JPS60207252A - Method of fusing electrode for molten carbonate fuel cell - Google Patents

Method of fusing electrode for molten carbonate fuel cell

Info

Publication number
JPS60207252A
JPS60207252A JP59062937A JP6293784A JPS60207252A JP S60207252 A JPS60207252 A JP S60207252A JP 59062937 A JP59062937 A JP 59062937A JP 6293784 A JP6293784 A JP 6293784A JP S60207252 A JPS60207252 A JP S60207252A
Authority
JP
Japan
Prior art keywords
brazing
electrode
fuel cell
nickel
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59062937A
Other languages
Japanese (ja)
Inventor
Tsuneki Shinokura
篠倉 恒樹
Toshio Sawada
沢田 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP59062937A priority Critical patent/JPS60207252A/en
Publication of JPS60207252A publication Critical patent/JPS60207252A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the electric contact resistance of fusing areas by fusing an electrode consisting of a porous nickel plate to a bipolar plate, consisting of austenitic stainless steel and used as a spacer, by brazing these members through sheet-like nickel foil. CONSTITUTION:In a battery containing an electrolyte tile 1, an anode 2, a cathode 3 and a bipolar plate 4 used as a spacer, the projections 4c of the bipolar plate 4 are brazed to the anode 2 by nickel foil 5. The nickel foil 5 consists of amorphous nickel foil with 50mum thickness directly produced from a molten bath by an ultra-rapid cooling method. The brazing is performed either in a nonoxidative atmosphere of an element gas such as argon gas, nitrogen gas or hydrogen gas or in vacuum. A good fusing state can be achieved by performing the brazing at a temperature of 960-1,040 deg.C for 1-20min.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、溶融炭酸塩形燃料電池における多孔質のニ
ッケル板からなる電極とオーステナイトステンレスから
なるスペーサとを、電極面内の複数条の部位で接合する
方法に関する。
The present invention relates to a method for joining an electrode made of a porous nickel plate and a spacer made of austenitic stainless steel at a plurality of strips within the electrode surface in a molten carbonate fuel cell.

【従来技術とその問題点】[Prior art and its problems]

溶融炭酸塩形燃料電池はR酸塩の電、解質タイルの両側
に多孔質のニッケル板からなるアノード電極と多孔質の
酸化ニッケル板からなるカソード電極とが配設されて単
位電池を構成し、その外側に反応ガスとしての燃料ガス
および酸化剤ガスをそれぞれアノード電極およびカッニ
ド電極に供給するための通路および導電体となるスペー
サとしてのバイポーラプレートが単位電池間に介装され
て形成されたものが多数積層されてセルスタックを形成
する。そして反応ガスはセルスタックに供給されて電気
を発生するが、この際単位電池に発生した電気はバイポ
ーラプレートを介して積層された他の単位電池に電気的
に接続されるので電極とバイポーラプレートは電気的に
密に接合されていることが必要である。以下従来技術に
ついて図面を用いて説明する。 第1図は溶融炭酸塩形燃料電池の断面斜視図である。第
1図において符号1は炭酸塩の電解質タイルであり、そ
の両側に通常多孔度50〜80%のニッケル粉焼結板か
らなるアノード電極2と多孔質の酸化ニッケル板からな
るカソード電極3が配設され、両電極の外側には反応ガ
スの燃料ガスと酸化剤ガスとを分離してそれぞれの電極
に供給するとともに単位電池間の電気的結合と集電とを
行う耐高温、耐食性のオーステナイトステンレス材から
なるスペーサとしてのバイポーラプレート4が配され、
隣接する単位電池のアノード電極2とカソード電極3と
の間に介装されている。そしてこれらの単位電池が積層
されてセルスタックを形成し、このセルスタックを締付
けることにより、バイポーラプレート4の突起部4c、
 4dは燃料電極2と酸化剤電極3に接合される。 さて燃料電池の運転には、反応ガスとしての水素からな
る燃料ガスをバイポーラプレート4の溝4aに、酸素と
炭酸ガスの混合ガスからなる酸化剤ガスをバイポーラプ
レート4の溝4bに流入させる。 そして燃料電池の運転温度500〜700℃で室温で固
体の電解質タイルはシャーベット状となり、これらの電
解質、電極、および反応ガスにより電気化学反応を起こ
し、矢印×の方向に電気が流れる。 この際、ニッケル粉焼結板A1らなるアノード電極とバ
イポーラプレートとの間には電気的な接触抵抗が生じ、
これが電気的損失となる。事実、燃料電池の運転後、燃
料電池を解体し、バイポーラプレートとアノード電極と
の接触部を調査すると長時間の高温加熱により両面に酸
化膜が生成されており、この酸化膜は大きな絶縁抵抗を
示すことが確認された。 したがってこの接触抵抗を除(ため、バイポーラプレー
トとアノード電極とをろう材によりろう付けする方法を
とることが有望とされる。この場合ろう材に要求される
特性は500℃以上の運転温度で長時間接合状態が安定
していること、運転温度で強い腐食性を有する溶融炭酸
塩に対する耐食性が高いこと、電気の良導体であること
、ニッケル粉焼結体の気孔率を低減させないこと、およ
び安価であることであり、これに適するろう材はニッケ
ルろうである。 しかし、現用のニッケルろうはほう素B、けい素SI、
りんPなどを含有しているため加工性が悪く、板や箔に
加工できないので通常粉末状にて使用される。したがっ
て線、板または棒にニッケルろうを使用する場合、粉末
ろうを有機化合物系の結合剤で固化成形してろう付けを
行っている。この方法を溶融炭酸塩形燃料電池の電極と
バイポーラプレートとの接合に通用すると、電極が多孔
質のニッケル粉焼結板のため、結合剤が電極の気孔部に
侵入し、電極性能が低下するという欠点がある。
In a molten carbonate fuel cell, an anode electrode made of a porous nickel plate and a cathode electrode made of a porous nickel oxide plate are arranged on both sides of an R-acid electrolyte tile to form a unit cell. , a passageway for supplying fuel gas and oxidant gas as reactive gases to the anode electrode and cannide electrode, respectively, and a bipolar plate as a spacer serving as a conductor are interposed between the unit cells. A large number of cells are stacked to form a cell stack. The reaction gas is then supplied to the cell stack to generate electricity, but at this time, the electricity generated in the unit cell is electrically connected to the other stacked unit cells via the bipolar plate, so the electrodes and bipolar plate It is necessary to have a close electrical connection. The prior art will be explained below with reference to the drawings. FIG. 1 is a cross-sectional perspective view of a molten carbonate fuel cell. In FIG. 1, reference numeral 1 is a carbonate electrolyte tile, and on both sides thereof, an anode electrode 2 made of a sintered nickel powder plate with a porosity of 50 to 80% and a cathode electrode 3 made of a porous nickel oxide plate are arranged. The outside of both electrodes is made of high temperature and corrosion resistant austenitic stainless steel which separates the reactant fuel gas and oxidant gas and supplies them to each electrode, as well as electrically connects and collects the current between the unit cells. A bipolar plate 4 as a spacer made of material is arranged,
It is interposed between the anode electrode 2 and cathode electrode 3 of adjacent unit cells. These unit batteries are stacked to form a cell stack, and by tightening this cell stack, the protrusions 4c of the bipolar plate 4,
4d is connected to the fuel electrode 2 and the oxidizer electrode 3. Now, in operation of the fuel cell, a fuel gas consisting of hydrogen as a reaction gas is made to flow into the grooves 4a of the bipolar plate 4, and an oxidant gas consisting of a mixed gas of oxygen and carbon dioxide is made to flow into the grooves 4b of the bipolar plate 4. When the operating temperature of the fuel cell is 500 to 700°C, the electrolyte tile, which is solid at room temperature, becomes sherbet-like, and an electrochemical reaction occurs between the electrolyte, the electrode, and the reaction gas, and electricity flows in the direction of the arrow x. At this time, electrical contact resistance occurs between the anode electrode made of the nickel powder sintered plate A1 and the bipolar plate,
This becomes electrical loss. In fact, when the fuel cell is disassembled after operation and the contact area between the bipolar plate and the anode electrode is investigated, an oxide film has been formed on both sides due to long-term high-temperature heating, and this oxide film has a large insulation resistance. It was confirmed that Therefore, in order to eliminate this contact resistance, it is considered promising to use a method of brazing the bipolar plate and anode electrode with a brazing material. In this case, the characteristics required of the brazing material are The bonding state is stable over time, it has high corrosion resistance against molten carbonate, which is highly corrosive at operating temperatures, it is a good conductor of electricity, it does not reduce the porosity of the nickel powder sintered body, and it is inexpensive. The suitable brazing material for this is nickel brazing material.However, the current nickel brazing material is boron B, silicon SI,
Because it contains phosphorus P, etc., it has poor workability and cannot be processed into plates or foils, so it is usually used in powder form. Therefore, when using nickel solder for wires, plates, or rods, the solder powder is solidified and molded with an organic compound binder for brazing. If this method is used to join the electrodes of a molten carbonate fuel cell to a bipolar plate, since the electrodes are porous sintered nickel powder plates, the binder will enter the pores of the electrodes, reducing electrode performance. There is a drawback.

【発明の目的] この発明は前述のような欠点に鑑み、多孔性のニッケル
板からなる電極とスペーサとしてのオーステナイトステ
ンレスからなるバイポーラプレートとを接合する際、そ
の接合部の電気の接触抵抗を少なくし、良好な電極性能
を得る接合方法を提供することを目的とする。 【発明の要点】 上記の目的は、本発明によれば溶融炭酸塩形燃料電池に
おいて、多孔質のニッケル板からなる電極と反応ガスの
通路を形成するオーステナイトステンレスからなるスペ
ーサ、とを電極面内の複数条の部位にて接合する際、ス
ペーサと電極との間に超急冷法により得られたシート状
のニッケルろう箔を介装し、非酸化性雰囲気中で加熱に
よりろう付けして接合することにより達成される。
[Object of the Invention] In view of the above-mentioned drawbacks, the present invention aims to reduce the electrical contact resistance at the joint when joining an electrode made of a porous nickel plate and a bipolar plate made of austenitic stainless steel as a spacer. The purpose of the present invention is to provide a bonding method that achieves good electrode performance. Summary of the Invention The above object is to provide a molten carbonate fuel cell according to the present invention, in which an electrode made of a porous nickel plate and a spacer made of austenitic stainless steel that forms a passage for a reactant gas are arranged in a molten carbonate fuel cell. When joining multiple strips, a sheet of nickel brazing foil obtained by ultra-quenching is interposed between the spacer and the electrode, and they are joined by heating and brazing in a non-oxidizing atmosphere. This is achieved by

【発明の実施例】[Embodiments of the invention]

以下図面に基づいて本発明の詳細な説明する。 第2図は本発明の実施例を示す部分斜視図であり、第2
図において第1図と同一部分には同じ符号を付している
。第2図において電解質タイル1.アノード電極2.カ
ソード電極3およびスペーサとしてのバイポーラプレー
ト4の材質、配役および電池としての作用は第1図の説
明と同じであるが、バイポーラプレート4の突起部4c
はアノード電極2と本発明に係るニッケルろう箔5によ
りろう付けされている。 ニッケルろう箔5は、超急冷法によって溶湯から直接に
製造された下記組成による厚さ50 tt taのアモ
ルファスニッケルろう箔(組成によJ)A、B。 C材という)が使用される。 A材:組成 N1−7Cr−3Fe−5Si−38(商
品名 METGLAS−MBF20)B材:組成 Ni
−5S1−3B (商品名 METGLAS−MBF30)C材:組成 
Ni−11P (商品名 METGLAS−MBF60)上記組成にお
いて、元素記号の前の数字はその成分元素の公稍含有量
である重量百分率を示す。 上記A、B、C材を非酸化性で掛るろう付は雰囲気とし
てアルゴンガス、窒素ガス、水素ガス、または真空中(
1011Torr)でろう付けを行ない、ろうA。 B材はろう付は温度960〜1040℃で1〜20分間
加熱してろう付けを行い、またろうC材はろう付は温度
800〜870℃で5〜20分間加熱してろう付けを行
なフて良好な接合状態が得られた。 第3図、第4図、第5図はアモルファスニッケルにより
アルゴンガス中1000℃で5分間加熱したろう膜形成
は防止されている。S+図、第5図はろう付燃料電池の
単位電池の製作にあたり通用するろう付は方法は、第2
図においてアモルファスニッケルろう箔5をあらかじめ
短冊状に切断したものを多孔質のニッケル粉焼結体から
なる燃料電極2とセパレータとしてのバイポーラプレー
ト4の突起部4cとの間の複数条の部位に挟んで前記ろ
う付は条件でろう付けすることにより得られる。他の方
法としてはバイポーラプレート4と同じ程度の大きさの
ろう箔をバイポーラプレート4の突起部4cの面のみを
残してこれ以外の部分を打ち抜いて、このろう箔をバイ
ポーラプレート4の突起部4Cとアノード電極2との間
に挟んで前述のろう付は条件でろう付けする。 第6図、第7図、第8図はニッケルろう箔A、B。 C材をろう付けにより接合したニッケル粉焼結体とオー
ステナイトステンレス板との接合の電気抵抗を室温で測
定した結果を示したものであり、比較のため従来から使
用されているろう付けを施さないものをろう付は条件と
しての雰囲気温度でろう付けした時間と同じ時間保持し
た時の室温での電気抵抗測定結果を示している。第6図
はろうA材によるアルゴンガス雰囲気温度1000℃で
1〜20分間の加熱時間でろう付けしたときの電気抵抗
とろう付は時間との関係を、第7図はろうB材によるア
ルゴンガス雰囲気温度1000℃で1〜20分間の加熱
時間でろう付けしたときの電気抵抗とろう付げ時間との
関係を、第8図はろうC材によるアルゴンガス雰囲気温
度900℃で1〜20分間の加熱時間でろう付けしたと
きの電気抵抗とろう付は時間との関係を示したものであ
り、いづれの場合もろう付けを行、たものはろう付けな
しのものより電気抵抗が低くまた加熱時間にあまり関係
なくほぼ一定しており、燃料電池の燃料電極とバイポー
ラプレートの接触抵抗は良好である。これに反しろう付
けを行わない場合に、は電気抵抗が高く、また保持時間
が長くなるにつれて高くなる。これは、温度の上昇によ
りニッケル粉焼結体の各ニッケル粒子およびステンレス
板の表面がアルゴンガス中の微量な酸素によって酸化さ
れ、絶縁性の被膜が形成されることによる。さらに、ろ
うA、B、C材による接合された前記接合体を燃料電池
の運転温度に相応する650℃の燃料ガス(水素ガスを
主成分とする)中で加熱しつつ電気接触抵抗を測定して
もろう付けの有無による電気抵抗値の関係はそれぞれ第
6図。 第7図、第8図と同じであった。したがって本発明のろ
う付は方法は電気抵抗が低く、安定していることがわか
る。
The present invention will be described in detail below based on the drawings. FIG. 2 is a partial perspective view showing an embodiment of the present invention;
In the figure, the same parts as in FIG. 1 are given the same reference numerals. In FIG. 2, electrolyte tile 1. Anode electrode 2. The materials of the cathode electrode 3 and the bipolar plate 4 as a spacer, their roles, and the function as a battery are the same as those described in FIG.
is brazed to the anode electrode 2 using a nickel solder foil 5 according to the present invention. The nickel brazing foil 5 is an amorphous nickel brazing foil (J) A, B having the following composition and having a thickness of 50 tt ta and manufactured directly from molten metal by an ultra-quenching method. (referred to as C material) is used. A material: Composition N1-7Cr-3Fe-5Si-38 (product name METGLAS-MBF20) B material: Composition Ni
-5S1-3B (Product name METGLAS-MBF30) C material: Composition
Ni-11P (trade name: METGLAS-MBF60) In the above composition, the number before the element symbol indicates the weight percentage which is the estimated content of the component element. For non-oxidizing brazing of materials A, B, and C above, the atmosphere may be argon gas, nitrogen gas, hydrogen gas, or vacuum (
Brazing is performed at 1011 Torr (Brazing A). Material B is brazed by heating at a temperature of 960 to 1040°C for 1 to 20 minutes, and material C is brazed by heating at a temperature of 800 to 870°C for 5 to 20 minutes. A good bonding condition was obtained. FIGS. 3, 4, and 5 show that amorphous nickel prevents wax film formation when heated in argon gas at 1000° C. for 5 minutes. The S+ diagram and Figure 5 show the brazing method commonly used in manufacturing unit cells of brazed fuel cells.
In the figure, amorphous nickel brazing foil 5 is cut into strips in advance and is sandwiched between a plurality of strips between the fuel electrode 2 made of porous sintered nickel powder and the protrusion 4c of the bipolar plate 4 as a separator. The above-mentioned brazing is obtained by brazing under the conditions. Another method is to punch out a piece of wax foil that is about the same size as the bipolar plate 4, leaving only the surface of the protrusion 4c of the bipolar plate 4, and punching out the other parts, and then punching out the other part of the wax foil, leaving only the surface of the protrusion 4c of the bipolar plate 4. and the anode electrode 2, and brazing is performed under the conditions described above. Figures 6, 7, and 8 show nickel brazing foils A and B. This shows the results of measuring the electrical resistance of the joint between a nickel powder sintered body and an austenitic stainless steel plate, which are joined by brazing C material, at room temperature.For comparison, conventional brazing is not applied. For brazing something, the results show the electrical resistance measurement results at room temperature when the object was held at the ambient temperature for the same time as the brazing time. Figure 6 shows the relationship between electrical resistance and brazing time when brazing with brazing material A using argon gas at a temperature of 1000°C and heating time of 1 to 20 minutes, and Figure 7 shows the relationship between brazing time and argon gas using brazing material B. Figure 8 shows the relationship between electrical resistance and brazing time when brazing is performed at an ambient temperature of 1000°C and a heating time of 1 to 20 minutes. This shows the relationship between the electrical resistance when brazing and brazing with heating time and time. The contact resistance between the fuel electrode and the bipolar plate of the fuel cell is good. On the other hand, when brazing is not performed, the electrical resistance is high, and increases as the holding time increases. This is because each nickel particle of the nickel powder sintered body and the surface of the stainless steel plate are oxidized by a trace amount of oxygen in the argon gas due to the rise in temperature, and an insulating film is formed. Furthermore, the electrical contact resistance was measured while heating the joined body made of wax materials A, B, and C in a fuel gas (mainly composed of hydrogen gas) at 650°C, which corresponds to the operating temperature of a fuel cell. Figure 6 shows the relationship between electrical resistance values with and without brazing. It was the same as Figures 7 and 8. Therefore, it can be seen that the brazing method of the present invention has low electrical resistance and is stable.

【発明の効果】【Effect of the invention】

この発明によれば、溶融炭酸塩形燃料電池のニッケル粉
焼結体からなる電極とオーステナイトステンレスからな
るスペーサとの間の電極面の複数の部位に、超急冷法に
より得られたニッケルろう箔を介装して非酸性雰囲気中
で加熱してろう付けにより接合することにより、その接
合部の電気接触抵抗が小さくなって電気的損失が減少し
、また従来技術のようにニッケルろう箔は結合剤を含有
しないため、ろう)パ。 付けにより結合剤が電極の気孔部を塞ぐこともなく燃料
電池の特性が向上する効果がある。また本発明に係るニ
ッケルろう箔は加工性に富み、均一な厚さが得られるの
で電極とスペーサとの間に容易に介装されるのでろう付
けの作業性がよいという効果がある。そして接合部にニ
ッケルろう箔を使用するため、接合部は耐熱性、耐食性
、耐久性に冨み、電極の寿命も長くなるという効果もあ
る。
According to this invention, a nickel brazing foil obtained by an ultra-quenching method is applied to multiple parts of the electrode surface between an electrode made of a nickel powder sintered body and a spacer made of austenitic stainless steel in a molten carbonate fuel cell. By joining by brazing and heating in a non-acidic atmosphere, the electrical contact resistance of the joint is reduced and electrical loss is reduced. Because it does not contain wax) This has the effect of improving the characteristics of the fuel cell without causing the binder to block the pores of the electrode. Further, the nickel brazing foil according to the present invention is highly workable and has a uniform thickness, so that it can be easily inserted between the electrode and the spacer, resulting in good brazing workability. Furthermore, since nickel brazing foil is used in the joint, the joint has excellent heat resistance, corrosion resistance, and durability, and the life of the electrode is also extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による溶融炭酸塩形燃料電池の単位電
池の部分斜視図、第2図は本発明の実施例による単位電
池の部分断面斜視図、第3図、第4図。 気抵抗を示すグラフである。 1・−電解質タイル、2−・アノード電極、3・−’7
Jソード電極、4−・−・スペーサ、5・−ニッケルろ
う箔。 +2(2) ′t′3閃 +41!] オフ図
FIG. 1 is a partial perspective view of a unit cell of a molten carbonate fuel cell according to the prior art, FIG. 2 is a partial cross-sectional perspective view of a unit cell according to an embodiment of the present invention, and FIGS. 3 and 4. It is a graph showing air resistance. 1.-electrolyte tile, 2-.anode electrode, 3.-'7
J-sword electrode, 4--Spacer, 5--Nickel brazing foil. +2 (2) 't'3 flash +41! ] Off diagram

Claims (1)

【特許請求の範囲】 1)多孔質のニッケル板からなる電極と、反応ガスの通
路を形成するオーステナイトステンレスからなるスペー
サとを電極面内の複数条の部位において接合する方法で
あって、前述スペーサと電極との間に超急冷法により得
られたシート状のニッケルろう箔を介装し、非酸化性雰
囲気中で加熱によりろう付けして接合することを特徴と
する溶融炭酸塩形燃料電池の電極接合方法。 2、特許請求の範囲第1項記載の電極接合方法において
、ニッケルろう箔はNi −Cr−B−St −F e
系ろう材からなり、960〜1040℃の温度で1〜2
0分間加熱されてろう付けされることを特徴とする溶融
炭酸塩形燃料電池の電極接合方法。 3)特許請求の範囲第1項記載の電極接合方法において
、ニッケルろう箔はNi −5i−B系ろう材からなり
、960〜1040℃の温度で1〜20分間加熱されて
ろう付けされることを特徴とする溶融炭酸塩形燃料電池
の電極接合方法。 4)特許請求の範囲第1項記載の電極接合方法において
、ニッケルろう箔はN1−P系ろう材からなり、800
〜870℃で5〜20分間加熱されてろう付けされるこ
とを特徴とする溶融炭酸塩形燃料電池の電極接合方法。 5)特許請求の範囲第1項記載の電極接合方法において
、非酸性雰囲気はアルゴンガス、窒素ガス。 水素ガスおよび真空の雰囲気であることを特徴とする溶
融炭酸塩形燃料電池の電極接合方法。
[Scope of Claims] 1) A method of joining an electrode made of a porous nickel plate and a spacer made of austenitic stainless steel that forms a passage for a reactive gas at a plurality of strips within the electrode surface, the method comprising: A molten carbonate fuel cell characterized in that a sheet-shaped nickel brazing foil obtained by an ultra-quenching method is interposed between the electrode and the electrode, and the electrodes are joined by heating and brazing in a non-oxidizing atmosphere. Electrode bonding method. 2. In the electrode bonding method according to claim 1, the nickel brazing foil is Ni-Cr-B-St-Fe
1-2 at a temperature of 960-1040℃.
1. A method for joining electrodes of a molten carbonate fuel cell, characterized by brazing by heating for 0 minutes. 3) In the electrode bonding method according to claim 1, the nickel brazing foil is made of Ni-5i-B brazing material and is brazed by heating at a temperature of 960 to 1040°C for 1 to 20 minutes. A method for joining electrodes of a molten carbonate fuel cell, characterized by: 4) In the electrode bonding method according to claim 1, the nickel brazing foil is made of N1-P brazing material,
A method for joining electrodes of a molten carbonate fuel cell, characterized by brazing by heating at ~870°C for 5 to 20 minutes. 5) In the electrode bonding method according to claim 1, the non-acidic atmosphere is argon gas or nitrogen gas. A method for bonding electrodes for a molten carbonate fuel cell, characterized by an atmosphere of hydrogen gas and vacuum.
JP59062937A 1984-03-30 1984-03-30 Method of fusing electrode for molten carbonate fuel cell Pending JPS60207252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062937A JPS60207252A (en) 1984-03-30 1984-03-30 Method of fusing electrode for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062937A JPS60207252A (en) 1984-03-30 1984-03-30 Method of fusing electrode for molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPS60207252A true JPS60207252A (en) 1985-10-18

Family

ID=13214711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062937A Pending JPS60207252A (en) 1984-03-30 1984-03-30 Method of fusing electrode for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS60207252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183070A (en) * 1988-01-06 1989-07-20 Hitachi Ltd Separator for fuel cell
JPH02132764A (en) * 1988-11-14 1990-05-22 Hitachi Ltd Fused carbonate type fuel cell
US5830292A (en) * 1994-04-13 1998-11-03 Schwarzkopf Technologies Corporation Hard solder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183070A (en) * 1988-01-06 1989-07-20 Hitachi Ltd Separator for fuel cell
JPH02132764A (en) * 1988-11-14 1990-05-22 Hitachi Ltd Fused carbonate type fuel cell
US5830292A (en) * 1994-04-13 1998-11-03 Schwarzkopf Technologies Corporation Hard solder

Similar Documents

Publication Publication Date Title
JP5236294B2 (en) Interconnector for high-temperature fuel cells
JPH06188004A (en) Material for metal component of high-temperature fuel-cell equipment
JP2001357862A (en) Bipolar plate and solid high-polymer type fuel cell
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JPH07166301A (en) Separator for solid electrolyte fuel cell
EP1932200B1 (en) Soldered joint for solid oxide fuel cells
JP4352447B2 (en) Solid oxide fuel cell separator with excellent conductivity
JPS60207252A (en) Method of fusing electrode for molten carbonate fuel cell
JP3113347B2 (en) Solid oxide fuel cell
JPH0158832B2 (en)
JP4136062B2 (en) Separator material
JP2016039004A (en) Fuel battery
JPH0294365A (en) Solid electrolyte fuel cell
JPH0151027B2 (en)
JP2661692B2 (en) Electrode assembly for high temperature fuel cells
JPH0722058A (en) Flat solid electrolyte fuel cell
JP3301558B2 (en) Flat solid electrolyte fuel cell
JPS60115173A (en) Fused salt fuel cell
JPH0412457A (en) High-temperature type fuel cell
JPH06150958A (en) Solid electrolyte fuel cell
JPH07201340A (en) Solid electrolyte fuel cell
JPH0550104B2 (en)
JP2944141B2 (en) High temperature fuel cell
JPH0722038A (en) Flat solid electrolyte fuel cell
JPH0294366A (en) Solid electrolyte fuel cell