JPH08273681A - Manufacture of separator of solid electrolyte fuel cell - Google Patents

Manufacture of separator of solid electrolyte fuel cell

Info

Publication number
JPH08273681A
JPH08273681A JP7070251A JP7025195A JPH08273681A JP H08273681 A JPH08273681 A JP H08273681A JP 7070251 A JP7070251 A JP 7070251A JP 7025195 A JP7025195 A JP 7025195A JP H08273681 A JPH08273681 A JP H08273681A
Authority
JP
Japan
Prior art keywords
separator
atmosphere
resistant alloy
fuel cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7070251A
Other languages
Japanese (ja)
Inventor
Atsushi Yano
淳 矢野
Masayoshi Kondo
雅芳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP7070251A priority Critical patent/JPH08273681A/en
Publication of JPH08273681A publication Critical patent/JPH08273681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • H01M8/0219Chromium complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To facilitate work, improve durability, and obtain an excellent power generating characteristic by forming a separator of heat resistant alloy, coating its surface with conductive ceramics, and using the separator obtained by heating it in an oxygen existent atmosphere. CONSTITUTION: A separator 3 is formed in a shape having grooves out of heat resistant alloy mainly composed of chrome and nickel. Next, a surface of this heat resistant alloy is coated, for example, with lanthanum La type (such as LaMnO3 , LaCrO3 and LaC0 O3 ) conductive ceramics by an detonation flame spraying method or an electron beam evaporation method or the like. Afterwards, it is heated, for example, for 1 to 4 hours at a heating temperature of 1100 to 1200 deg.C in the atmosphere. A required process is only to perform it in an oxygen existent atmosphere without limiting to the inside of the atmosphere. By performing in this way, a thermal expansion difference is normally large between a ceramic layer and a metallic layer, and separation is easily caused, but when they are heated in the atmosphere, a part of the metallic layer is oxidized, and since a reaction layer is formed between it and the ceramic layer, separation can be restrained. Excellent power generating performance is obtained, and durability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
のセパレータの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a separator of a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、平板型の場合
通常、図2に示す単電池1を積層させて構成している。
2. Description of the Related Art In the case of a flat plate type, a solid oxide fuel cell is usually constructed by stacking the unit cells 1 shown in FIG.

【0003】この単電池1は、発電部を形成する発電用
セル2を、金属部材のセパレータ3に挟んで構成され
る。上記発電用セル2は、電解質のセラミック薄膜(固
体電解質層)4の裏表面に負極5、正極6を有してお
り、通常1000℃の高温下で、セパレータ3の溝7を通し
て負極5上に水素系の燃料ガスAを流し、正極6上に酸
素系の空気ガスBを流すことにより電力を得ている。
This unit cell 1 is constructed by sandwiching a power generation cell 2 forming a power generation section between separators 3 made of a metal member. The power generation cell 2 has a negative electrode 5 and a positive electrode 6 on the back surface of a ceramic thin film (solid electrolyte layer) 4 of an electrolyte, and is usually placed on the negative electrode 5 through a groove 7 of a separator 3 at a high temperature of 1000 ° C. Electric power is obtained by flowing a hydrogen-based fuel gas A and an oxygen-based air gas B on the positive electrode 6.

【0004】上記セパレータ3の形成には、導電性セラ
ミックス、または耐熱合金が使用されている。
To form the separator 3, conductive ceramics or heat-resistant alloy is used.

【0005】[0005]

【発明が解決しようとする課題】しかし、セパレータ3
の形成に際し、導電性セラミックスを使用する場合、加
工が難しく、製造コストが高くなるという問題があり、
また耐熱合金を使用する場合、加工がしやすいものの、
長時間の運転は酸化により困難になるという問題があっ
た。
However, the separator 3
When using conductive ceramics in the formation of, there is a problem that processing is difficult and the manufacturing cost is high,
When using a heat-resistant alloy, it is easy to process,
There has been a problem that long-term operation becomes difficult due to oxidation.

【0006】このような問題を解決するため、耐熱合金
を使用する場合、表面に導電性を有するセラミックスを
コーティングする方法が取られる。しかし、この場合、
数10時間経過すると、金属層とセラミックス層との間
に剥離が生じ、導電性が急激に低下するという問題があ
った。
In order to solve such a problem, when a heat resistant alloy is used, a method of coating the surface with conductive ceramics is adopted. But in this case
After several tens of hours, there was a problem that peeling occurred between the metal layer and the ceramics layer, resulting in a sharp decrease in conductivity.

【0007】本発明は上記問題を解決するものであり、
加工がしやすく、長寿命化を図ったセパレータを得るこ
とができる固体電解質型燃料電池のセパレータの製造方
法を提供することを目的とするものである。
The present invention solves the above problems,
It is an object of the present invention to provide a method for manufacturing a separator of a solid oxide fuel cell, which is easy to process and can obtain a separator having a long life.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、第1発明の固体電解質型燃料電池のセパレータの製
造方法は、発電用セルを挟み固体電解質型燃料電池を形
成するセパレータの製造方法であって、耐熱合金で形成
し、その表面に導電性セラミックスをコーティングし、
その後有酸素雰囲気中で加熱することを特徴とするもの
である。
In order to solve the above problems, a method for producing a separator for a solid oxide fuel cell according to a first aspect of the present invention is a method for producing a separator for sandwiching a power generation cell to form a solid oxide fuel cell. It is made of heat-resistant alloy, and its surface is coated with conductive ceramics.
After that, heating is performed in an aerobic atmosphere.

【0009】また第2発明の固体電解質型燃料電池のセ
パレータの製造方法は上記第1発明の固体電解質型燃料
電池のセパレータの製造方法であって、加熱温度を11
00〜1200℃とすることを特徴とするものである。
The method for producing a solid oxide fuel cell separator according to the second aspect of the present invention is the method for producing a solid oxide fuel cell separator according to the first aspect of the present invention, wherein the heating temperature is 11 ° C.
It is characterized in that the temperature is from 00 to 1200 ° C.

【0010】[0010]

【作用】上記第1発明により、セパレータを、耐熱合金
で形成し、その表面に導電性セラミックスをコーティン
グし、その後有酸素雰囲気中で加熱することによって、
耐熱金属の表面が酸化して、セラミックス層間に反応層
が形成され、金属層とセラミックス層との間の剥離が抑
えられる。
According to the first aspect of the present invention, the separator is formed of a heat-resistant alloy, the surface of which is coated with conductive ceramics, and then heated in an oxygen-containing atmosphere.
The surface of the refractory metal is oxidized, a reaction layer is formed between the ceramic layers, and peeling between the metal layer and the ceramic layer is suppressed.

【0011】また上記第2発明により、1100〜12
00℃の加熱温度とすることにより、剥離が防止され、
良好な発電性能が得られる。燃料電池の運転温度の10
00℃以下では、剥離が生じ、1300℃以上では、耐
熱金属の酸化が著しく進行し、良好な発電性能が得られ
ない。
Further, according to the second invention, 1100 to 12
The heating temperature of 00 ° C prevents peeling,
Good power generation performance can be obtained. Fuel cell operating temperature of 10
If the temperature is lower than 00 ° C, peeling occurs, and if the temperature is higher than 1300 ° C, the refractory metal is significantly oxidized, and good power generation performance cannot be obtained.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。本発明の固体電解質型燃料電池のセパレータの
製造方法を図1のフローチャートに従って説明する。
An embodiment of the present invention will be described below with reference to the drawings. The method for manufacturing the solid oxide fuel cell separator of the present invention will be described with reference to the flowchart of FIG.

【0013】まず、セパレータ3を、クロムCr ,ニッ
ケルNi を主成分とする耐熱合金により、図2に示す溝
7付きの形状に成形する(ステップ−1)。次にこの耐
熱合金の表面に、爆発溶射法、あるいは電子ビーム蒸着
法などにより、ランタンLa 系(La n 3 ,La
r 3 ,La o 3 など)の導電性セラミックスをコ
ーティングする(ステップ−2)。
[0013] First, a separator 3, chromium C r, the heat-resistant alloy based on nickel N i, molded into the shape of the grooved 7 shown in FIG. 2 (step 1). Then the surface of the heat-resistant alloy, detonation spraying method or by electron beam evaporation, lanthanum L a system (L a M n O 3, L a C
r O 3, L a C o, etc. O 3) coating the conductive ceramics (Step-2).

【0014】その後大気中で、加熱温度1100〜12
00℃で1〜4時間(h)加熱する(ステップ−3)。
なお、大気中に限らず、有酸素雰囲気中であればよい。
この製造方法によれば、通常セラミックス層と金属層で
は、熱膨張差が大きく、剥離が生じやすいが、大気中で
加熱することにより、金属層の一部が酸化してセラミッ
クス層との間に反応層が形成され、剥離が抑えられる。
Then, in the atmosphere, the heating temperature is 1100 to 12
Heat at 00 ° C. for 1 to 4 hours (h) (step-3).
It should be noted that it is not limited to the atmosphere, but may be an aerobic atmosphere.
According to this manufacturing method, the difference in thermal expansion between the ceramic layer and the metal layer is large and peeling is likely to occur. However, by heating in the atmosphere, a part of the metal layer is oxidized and is separated from the ceramic layer. A reaction layer is formed and peeling is suppressed.

【0015】本発明で形成したセパレータ3(試料形
状;20×20×厚さ5mm)を使用した100時間
(h)の連続発電結果を、他の方法により形成したセパ
レータを使用した発電結果とともに表1に示す。
The result of continuous power generation for 100 hours (h) using the separator 3 (sample shape: 20 × 20 × thickness 5 mm) formed by the present invention is shown together with the result of power generation using the separator formed by another method. Shown in 1.

【0016】[0016]

【表1】 [Table 1]

【0017】試験結果から下記のことが確認された。 a)1100〜1200℃で加熱した試料は、100h
の発電試験においても初期と同等の性能を維持した。表
1のNo.2に示すように、1000℃以下では、セラミ
ックス層に剥離が生じ、また表1のNo.6に示すよう
に、1300℃以上では、耐熱合金の酸化が著しく進行
し、良好な発電性能は得られなかった。
From the test results, the following was confirmed. a) The sample heated at 1100 to 1200 ° C. is 100 h
In the power generation test, the same performance as the initial stage was maintained. As shown in No. 2 of Table 1, peeling occurs in the ceramic layer at 1000 ° C. or lower, and as shown in No. 6 of Table 1 at 1300 ° C. or higher, oxidation of the heat-resistant alloy remarkably progresses, which is good. Power generation performance was not obtained.

【0018】b)加熱時間は、4hを越えてもほとんど
影響はないが、1〜4hで十分な効果が得られ、長時間
加熱する必要はない。表1のNo.8に示すように、1h
未満では十分な効果は得られない。
B) The heating time has almost no effect even if it exceeds 4 hours, but if 1 to 4 hours, a sufficient effect is obtained, and it is not necessary to perform heating for a long time. As shown in No. 8 of Table 1, 1h
If it is less than the above, a sufficient effect cannot be obtained.

【0019】c)耐熱合金をコーティングする材料は、
a n 3 ,La r 3 ,Lao 3 のいずれに
おいても問題ない。 d)耐熱合金をコーティングする方法は、爆発溶射、プ
ラズマ溶射、電子ビーム蒸着のいずれにおいても問題な
い。
C) The material for coating the heat resistant alloy is
L a M n O 3, L a C r O 3, L a C o also no problem in any of O 3. d) There is no problem in the method of coating the heat-resistant alloy in any of explosive spraying, plasma spraying, and electron beam evaporation.

【0020】この結果から、本発明の製造方法により、
加工がしやすく、耐久性に優れたセパレータ3の形成が
可能となり、安定した発電性能を長時間維持することが
でき、その結果、良好な発電性能が得られる固体電解質
型燃料電池を提供することができる。また、上記セパレ
ータ3の加熱は、容易に簡便な装置で行うことができ、
設備費が増大することはない。
From this result, according to the manufacturing method of the present invention,
To provide a solid oxide fuel cell that can be easily processed and can form a separator 3 having excellent durability, can maintain stable power generation performance for a long time, and as a result can obtain good power generation performance. You can Further, the heating of the separator 3 can be easily performed by a simple device,
The equipment cost will not increase.

【0021】[0021]

【発明の効果】以上のように第1発明によれば、セパレ
ータを、耐熱合金で形成し、その表面に導電性セラミッ
クスをコーティングし、その後有酸素雰囲気中で加熱す
ることによって、耐熱金属の表面を酸化して、セラミッ
クス層間に反応層を形成することができ、金属層とセラ
ミックス層との間の剥離を抑えることができ、加工がし
やすく、耐久性に優れたセパレータを得ることができ
る。その結果、良好な発電性能が得られる固体電解質型
燃料電池を提供することができる。また、上記加熱は、
容易に簡便な装置により行うことができ、設備費が増大
することはない。
As described above, according to the first invention, the surface of the heat-resistant metal is formed by forming the separator with a heat-resistant alloy, coating the surface with conductive ceramics, and then heating in an oxygen-containing atmosphere. Can be oxidized to form a reaction layer between the ceramic layers, peeling between the metal layer and the ceramic layer can be suppressed, and a separator that is easy to process and has excellent durability can be obtained. As a result, it is possible to provide a solid oxide fuel cell that provides good power generation performance. In addition, the above heating,
It can be easily performed with a simple device, and the equipment cost does not increase.

【0022】また上記第2発明によれば、1100〜1
200℃の加熱温度とすることにより、剥離を防止で
き、良好な発電性能を得ることができる。燃料電池の運
転温度の1000℃以下では、剥離が生じ、1300℃
以上では、耐熱金属の酸化が著しく進行し、良好な性能
を得ることができない。
According to the second invention, 1100 to 1
By setting the heating temperature to 200 ° C., peeling can be prevented and good power generation performance can be obtained. When the fuel cell operating temperature is 1000 ° C or lower, peeling occurs at 1300 ° C.
In the above case, oxidation of the refractory metal progresses remarkably, and good performance cannot be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における固体電解質型燃料電
池のセパレータの製造方法のフローチャートである。
FIG. 1 is a flowchart of a method for manufacturing a separator of a solid oxide fuel cell according to an embodiment of the present invention.

【図2】固体電解質型燃料電池の部品分解図である。FIG. 2 is an exploded view of parts of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 単電池 2 発電用セル 3 セパレータ 4 セラミック薄膜 5 負極 6 正極 7 溝 DESCRIPTION OF SYMBOLS 1 Single battery 2 Cell for power generation 3 Separator 4 Ceramic thin film 5 Negative electrode 6 Positive electrode 7 Groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発電用セルを挟み固体電解質型燃料電池
を形成するセパレータの製造方法であって、 耐熱合金で形成し、その表面に導電性セラミックスをコ
ーティングし、その後有酸素雰囲気中で加熱することを
特徴とする固体電解質型燃料電池のセパレータの製造方
法。
1. A method of manufacturing a separator for sandwiching a power generation cell to form a solid oxide fuel cell, which is made of a heat-resistant alloy, coated with conductive ceramics, and then heated in an oxygen-containing atmosphere. A method for producing a separator for a solid oxide fuel cell, comprising:
【請求項2】 加熱温度を1100〜1200℃とする
ことを特徴とする請求項1記載の固体電解質型燃料電池
のセパレータの製造方法。
2. The method for producing a separator of a solid oxide fuel cell according to claim 1, wherein the heating temperature is 1100 to 1200 ° C.
JP7070251A 1995-03-29 1995-03-29 Manufacture of separator of solid electrolyte fuel cell Pending JPH08273681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7070251A JPH08273681A (en) 1995-03-29 1995-03-29 Manufacture of separator of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7070251A JPH08273681A (en) 1995-03-29 1995-03-29 Manufacture of separator of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH08273681A true JPH08273681A (en) 1996-10-18

Family

ID=13426164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7070251A Pending JPH08273681A (en) 1995-03-29 1995-03-29 Manufacture of separator of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH08273681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319290A (en) * 2003-04-16 2004-11-11 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
CN100342565C (en) * 2004-03-19 2007-10-10 三星Sdi株式会社 Metallic separator for fuel cell and method for anti-corrosion treatment of the same
KR20080057550A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Seperator for solid oxide fuel cell and preparing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319290A (en) * 2003-04-16 2004-11-11 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP4646102B2 (en) * 2003-04-16 2011-03-09 日本特殊陶業株式会社 Solid oxide fuel cell
CN100342565C (en) * 2004-03-19 2007-10-10 三星Sdi株式会社 Metallic separator for fuel cell and method for anti-corrosion treatment of the same
US7674546B2 (en) * 2004-03-19 2010-03-09 Samsung Sdi Co., Ltd Metallic separator for fuel cell and method for anti-corrosion treatment of the same
KR20080057550A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Seperator for solid oxide fuel cell and preparing method thereof

Similar Documents

Publication Publication Date Title
US7879474B2 (en) Solid oxide electrolytic device
US6972161B2 (en) Fuel cell assembly and method of making the same
JPH1092446A (en) Solid electrolyte type fuel cell
US7255952B2 (en) Solid oxide fuel cells having gas channel
JP3057342B2 (en) Solid electrolyte fuel cell
JP2001196077A (en) Separator for solid electrolyte fuel cell
KR20090068632A (en) A fabrication method of separators for planar solid oxide fuel cells
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
JPH08273681A (en) Manufacture of separator of solid electrolyte fuel cell
JP2003263996A (en) Solid oxide fuel cell
KR101353788B1 (en) Separator for solid oxide fuel cell, method for manufacturing the same and solid oxide fuel cell comprising the same
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
KR101178527B1 (en) Separator for solid oxide fuel cell and manufacturing method thereof and fuel cell with separator
JP2006310132A (en) Flat-plate solid oxide fuel battery cell
JPH07201340A (en) Solid electrolyte fuel cell
JP3967118B2 (en) Method for producing metal separator for fuel cell
JPH09190826A (en) Solid electrolyte fuel cell and its manufacture
JPH08203544A (en) Manufacture for separator of solid electrolytic type fuel cell
JP4373365B2 (en) Flat type solid oxide fuel cell stack
JPS60207252A (en) Method of fusing electrode for molten carbonate fuel cell
JP4373364B2 (en) Flat type solid oxide fuel cell stack
JPH06188003A (en) Solid electrolyte type fuel battery
JP2005032628A (en) Diffusion layer for fuel cell
JPH07282821A (en) Solid electrolyte fuel cell and manufacture thereof
JPH0562694A (en) Solid electrolyte type fuel cell