JP2841340B2 - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP2841340B2
JP2841340B2 JP1072788A JP7278889A JP2841340B2 JP 2841340 B2 JP2841340 B2 JP 2841340B2 JP 1072788 A JP1072788 A JP 1072788A JP 7278889 A JP7278889 A JP 7278889A JP 2841340 B2 JP2841340 B2 JP 2841340B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
fuel
gas
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1072788A
Other languages
Japanese (ja)
Other versions
JPH02276166A (en
Inventor
利彦 吉田
功 向沢
宣秋 多賀谷
文也 石崎
浩志 瀬戸
智 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKYU SANGYO KATSUSEIKA SENTAA
Tonen General Sekiyu KK
Original Assignee
SEKYU SANGYO KATSUSEIKA SENTAA
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13499479&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2841340(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SEKYU SANGYO KATSUSEIKA SENTAA, Tonen Corp filed Critical SEKYU SANGYO KATSUSEIKA SENTAA
Priority to JP1072788A priority Critical patent/JP2841340B2/en
Publication of JPH02276166A publication Critical patent/JPH02276166A/en
Application granted granted Critical
Publication of JP2841340B2 publication Critical patent/JP2841340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解質燃料電池に係わり、特に酸素や燃
料ガスと固体電解質板との接触面積を大きくした高出力
の燃料電池に関するものである。
Description: TECHNICAL FIELD The present invention relates to a solid electrolyte fuel cell, and more particularly to a high output fuel cell having a large contact area between oxygen or fuel gas and a solid electrolyte plate.

〔従来の技術〕[Conventional technology]

高温型固体電解質燃料電池は、電解質による周辺材料
の腐食、電解質自体の分解、蒸発、逸散等がなく、液体
物質を使用しないために電池構造が簡素化でき、850℃
〜1000℃程度で動作するため燃料として天然ガスや石炭
ガスを改質することなくそのまま使用可能であり、内部
抵抗が小さく、大出力を得ることが可能でエネルギー利
用率の高い燃料電池として期待されている。そして、こ
のような固体電解質燃料電池として、従来、ジルコニア
電解質を平板型とすることにより体積当たりのパワー密
度を向上させるようにしている。
The high-temperature solid electrolyte fuel cell has no erosion of surrounding materials due to the electrolyte, no decomposition, evaporation, and dissipation of the electrolyte itself, and can use a liquid material to simplify the cell structure.
It can be used as fuel without reforming natural gas or coal gas because it operates at ~ 1000 ° C.It is expected to be a fuel cell with low internal resistance, high output and high energy utilization. ing. Conventionally, as such a solid electrolyte fuel cell, a zirconia electrolyte is made into a flat plate type so that a power density per volume is improved.

第4図はこのような従来の集積度の高い平板型燃料電
池の例を示す図で、図中、21、22は外部端子、23、24は
外部端子ガス通路、25、26は3層構造板、27はインター
コネクタ、28、29はガス通路である。
FIG. 4 is a view showing an example of such a conventional highly integrated flat type fuel cell. In the figure, reference numerals 21 and 22 denote external terminals, 23 and 24 denote external terminal gas passages, and 25 and 26 denote a three-layer structure. A plate, 27 is an interconnector, and 28 and 29 are gas passages.

図において、3層構造25、26は、例えばジルコニア
(ZrO2)からなる薄い固体電解質板で、その両面には空
気極(カソード)、燃料極(アノード)を形成する多孔
性電極(アノード)を形成する多孔性電極材料が塗布し
てあり、外部端子21、22とインターコネクタ27がこれを
サンドイッチする形で積層されており、外部端子21、3
層構造板25、インターコネクタ27で単位セルを構成し、
同様にインターコネクタ27、3層構造板26、外部端子24
で単位セルを構成し、これらが2段直列となっている。
勿論、同様に単位セルの積層数を増やすことによりN段
直列構成とすることができる。
In the figure, three-layer structures 25 and 26 are thin solid electrolyte plates made of, for example, zirconia (ZrO 2 ), and porous electrodes (anodes) forming an air electrode (cathode) and a fuel electrode (anode) on both surfaces thereof. The porous electrode material to be formed is applied, and the external terminals 21 and 22 and the interconnector 27 are laminated so as to sandwich them.
A unit cell is composed of the layer structure plate 25 and the interconnector 27,
Similarly, an interconnector 27, a three-layer structure plate 26, an external terminal 24
Constitute a unit cell, and these are arranged in two stages in series.
Of course, an N-stage series configuration can be obtained by increasing the number of stacked unit cells.

このような構成において、ガス通路23、29に酸素また
は空気を、ガス通路24、28に、例えば水素を流し、外部
端子21、22を図示しない外部回路を通して接続すると、
酸素は燃料と反応しようとしてイオン化して固体電解質
板25、26を通して流れ、このとき、空気極では酸素が電
子を取り込んで酸素イオンとなり、燃料極側ではこのイ
オンと燃料が反応して電子を放出するので、外部回路に
は空気極を(+)極、燃料極を(−)極として外部端子
21から外部端子22へ電流が流れる。これを化学式で示す
と次のようになる。
In such a configuration, when oxygen or air is supplied to the gas passages 23 and 29, for example, hydrogen is supplied to the gas passages 24 and 28, and the external terminals 21 and 22 are connected through an external circuit (not shown).
Oxygen is ionized to react with fuel and flows through the solid electrolyte plates 25 and 26.At this time, oxygen takes in electrons at the air electrode to become oxygen ions, and at the fuel electrode side, the ions react with fuel to emit electrons. In the external circuit, the air electrode is (+) and the fuel electrode is (-).
A current flows from 21 to the external terminal 22. This is represented by the following chemical formula.

空気極:1/2O2+2e-→O2- 燃料極:H2+O2-→H2O+2e- 全体的な電極反応は、 1/2O2+H2→H2O となる。また、燃料として一酸化炭素を用いた場合に
は、 燃料極:CO+O2-→CO2+2e- となり、全体的な電極反応は、 CO+1/2O2→CO2 となる。
Cathode: 1 / 2O 2 + 2e - → O 2- anode: H 2 + O 2- → H 2 O + 2e - overall electrode reaction becomes 1 / 2O 2 + H 2 → H 2 O. In the case of using carbon monoxide as the fuel, the fuel electrode: CO + O 2- → CO 2 + 2e - , and the overall electrode reaction becomes CO + 1 / 2O 2 → CO 2.

また、電極物質と固体電解質からなる壁により区画し
てハニカム構造からなる断面矩形の複数の流路を形成
し、このハニカム構造の隣り合う流路に燃料ガスと酸素
ガスを流すことにより燃料ガスと固体電解質との接触面
積を増加させて高出力を得るようにするものも米アルゴ
ンヌ研究所からMODE1という構造の固体電解質燃料電池
として提案されている(特開昭61−269868号)。
Further, a plurality of channels having a rectangular cross section formed of a honeycomb structure are formed by partitioning the walls with the electrode material and the wall made of the solid electrolyte, and the fuel gas and the oxygen gas are caused to flow by flowing the fuel gas and the oxygen gas into the adjacent channels of the honeycomb structure. A device that increases the contact area with the solid electrolyte to obtain high output has also been proposed as a solid electrolyte fuel cell having a structure of MODE1 by the Argonne Research Institute of the United States (Japanese Patent Laid-Open No. 61-269868).

なお、平板型燃料電池は本出願人、米アルゴンヌ研究
所(MODE0)、Z−Tech、W,R,Grac等から運転結果が報
告されているが、米アルゴンヌ研究所のMOTDE1について
は運転実績は報告されていない。
The operation results of the flat plate fuel cell have been reported by the present applicant, the Argonne Research Institute of the United States (MODE0), Z-Tech, W, R, Grac, and the like. Not reported.

〔発明が解決すべき課題〕[Problems to be solved by the invention]

ところで、燃料電池の体積当たりのパワー密度を増加
させるためには、固体電解質と燃料ガスとの接触面積を
増やすことが必須要件であるが、従来の固体電解質燃料
電池においては、燃料ガスと固体電解質との接触面は2
次元的であるため、接触面積の増加には限界があり、そ
のため体積当たりのパワー密度を向上させるには必ずし
も充分なものではなかった。
By the way, in order to increase the power density per volume of the fuel cell, it is essential to increase the contact area between the solid electrolyte and the fuel gas, but in the conventional solid electrolyte fuel cell, the fuel gas and the solid electrolyte Contact surface with 2
Due to the dimensional nature, there is a limit to the increase in the contact area, which is not always sufficient to increase the power density per volume.

本発明は上記問題点を解決するためのもので、燃料ガ
スと固体電解質との接触面積をさらに増加し、体積当た
りのパワー密度を一層増加させることができる固体電解
質燃料電池を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a solid electrolyte fuel cell capable of further increasing a contact area between a fuel gas and a solid electrolyte and further increasing a power density per volume. And

〔課題を解決するための手段〕[Means for solving the problem]

本発明の固体電解質燃料電池は、正方晶を主体とする
部分安定化ジルコニア(PSZ)の板を凹凸状に加工し、P
SZの板の表裏両面を突起構造とした固体電解質を用いて
燃料ガスとの接触面積を3次元的にして大幅に増加させ
るようにしたことを特徴としている。
The solid electrolyte fuel cell of the present invention is obtained by processing a plate of partially stabilized zirconia (PSZ) mainly composed of tetragonal crystals into an uneven shape,
It is characterized in that the contact area with the fuel gas is increased three-dimensionally by using a solid electrolyte in which both the front and back surfaces of the SZ plate have a projection structure.

即ち、電極構成材料を塗布した固体電解質の一方の面
に酸素を含むガスを、他方の面に燃料ガスを供給し、固
体電解質板を通して酸素と燃料とを化学的に反応させて
電気的出力を発生させるセルを積層させるようにした燃
料電池において、固体電解質板に凹凸を設け、凹凸の各
頂部に接するようにこ他愛電解質板の両面側に集電材を
設けてセルを構成したことを特徴とする。
That is, a gas containing oxygen is supplied to one surface of the solid electrolyte coated with the electrode constituent material, and a fuel gas is supplied to the other surface, and the oxygen and the fuel are chemically reacted through the solid electrolyte plate to generate an electric output. In a fuel cell in which cells to be generated are stacked, irregularities are provided on a solid electrolyte plate, and a current collector is provided on both sides of the solid electrolyte plate so as to be in contact with each top of the irregularities to form a cell. I do.

第1図、第2図、第3図は本発明の固体電解質燃料電
池を説明するための図である。図中、1、2は突起構造
固体電解質、3、4は端壁部、11、12は集電材である。
FIG. 1, FIG. 2, and FIG. 3 are views for explaining the solid oxide fuel cell of the present invention. In the figure, 1 and 2 are solid electrolytes having a protruding structure, 3 and 4 are end wall portions, and 11 and 12 are current collectors.

先ず、使用するPSZとしては抵抗をなるべく小さくす
るために、例えば厚みt(第3図)を0.1〜0.3mm特に0.
2mm、ドーパントとして3〜4mol%のY2O3を添加する。
そして、第1図に示すように、固体電解質は玉子を所定
個数単位で収納する玉子容器のようにPSZの板の表裏両
面を凹凸状にした突起構造とする。このように表裏両面
に凹凸を設けた突起構造固体電解質1、2は鋳込み成
形、射出成形、冷間加圧成形された生の成形体の単品を
焼成して構造体とすればよい。なお、焼成前の生の成形
体を積み重ねる手法もあるが、積層段数を増そうとする
と生の状態ではPSZが非常に脆い材料で強度が弱く、下
層が壊れてしまうので焼成する方が好ましい。また、突
起構造の片面にアノード材料、例えばNi/ZrO2サーメッ
トを0.1〜1mmの厚みで塗布作製し、他方の面にはカソー
ド材料、例えばLa1-xSrxMnO3を0.1〜1mmの厚みで塗布作
製する。このアノードとカソードの作製は突起の構造が
生でも焼成後でも差しつかえがない。
First, in order to minimize the resistance of the PSZ to be used, for example, the thickness t (FIG. 3) is set to 0.1 to 0.3 mm, especially 0.1 mm.
2 mm, adding Y 2 O 3 of 3~4Mol% as a dopant.
As shown in FIG. 1, the solid electrolyte has a projection structure in which the front and rear surfaces of a PSZ plate are made uneven, like an egg container for storing eggs in a predetermined number unit. As described above, the solid electrolytes 1 and 2 having the projections and depressions on both the front and back surfaces may be formed into a structure by firing a single molded green compact formed by casting, injection molding, or cold pressing. In addition, there is a method of stacking green compacts before firing. However, if an attempt is made to increase the number of stacking layers, the raw material has a very fragile PSZ with low strength, and the lower layer is broken, so firing is preferable. The anode material on one side of the projection structure, for example, Ni / ZrO 2 cermet was applied fabricated in a thickness of 0.1 to 1 mm, the other cathode material on the surface, for example, La 1-x Sr x MnO 3 and 0.1 to 1 mm thickness To make a coating. In the production of the anode and the cathode, there is no problem even if the structure of the projection is raw or after firing.

また、突起構造固体電解質の四辺には端壁部3、4を
設ける。端壁部は固体電解質の両面側で互いに直交する
ガス流路を形成するために、端側部3と、端壁部4とは
互いに反対方向に延び、四隅において重なる構造とす
る。
In addition, end walls 3 and 4 are provided on four sides of the solid electrolyte having the projection structure. In order to form gas flow paths orthogonal to each other on both sides of the solid electrolyte, the end wall portions extend in opposite directions to the end side portions 3 and the end wall portions 4 and have a structure overlapping at four corners.

こうしてできあがった単位セルを、第2図に示すよう
に集電材11、12により上下から挟み、集電材11、12と端
壁部3、4との間(図の13、14)をガラスシールしてガ
スのリークが生じないようにする。この集電材11、12と
単位セルとは第3図に示すように突起の頂部で電気的に
接触する。この構造を繰返して積層することにより直列
接続構造を作ることができる。集電材としては、耐熱合
金やセラミックスに導電材を被覆したものが用いられ、
特にクロムを含むニッケル基又はクロム基合金が好適で
ある。
The unit cell thus completed is sandwiched between current collectors 11 and 12 from above and below as shown in FIG. 2, and a glass seal is formed between the current collectors 11 and 12 and the end walls 3 and 4 (13 and 14 in the figure). To prevent gas leakage. The current collectors 11, 12 and the unit cell are in electrical contact with each other at the top of the protrusion as shown in FIG. By repeating and laminating this structure, a series connection structure can be formed. As the current collector, a heat-resistant alloy or ceramic coated with a conductive material is used.
Particularly, a nickel-based or chromium-based alloy containing chromium is preferable.

なお、端壁部の材料は集電材料、PSZどちらでもよ
く、また、集電材、PSZのどちらかと一体に作製しても
よい。そして、突起構造と集電材は次々と集積されるの
で、その自重は主に端壁材の四隅に集中するため、端壁
部、特に四隅は他の部分よりも厚くすることで補強する
のが好ましい。
The material of the end wall may be either the current collector or PSZ, or may be integrally formed with either the current collector or PSZ. And since the protruding structure and the current collecting material are accumulated one after another, its own weight mainly concentrates on the four corners of the end wall material. preferable.

第3図に示すように、固体電解質板の両面における電
流J1、J2の走る距離は最大で電材11、12との接触部間の
距離(図のP1P2間の距離)である。したがって、電極の
抵抗による電力損失をできるだけ小さくするため、突起
構造の高さhは電流の走る距離が小さくなるように、ま
た、突起の数はガスとの接触面積が最大となるように設
計する。
As shown in FIG. 3, the running distance of the currents J 1 and J 2 on both sides of the solid electrolyte plate is the maximum distance between the contact portions with the electric materials 11 and 12 (the distance between P 1 and P 2 in the figure). . Therefore, in order to minimize the power loss due to the resistance of the electrodes, the height h of the projection structure is designed so that the distance traveled by the current is reduced, and the number of projections is designed so that the contact area with the gas is maximized. .

〔作用〕[Action]

本発明の固体電解質燃料電池は、固体電解質板を凹凸
状に加工し、表裏両面を突起構造とすることにより、酸
素や燃料ガスと固体電解質との接触面を3次元的にして
増やすことができるので、体積当たりのパワー密度を大
幅に向上させることが可能となる。
In the solid electrolyte fuel cell of the present invention, the solid electrolyte plate is processed into an uneven shape and the front and rear surfaces are formed into a projection structure, so that the contact surface between the oxygen or fuel gas and the solid electrolyte can be increased three-dimensionally. Therefore, the power density per volume can be greatly improved.

〔実施例〕〔Example〕

第1図は走壁部を突起構造材のPSZと同じ材料で一体
として作製した実施例を示すものである。
FIG. 1 shows an embodiment in which the running wall portion is integrally formed of the same material as the projecting structure material PSZ.

本実施例においては、突起構造の高さhは2mmとし、
突起部分の厚みtは0.2mm、端壁部の四隅は2mmの厚みを
もたせた。さらに突起構造の辺aおよびbを50mmとし
た。
In this embodiment, the height h of the projection structure is 2 mm,
The thickness t of the projection was 0.2 mm, and the four corners of the end wall were 2 mm. Further, sides a and b of the projection structure were set to 50 mm.

集電材としてはLa0.8Ca0.2CrO3の1mmの厚みの板を用
い、第2図に示すように突起構造を上下から挟んだ。
As the current collector, a plate of La 0.8 Ca 0.2 CrO 3 having a thickness of 1 mm was used, and the protrusion structure was sandwiched from above and below as shown in FIG.

第1図に示す突起構造は以下のように作製した。 The projection structure shown in FIG. 1 was manufactured as follows.

3mol%Y2O3ドープのジルコニア粉末を材料とし、通常
ドクターブレード用として調製されるスラリーを用い、
ドクターブレード法により0.2mm厚みのスリップを作
り、このスリップを突起状金型に押し当て成形した。こ
れを通常焼成条件で焼成することにより作製した。
Using 3 mol% Y 2 O 3 doped zirconia powder as a material, using a slurry usually prepared for a doctor blade,
A slip having a thickness of 0.2 mm was formed by a doctor blade method, and the slip was pressed against a protruding mold to be molded. This was produced by firing under normal firing conditions.

第2図中、突起構造の両面にそれぞれ電極が塗布して
ある。また、集電材と突起構造の間は1000℃で液化する
ガラスでシールした。この構造のセルを1000℃まで昇温
し、アノード側にH2をカソード側にO2を流し、各集電材
によりリード端子を取り出して出力を測定したところ、
10Wの出力が得られた。これを体積密度に直すと1KW/
と極めて高密度である。
In FIG. 2, electrodes are applied to both surfaces of the projection structure. The space between the current collector and the projection structure was sealed with glass that liquefies at 1000 ° C. The cell of this structure was heated to 1000 ° C., where and H 2 on the anode side flow of O 2 on the cathode side was measured output is taken out the lead terminals by the current collector,
An output of 10 W was obtained. Converting this to volume density, 1KW /
And extremely high density.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、固体電解質燃料電池の
構造が優めて選れた三次元構造であり、従来主流の円
筒、平板など二次元的構造の燃料電池より体積パワー密
度を大幅に向上させることが可能となる。
As described above, according to the present invention, the structure of the solid electrolyte fuel cell is a three-dimensional structure that is favorably selected, and has a significantly higher volume power density than a conventional two-dimensional fuel cell such as a mainstream cylinder or flat plate. It can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の固体電解質の突起構造を示す図、第2
図は本発明の固体電解質燃料電池単位セルの斜視図、第
3図は電解質壁の電流路を説明するための図、第4図は
従来の平板型燃料電池の構成を示す図である。 1、2……突起構造固体電解質、3、4……端壁部、1
1、12……集電材。
FIG. 1 is a diagram showing a projection structure of a solid electrolyte of the present invention.
FIG. 3 is a perspective view of a unit cell of the solid oxide fuel cell according to the present invention, FIG. 3 is a view for explaining a current path of an electrolyte wall, and FIG. 4 is a view showing a configuration of a conventional flat fuel cell. 1, 2,..., Solid electrolyte having a protruding structure, 3, 4,.
1, 12 …… Current collector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多賀谷 宣秋 埼玉県入間郡大井町西鶴ケ岡1―3―1 東亜燃料工業株式会社総合研究所内 (72)発明者 石崎 文也 埼玉県入間郡大井町西鶴ケ岡1―3―1 東亜燃料工業株式会社総合研究所内 (72)発明者 瀬戸 浩志 埼玉県入間郡大井町西鶴ケ岡1―3―1 東亜燃料工業株式会社総合研究所内 (72)発明者 桜田 智 埼玉県入間郡大井町西鶴ケ岡1―3―1 東亜燃料工業株式会社総合研究所内 (56)参考文献 実開 平2−92666(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuaki Tagaya 1-3-1 Nishitsurugaoka, Oimachi, Iruma-gun, Saitama Prefecture Toa Fuel Industry Co., Ltd. (72) Fumiya Ishizaki Oimachi, Iruma-gun, Saitama 1-3-1 Nishitsurugaoka Research Institute, Toa Fuel Industry Co., Ltd. (72) Inventor Hiroshi Seto 1-3-1 Nishitsurugaoka, Oimachi, Iruma-gun, Saitama Prefecture Toa Fuel Industry Co., Ltd. (72) Inventor Satoshi Sakurada 1-3-1 Nishi-Tsurugaoka, Oi-machi, Iruma-gun, Saitama Prefecture (56) References Hikaru 2-92666 (JP, U) (58) Fields surveyed (Int. Cl. 6 , (DB name) H01M 8/00-8/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電極構成材料を塗布した固体電解質の一方
の面に酸素を含むガスを、他方の面に燃料ガスを供給
し、固体電解質を通して酸素と燃料とを化学的に反応さ
せて電気的出力を発生させるセルを積層させるようにし
た燃料電池において、円錐状に、交互にかつ上下方向に
向く突起が2次元的に分布するように固体電解質を加工
して突起構造体とし、前記突起構造体両面の各頂部に接
するように集電材を設けてセルを構成したことを特徴と
する固体電解質燃料電池。
An oxygen-containing gas is supplied to one surface of a solid electrolyte coated with an electrode constituent material, and a fuel gas is supplied to the other surface. In a fuel cell in which cells that generate output are stacked, a solid electrolyte is processed into a projection structure so that projections that are alternately and vertically oriented in a conical shape are two-dimensionally distributed, and the projection structure is formed. A solid electrolyte fuel cell, wherein a current collector is provided so as to be in contact with each top of both sides of the body to form a cell.
JP1072788A 1989-03-25 1989-03-25 Solid electrolyte fuel cell Expired - Fee Related JP2841340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072788A JP2841340B2 (en) 1989-03-25 1989-03-25 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072788A JP2841340B2 (en) 1989-03-25 1989-03-25 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH02276166A JPH02276166A (en) 1990-11-13
JP2841340B2 true JP2841340B2 (en) 1998-12-24

Family

ID=13499479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072788A Expired - Fee Related JP2841340B2 (en) 1989-03-25 1989-03-25 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2841340B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064167B2 (en) * 1993-09-01 2000-07-12 三菱重工業株式会社 Solid electrolyte fuel cell
JP3486213B2 (en) * 1993-11-19 2004-01-13 三菱重工業株式会社 Solid oxide fuel cell
JP3349245B2 (en) * 1994-03-04 2002-11-20 三菱重工業株式会社 Method for manufacturing solid oxide fuel cell
US6316138B1 (en) * 1994-07-11 2001-11-13 Mitsubishi, Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
EP1060534B1 (en) * 1998-02-27 2003-01-22 Corning Incorporated Flexible inorganic electrolyte fuel cell design
CA2408538C (en) * 2000-05-08 2008-05-20 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly with heater wire provided on a grid frame of an electrolyte layer
FR2828769A1 (en) * 2001-12-21 2003-02-21 Commissariat Energie Atomique Membrane/electrodes or electrolyte/electrodes base module for small size combustible battery for portable micro-energy sources uses heavy ion ionic reactive laser machining to form electrodes
DE102009003074A1 (en) * 2009-05-13 2010-11-18 Robert Bosch Gmbh Electrochemical cell for obtaining electrical energy
WO2021217682A1 (en) * 2020-05-01 2021-11-04 杭州高烯科技有限公司 Method for preparing pure inorganic colloid and use thereof

Also Published As

Publication number Publication date
JPH02276166A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
KR100341402B1 (en) Single Cell and Stack Structure of Solid Oxide Fuel Cell
JP4955831B1 (en) A joined body for electrically connecting the power generation parts of a solid oxide fuel cell
JP4916041B1 (en) Solid oxide fuel cell
JP2841340B2 (en) Solid electrolyte fuel cell
JPH10189017A (en) Gas seal structure of honeycomb structure solid electrolyte fuel cell
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JP5036163B2 (en) Fuel cell, cell stack and fuel cell
JP3244310B2 (en) Solid oxide fuel cell
JP4932965B1 (en) A joined body for electrically connecting the power generation parts of a solid oxide fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JPS63166159A (en) Solid electrolyte fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JPH06310156A (en) Flat solid electrolyte type fuel cell
JP6671404B2 (en) Fuel cell
JP6972307B2 (en) Solid oxide fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JP2948441B2 (en) Flat solid electrolyte fuel cell
JP2018098203A (en) Fuel battery cell
JPH05275089A (en) Separator of flat plate solid electrolyte type fuel cell
WO2020022489A1 (en) Fuel battery cell and cell stack device
JP6261690B1 (en) Fuel cell
JP3301558B2 (en) Flat solid electrolyte fuel cell
JPH0562694A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees