bag so that the solvent contained in the green sheet is not volatilized and is held in a state where the doorway is sealed.
[0024]
In this way, by holding in a solvent atmosphere for a predetermined time, the solvent contained in the adjacent green sheet is not volatilized, and the solvent and constituent components diffuse and penetrate each other at the interface of each green sheet. Therefore, the rapid composition change at the interface is relaxed and a continuous concentration gradient is formed in the thickness direction, and at the same time, the homogenization (familiarization) of the tissue progresses, resulting in a tissue shape that does not substantially have an interface. . As a result, even after drying and firing, there is no interface, and a fuel electrode having a continuous concentration gradient of the constituent components is formed.
[0025]
In addition, when holding the laminate in the solvent atmosphere as described above, the holding operation is performed in a state where the laminate is uniformly pressurized in the thickness direction, so that the above-described concentration gradient can be made continuous and the tissue can be homogenized. It is possible to further increase the effect of fading (familiarity) and the disappearance effect of the interface. As a specific pressurizing method, an operation of placing a weight via a flat plate on the upper surface of the laminated body housed in a storage bag and sealed is sufficient.
[0026]
Further, the time for holding the laminate in the solvent atmosphere is preferably 1 day and night (24 hours) or more at room temperature. When this holding time is less than 24 hours, mutual diffusion at each interface of the laminate becomes insufficient, and it is difficult to obtain effects such as a continuous concentration gradient and a homogenized structure.
[0027]
Next, the laminate held in the solvent atmosphere as described above is dried in the air at room temperature, and further sufficiently dried at room temperature until the green sheet becomes firm. Further, the dried laminate is cut into a predetermined fuel electrode size, dried, and further fired at a temperature of 1100 to 1500 ° C. for 3 to 6 hours to form a fuel electrode.
[0028]
According to the method for manufacturing a fuel electrode of a solid oxide fuel cell according to the above configuration, a laminate formed by laminating a plurality of types of green sheets having different component compositions is held in a solvent atmosphere for a predetermined time. Therefore, the solvent contained in the adjacent green sheet is not volatilized, and the solvent and the constituent components diffuse and penetrate each other at the interface of each green sheet. A continuous concentration gradient is formed in the thickness direction, and at the same time, tissue homogenization (familiarization) proceeds, resulting in a tissue shape with substantially no interface. As a result, even after drying and firing, it is possible to manufacture a fuel electrode having no interface and having a continuous concentration gradient of the constituent components at a low cost.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be specifically described with reference to the accompanying drawings.
[0030]
As shown in Table 1, nickel oxide (NiO) raw material powder having an average particle size of 2 μm as a highly conductive component for forming a fuel electrode and an electrolyte layer, and yttria stabilization having an average particle size of 0.4 μm as a low expansion component Zirconia (YSZ: 5% Y2OThree-ZrO2) Prepare YSZ raw material powder and YSZ raw material powder containing 50% by weight (wt.%) Of YSZ powder having an average particle diameter of 0.2 μm and YSZ powder having an average particle diameter of 0.5 μm, and heating at 105 ° C. for 24 hours. Processed and dried.
[0031]
Next, the blending ratio of the YSZ raw material powder in which equal amounts of the raw material powder having the average particle diameter of 0.2 μm and 0.5 μm are mixed with the NiO raw material powder is 95: 5, 90:10, 70:30 in weight ratio. , 50:50, four kinds of raw material mixtures were prepared. Next, 5 g of carboxymethyl cellulose as a binder, 10 ml of diethyl phthalate as a plasticizer, 2 ml of diethylamine as a dispersant, and 160 ml of isopropyl alcohol as a solvent are added to each raw material mixture. After mixing, 4 types of raw material slurries having a viscosity of 2500 to 2800 cP were prepared respectively by defoaming.
[0032]
Next, the obtained four types of slurries were molded by a doctor blade method to produce a green sheet for a fuel electrode with a thickness of 18 μm, each having a different composition.
[0033]
On the other hand, a YSZ raw material slurry was molded by a doctor blade method to prepare a green sheet for electrolyte layer having a thickness of 0.67 mm. And each green sheet for fuel electrodes prepared as mentioned above was laminated | stacked on the surface of this green sheet for electrolyte layers in order with the high YSZ content ratio, and the laminated body was formed.
[0034]
Next, the laminated body is accommodated in an accommodation bag in which isopropyl alcohol as a solvent is enclosed, the excess atmosphere in the accommodation bag is discharged and then sealed, and a weight is placed on the accommodation bag via a flat plate (Surface pressure = 80kg / m2) At room temperature for 24 hours. Thereafter, the laminate was sufficiently dried in the atmosphere at room temperature until the green sheet became firm. Furthermore, the drying process was performed by raising the temperature from 70 ° C. to 100 ° C. over 5 hours and holding at 100 ° C. for 1 hour.
[0035]
Next, the dried laminate was cut into a disk shape to form a large number of fuel electrode / electrolyte half-cell molded bodies. Next, each molded body was placed in a drier adjusted to an atmospheric temperature of 100 ° C. and dried for 48 hours, and then further dried at 120 ° C. for 48 hours. Further, each molded body was transferred to a high-temperature firing furnace, heated at an average heating rate of 54 ° C./Hr, held at a sintering temperature of 1300 ° C. for 5 hours, and then cooled at an average cooling rate of 54 ° C./Hr. A half cell having a fuel electrode according to an example having a four-layer structure was manufactured.
[0036]
As shown in FIG. 2, the half cell provided with the fuel electrode according to the example has a structure in which a YSZ electrolyte layer 2 having a diameter of 15 mm and a thickness of 500 μm is integrally formed. Even when the fuel electrode and the electrolyte layer of each half cell were visually inspected in detail, almost no cracking or peeling was observed.
[0037]
FIG. 1 is an electron micrograph showing a particle structure of a cross section of a half cell (battery cell) including a multilayer fuel electrode according to an example. As is clear from FIG. 1, the fuel electrode according to the example has a multilayer structure (four layers) at the stage of the molded body, but the structure is homogenized (familiar) after firing. It was confirmed that a structure having substantially no interface was obtained by sufficiently proceeding.
[0038]
Comparative Example 1
In the example, a half cell provided with a fuel electrode having the same dimensions as the example by performing a drying and firing process under the same conditions as the example except that the operation of holding the laminate in the solvent atmosphere all day and night is not performed. Manufactured.
[0039]
However, in the fuel electrode according to Comparative Example 1, since the volatilization of the solvent started on the surface portion of each sheet immediately after the green sheet was manufactured and the sheet surface was hardened, the structure due to diffusion at the lamination interface The homogenization of the battery did not progress sufficiently, the interface remained as it was after firing, and cracking and peeling occurred frequently, so that it was confirmed again that it was difficult to put it into practical use as a battery component.
[0040]
Next, in order to compare the fuel electrode formed by the conventional manufacturing method with the fuel electrode manufactured by the present manufacturing method, the following fuel electrodes according to Comparative Examples 2 to 3 were manufactured.
[0041]
Comparative Example 2
As shown in Table 1, polyvinyl butyral as a binder with respect to 100 g of a raw material mixture in which NiO powder used in Examples and YSZ raw material powder having an average particle diameter of 0.4 μm were blended at a weight ratio of 60:40 A raw material slurry was prepared by blending 5 g of an acrylic resin in place of the resin and the solvent, plasticizer, and dispersant used in the other examples. This raw material slurry was treated by a doctor blade method to prepare a fuel electrode green sheet having a thickness of 70 μm.
[0042]
On the other hand, a green sheet for an electrolyte layer made of YSZ raw material powder having an average particle diameter of 0.4 μm was prepared, and the above-mentioned green sheet for a fuel electrode was laminated on this surface to form a two-layered half-cell molded body. Further, the obtained half-cell molded body was dried and cut under the same conditions as in the Examples except that the average temperature rising and cooling rate during firing was 186 ° C./Hr, and then fired, and the thickness according to Comparative Example 2 was 50 μm. A half cell having a single-layer fuel electrode was manufactured.
[0043]
The single layer fuel electrode according to Comparative Example 2 has the same dimensions and shape as the fuel electrode of the example shown in FIG. 2 except that the thickness is 50 μm.
[0044]
Comparative Example 3
On the other hand, as shown in Table 1 below, a green sheet having a thickness of 70 μm was prepared from a raw material mixture in which the mixing ratio of the NiO raw material powder and the YSZ raw material powder used in the examples was set to 60:40 by weight ratio. As shown in FIG. 3, this single-layer fuel electrode green sheet was applied to the electrolyte layer green sheet except that it was affixed in a strip shape and not held in a solvent atmosphere after being applied. A half cell having a single-layer fuel electrode according to Comparative Example 3 was manufactured by performing drying, cutting, and firing treatment under the same conditions as in the example.
[0045]
[Table 1]
Figure 0004232216
[0046]
As shown in FIG. 3, the half cell provided with the fuel electrode according to Comparative Example 3 is a single layer having a thickness of 50 μm, a strip-shaped fuel electrode 1a, and a YSZ electrolyte layer having a diameter of 15 mm and a thickness of 500 μm. 2a is integrated. There is a step at the boundary between the electrolyte layer 2a and the strip-shaped fuel electrode 1a.
[0047]
Next, in order to evaluate the durability of the fuel electrode and the compatibility with the electrolyte layer according to Examples and Comparative Examples 2 and 3 except for Comparative Example 1 in which the defect rate is extremely large at the stage where the fuel electrode was manufactured, A comparative test was conducted.
[0048]
First, 50 half-cells prepared in Examples and Comparative Examples 2 and 3 were heated from room temperature to 1100 ° C. at a temperature increase rate of 100 ° C./Hr and held for 3 hours, and then at room temperature at a temperature decrease rate of 100 ° C./Hr. A heat cycle test was repeatedly performed in a reducing atmosphere by repeatedly applying a heat cycle of cooling to a low temperature. And while measuring the number of heat cycles from the number of heat cycles in which defects such as peeling and cracking occur to the occurrence of defects in the total number of samples, the crack and peeling patterns after the test were observed with SEM, and the following Table 2 The result shown in was obtained.
[0049]
[Table 2]
Figure 0004232216
[0050]
As is clear from the results shown in Table 2 above, in the fuel electrode according to this example, neither surface cracking nor interfacial peeling occurred under the heat cycle load condition up to 30 times, but when the heat cycle exceeded 30 times, Only slight cracks occurred from the end face of the electrolyte layer, and the anti-peeling / cracking characteristics are greatly improved by inclining the multilayer composition of the fuel electrode by the manufacturing method according to this example and making it multilayered. There was found.
[0051]
On the other hand, in Comparative Example 2, many tortoiseshell-shaped cracks occurred uniformly in the fuel electrode surface layer in one heat cycle, but the cracks remained in the surface layer portion and did not reach the electrolyte layer. However, in five heat cycles, most of the surface cracks reached the interface with the electrolyte layer, and it was found that the durability was low.
[0052]
In Comparative Example 3, the number of surface cracks on the fuel electrode was extremely small as compared with Comparative Example 2. However, if the heat cycle exceeds 10 times, cracks from the extreme fuel part occur on the electrolyte side at an angle of about 45 ° with respect to the interface (electrolyte step cracks), and then the crack occurs immediately below the interface with respect to the interface. Progressed in parallel (planar cracking of electrolyte just under the interface). The planar crack of the electrolyte progressed 50 to 75 μm below the interface. Plane cracks progressed due to the occurrence of step cracks in the electrolyte, and a small number of peelings that seemed to have changed to the peeling between the fuel electrode and the electrolyte were observed.
[0053]
Next, for the half cells of Examples and Comparative Examples 2 and 3, a high temperature acceleration test was performed in which the temperature was increased to 1200 ° C. at a temperature increase / decrease rate of 25 ° C./Hr and held for 100 to 500 hours. The peeling / cracking pattern of the layer was observed with SEM, and the results shown in Table 3 below were obtained.
[0054]
[Table 3]
Figure 0004232216
[0055]
As is clear from the results shown in Table 3 above, the fuel electrode according to the present example proved to have excellent durability with almost no peeling or cracking until 300 hours at high temperature. It was done. However, when 300 hours were exceeded, cracks similar to those in the heat cycle test occurred from the end face of the electrolyte. In addition, delamination between the fuel electrode films slightly progressed from the edge of the cell periphery.
[0056]
On the other hand, in Comparative Example 2, when the surface was held at 1200 ° C. for 100 hours, rough surface cracks with irregular turtle shell patterns were generated on the surface of the fuel electrode, and many surface cracks reached the interface with the electrolyte layer. Separation of the interface between the fuel electrode and the electrolyte layer occurred starting from the crack. As the interfacial delamination progressed, the fuel electrode film swelled and the crack opening widened (the width of the crack opening was remarkably wider than the surface crack by heat cycle). It is considered that these cracks and separation are caused by cohesive force (tensile force) caused by Ni sintering in the fuel electrode.
[0057]
Further, in Comparative Example 3, the number of surface cracks of the fuel electrode was extremely small as compared with Comparative Example 2. As seen in the heat cycle test, planar cracks in the electrolyte immediately below the interface starting from the step crack and interfacial delamination starting from the step (extreme fuel portion) were also observed. On the other hand, although not observed in the above test results, many cases where cracks in the electrolyte progress (penetration cracks) are observed without interfacial delamination after the surface crack of the fuel electrode reaches the electrolyte interface. It was confirmed that the high temperature durability was low.
[0058]
Next, in order to evaluate the bonding strength (adhesion force) between the fuel electrode and the electrolyte membrane, the following scratch test was performed on the half cells of Examples and Comparative Examples 2 and 3.
[0059]
By using an automatic scratch tester with an AE sensor (CSEM), a diamond indenter (radius 0.2 mm) is brought into contact with the fuel electrode membrane surface, and the cell is moved while increasing the load at a constant speed. Changes in friction force, friction coefficient, and AE were measured. The measurement conditions were a load speed of 100 N / min and a table speed (moving speed) of 10 mm / min. Further, after the test, the scratch marks and the peeled portions of the fuel electrode film were observed with a microscope and SEM.
[0060]
That is, when the weight of the film is increased in the scratch test, a weight at which the coefficient of friction changes greatly (critical weight 1) and a weight at which AE is detected rapidly (critical weight 2) are observed. . These weights are related to the weight when the film begins to peel. Accordingly, these weights were measured, and after scratch testing, microscopic observation was performed, and the weight at the position where film peeling was judged to be started (critical weight 3) was also measured and shown in Table 4 below. The result was obtained.
[0061]
[Table 4]
Figure 0004232216
[0062]
As is clear from the results shown in Table 4 above, in the fuel electrode of Comparative Example 2, the weight at which peeling was observed with a microscope (critical weight 3) was 7 N or less, and the weight with which the friction coefficient changed significantly (critical weight). 1) 7N was a weight related to peeling.
[0063]
On the other hand, in the fuel electrode of Comparative Example 3, the critical weights 1, 2, and 3 are almost the same numerical value, and the critical weight at which separation occurs is determined to be 45 to 49N. In Comparative Example 3, when the scratch test was continued as it was after peeling occurred, a crack (planar crack) immediately occurred in the electrolyte due to an increase in load.
[0064]
On the other hand, in the fuel electrode according to the example, the weight at which AE started to occur suddenly was 55 N, and the weight at which the phenomenon of peeling was observed with a microscope was 58 N. However, at 58 N, the electrolyte also cracked. It was impossible to confirm the weight at which only peeling was observed. Therefore, the actual peeling critical load is determined to be 58N or more. In the scratch test of the example, the friction coefficient increased uniformly as the load increased (measured up to 62N), and the friction coefficient did not change drastically. The above phenomenon in the example is because the composition of the fuel electrode gradually changes in the thickness direction and becomes a composition that approximates the electrolyte. From the above, the adhesion strength of the film is
Example (Multilayer Film)> Comparative Example 3 >> Comparative Example 2
It is judged to be large in the order of
[0065]
The reason why the adhesion strength of the example (multilayer film) is high is that the YSZ mixing ratio of the fuel film in contact with the electrolyte is high, and therefore the bond between YSZ (electrolyte) and YSZ (fuel electrode) is stronger than the comparative example. This is presumably because the fuel electrode membrane in contact with the electrolyte had a low porosity, so that it was well bonded to the electrolyte. That is, since the bonding force between YSZ / YSZ is larger than the bonding force between YSZ / Ni, adhesion at the interface between the electrolyte layer and the fuel electrode of the multilayer electrode is large because of the large proportion of YSZ at the fuel electrode surface. It was.
[0066]
【The invention's effect】
As described above, according to the method for manufacturing a fuel electrode of a solid oxide fuel cell according to the present invention, a laminate formed by laminating a plurality of types of green sheets having different component compositions is predetermined in a solvent atmosphere. Since it is held for a long time, the solvent contained in the adjacent green sheet will not be volatilized, and the solvent and components will diffuse and penetrate each other at the interface of each green sheet. The change is relaxed and a continuous concentration gradient is formed in the thickness direction, and at the same time, the homogenization of the tissue proceeds, resulting in a tissue shape having substantially no interface. As a result, even after drying and firing, it is possible to manufacture a fuel electrode having no interface and having a continuous concentration gradient of the constituent components at a low cost.
[Brief description of the drawings]
FIG. 1 is an electron micrograph showing the particle structure of a cross section of a battery cell provided with a multilayer fuel electrode according to an example.
FIG. 2 is a perspective view illustrating a shape example of a battery cell including a multilayer fuel electrode according to an embodiment.
3 is a perspective view showing a shape example of a battery cell including a single layer fuel electrode according to Comparative Example 3. FIG.
[Explanation of symbols]
1,1a Fuel electrode
2,2a Electrolyte layer

Claims (3)

燃料極を構成する2種以上の成分原料粉の組成比を変えた原料混合体を溶媒と混合することにより成分組成が異なる複数種類の原料スラリーを調製する工程と、成分組成が異なる各原料スラリーを成形して、成分組成が異なる複数種類のグリーンシートを調製する工程と、得られた各グリーンシートをその成分組成が厚さ方向に順次変化するように積層して積層体を形成する工程と、得られた積層体を溶媒雰囲気中で所定時間保持することにより、隣接した各グリーンシートを相互になじませる工程と、得られた積層体を乾燥後、焼成する工程とを備え、上記積層体を厚さ方向に均一に加圧した状態で溶媒雰囲気中で24時間以上保持することを特徴とする固体電解質型燃料電池用セルの燃料極の製造方法。A step of preparing a plurality of raw material slurries having different component compositions by mixing a raw material mixture in which the composition ratio of two or more component raw material powders constituting the fuel electrode is changed with a solvent, and each raw material slurry having a different component composition Forming a plurality of types of green sheets having different component compositions, and forming a laminate by laminating each of the obtained green sheets so that the component composition sequentially changes in the thickness direction; And the step of allowing the adjacent green sheets to conform to each other by holding the obtained laminate in a solvent atmosphere for a predetermined time, and the step of drying and firing the obtained laminate. Is maintained in a solvent atmosphere for 24 hours or more in a state of being uniformly pressurized in the thickness direction, and a method for producing a fuel electrode for a solid oxide fuel cell. 各グリーンシートの厚さが20μm以下であることを特徴とする請求項1記載の固体電解質型燃料電池用セルの燃料極の製造方法。  2. The method for producing a fuel electrode of a solid oxide fuel cell according to claim 1, wherein the thickness of each green sheet is 20 [mu] m or less. 原料スラリーの粘度が2000〜3000cPであることを特徴とする請求項1記載の固体電解質型燃料電池用セルの燃料極の製造方法。  The method for producing a fuel electrode for a solid oxide fuel cell according to claim 1, wherein the viscosity of the raw slurry is 2000 to 3000 cP.
JP12394698A 1998-04-17 1998-04-17 Method for producing fuel electrode of solid oxide fuel cell Expired - Fee Related JP4232216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12394698A JP4232216B2 (en) 1998-04-17 1998-04-17 Method for producing fuel electrode of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12394698A JP4232216B2 (en) 1998-04-17 1998-04-17 Method for producing fuel electrode of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH11307105A JPH11307105A (en) 1999-11-05
JP4232216B2 true JP4232216B2 (en) 2009-03-04

Family

ID=14873267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12394698A Expired - Fee Related JP4232216B2 (en) 1998-04-17 1998-04-17 Method for producing fuel electrode of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4232216B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10031102C2 (en) * 2000-06-30 2003-03-06 Forschungszentrum Juelich Gmbh Process for producing a composite body, in particular an electrode with temperature-resistant conductivity
JP2006164821A (en) * 2004-12-09 2006-06-22 Toyota Motor Corp Fuel cell
JP5198908B2 (en) * 2008-03-11 2013-05-15 行政院原子能委員會核能研究所 A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA).

Also Published As

Publication number Publication date
JPH11307105A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
CN103887551B (en) For manufacturing the modification method of reversible solid oxide cell
JP5489125B2 (en) All-ceramic solid oxide battery
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
Hsieh et al. Fabrication of electrolyte supported micro-tubular SOFCs using extrusion and dip-coating
JP4252453B2 (en) Electrochemical cell and method for producing the same
JP2008519404A (en) Electrochemical cell structure and its manufacturing method by controlled powder method
JPH04115469A (en) Solid electrolyte film and solid electrolyte type fuel cell therewith and manufacture thereof
JP4018378B2 (en) Solid oxide fuel cell and manufacturing method thereof
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
KR20170056694A (en) Electrochemical element, cell for solid oxide fuel cell, and preparation methods for these
CN113381041A (en) Electrode supporting type solid oxide fuel cell and preparation method thereof
Lee et al. A micro-patterned electrode/electrolyte interface fabricated by soft-lithography for facile oxygen reduction in solid oxide fuel cells
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP7505649B2 (en) Electrochemical Cell
KR101576314B1 (en) Electrolyte for an inexpensive, electrolyte-supported high-temperature fuel cell having high power and high mechanical strength
Hongyan et al. Preparation and characterization of La0. 8Sr0. 04Ca0. 16Co0. 6Fe0. 4O3-δ-La0. 9Sr0. 1 Ga0. 8Mg0. 2O3 composite cathode thin film for SOFC by slurry spin coating
JP2024510216A (en) Metal support metal substrate for electrochemical cells
JP4232216B2 (en) Method for producing fuel electrode of solid oxide fuel cell
Liu et al. Characteristics of La0. 8Sr0. 2Ga0. 8Mg0. 2O3− δ-supported micro-tubular solid oxide fuel cells with bi-layer and tri-layer electrolytes
JP4367843B2 (en) Fuel electrode, electrochemical cell, and method of manufacturing fuel electrode
KR102247782B1 (en) A manufacturing method of solid oxide fuel cell via calendering process
JP2006339034A (en) Solid oxide fuel cell, and method of manufacturing same
JP7087670B2 (en) Fuel cell single cell and its manufacturing method
WO2004109827A1 (en) Substrate for electrochemical cell and electrochemical cell
JPH08130022A (en) Joining material of solid electrolyte fuel cell stack and its joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees