JP3617814B2 - Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell - Google Patents

Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell Download PDF

Info

Publication number
JP3617814B2
JP3617814B2 JP2000344882A JP2000344882A JP3617814B2 JP 3617814 B2 JP3617814 B2 JP 3617814B2 JP 2000344882 A JP2000344882 A JP 2000344882A JP 2000344882 A JP2000344882 A JP 2000344882A JP 3617814 B2 JP3617814 B2 JP 3617814B2
Authority
JP
Japan
Prior art keywords
air electrode
cell
fuel cell
solid fuel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000344882A
Other languages
Japanese (ja)
Other versions
JP2002151091A (en
Inventor
玲一 千葉
文一 吉村
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000344882A priority Critical patent/JP3617814B2/en
Publication of JP2002151091A publication Critical patent/JP2002151091A/en
Application granted granted Critical
Publication of JP3617814B2 publication Critical patent/JP3617814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【産業上の利用分野】
本発明はアルカリ土類添加ニッケル−鉄系ペロブスカイト型低温動作固体燃料電池用空気極材料に関するものである。
【0002】
【従来の技術および問題点】
近年、酸素イオン伝導体を用いた固体電解質燃料電池に関心が高まりつつある。特にエネルギーの有効利用という観点から、固体燃料電池はカルノー効率の制約を受けないため本質的に高いエネルギー変換効率を有し、さらに良好な環境保全が期待されるなどの優れた特徴を持っている。
【0003】
図3に近年最も良く検討されている固体燃料電池の単セル(チューブ型)の断面を模式的に示す。このようなチューブ型電池は、中空円筒型の多孔質の空気極基板1の外壁に固体電解質2を形成するとともに、この外側に燃料極3を形成した構造を有している。そして、円筒形空気極基板1の中空部に酸素を、単セル外側に水素を通すことによって発電を行う。なお、4は単セルを接続するためのインターコネクタである。
【0004】
上述のような燃料電池の固体電解質としてはYSZ(イットリウム安定化ジルコニア)が最も有望視されている。電極材料としてはペロブスカイト型マンガン系酸化物であるLa0.8Sr0.2MnOが最も多く検討されている。
【0005】
このチューブ型セルは空気極を多孔質基板とし、その上に電解質、燃料極そしてインターコネクタを配置する方式である。この方式は丈夫なセルを組みやすく、ガスのシールが容易との利点がある反面、主要な部分がランタン系の酸化物であるため、材料コストが高く、複雑な形状のセラミックとなるため製造コストの低減も難しい。
【0006】
以上のセルは1000℃付近の動作を前提に設計されている。この動作温度を650℃程度まで低減できれば、耐熱合金などの腐食が起きないため、インターコネクタやセルを収納するマニホールドなどにこれらの金属を使用することが可能となる。この場合、インターコネクタ部分の体積が大きい平板型構造のセルが適している。
【0007】
この模式図を図4a,図4bに示す。これは、燃料極であるNi−YSZを支持体(基板)とした燃料極支持平板型セルである。すなわち、単セルは、燃料極基板3に固体電解質2を積層するとともに、前記固体電解質2にさらに空気極1を積層した構造になっている(図4a参照)。そして、前記燃料極3、空気極1の両側よりそれぞれ水素、酸素を供給することによって、発電を行う。また、前記単セルCの相互の接続には、燃料供給通路41および/または酸素供給通路42を形成した金属製のインターコネクタ4を積層して使用する(図4b参照)。なお、図中、5は集電メッシュ、6はガスシールである。
【0008】
このような構造では、固体電解質を薄く緻密な膜とすることが比較的容易であり、伝導性が高く、低コストな燃料極を主要な構造体としている。このため、コストの低減及び、動作温度の低減が容易である。
【0009】
しかし、動作温度を低減させると、セルを構成する電解質の伝導度および電極の活性が低下するためセルの出力電圧が低下してしまう。従って動作温度の低減には、これらの問題を解決する必要がある。
【0010】
電解質については、薄膜化による抵抗の低減や、低温でも伝導度の高いSc添加ジルコニア系(例えば、SASZ(0.89ZrO−0.104Sc−0.006Al))、または(La−Sr)(Ga−Mg)O系の使用により対応できる。電極については、電極に微粉末を用いることでも電極性能を向上させることが可能である。
【0011】
しかし、微細化された電極はセルの作製段階で焼結が進み易いため、限界がある。従って電極活性の高い材料の開発が不可欠である。特に空気極では、低温化により電極活性が急激に低下する為、優れた電極特性を持つ材料の開発が求められている。ここで、高い電極特性とは、少ない電圧の低下でも大きな電流を流すことができることを意味する。
【0012】
この他にも、電極からインターコネクタへの集電損失を抑える為に、高い電子伝導度が求められる。そして、空気極基板と電解質との熱膨張係数はなるべく近い値でなければならない。これは、室温と動作温度の間の温度サイクルを経ることにより電解質と空気極基板との界面に応力がかかり電解質にクラックが入る恐れがある為である。
【0013】
本発明は700℃から600℃で動作する固体燃料電池用空気極に求められている電気的特性および熱膨張係数における電解質との整合性の二つの要求を同時に満足させたアルカリ土類添加ニッケル−鉄系ペロブスカイト型低温動作固体燃料電池用空気極材料を提供することを目的とする。
【0014】
【問題点を解決するための手段】
上記課題を解決するため、本発明によるアルカリ土類添加ニッケル−鉄系ペロブスカイト型低温動作固体燃料電池用空気極材料は、固体電解質とそれに隣接して設けられた多孔質な空気極および燃料極からなるセル、それらを電気的に接続するインターコネクタを有し、燃料ガスと空気または酸素ガスとの化学反応を電気エネルギーに変換する固体燃料電池の固体燃料電池用空気極材料であって、Ln1−YNi1−XFe(LnはLa,Pr,Nd,Smの何れか1つあるいはLa,Pr,Nd,Smの中から選ばれた2つ以上の元素であり、AはSr,Ba,Caの何れか1つあるいはSr,Ba,Caの中から選ばれた2つ以上の元素である)で表され、その組成範囲がX−0.2≦Y≦X−0.4で、かつ0.55≦X≦0.90であることを特徴とする。
【0015】
本発明によれば、Ln1−YNi1−XFe(LnはLa,Pr,Nd,Smから選ばれた1つ以上の元素;AはSr,Ba,Caから選ばれた1つ以上の元素;X,Yは組成範囲がX−0.2≦Y≦X−0.4で、かつ0.55≦X≦0.90である。図1に上述の組成範囲を図示してある)を空気極に用いることによって、650℃前後で良好な電極活性を有し、かつ電子伝導性が従来材料のLa0.8Sr0.2MnOに比べ優れ、さらに熱膨張係数が従来の材料とほぼ同じ値を持つという利点を生じる。
【0016】
【作用】
以下に本発明の作用を説明する。
【0017】
固体燃料電池セル構成材として現在最もよく検討されている物質の熱膨張係数を表1に示す。完全な緻密性が要求される固体電解質とインターコネクタ材は、ほぼ熱膨張係数が一致している。これに対して燃料極であるNi−YSZおよび空気極のLa0.8Sr0.2MnOは、約20−30%程度熱膨張係数が大きいが、この程度の不整合は許容されると考えられる。これは燃料極及び空気極は多孔質であるため、熱膨張係数が電解質と異なっていても熱膨張差はある程度吸収されることによる。
【0018】
今回、空気極であるLn1−YNi1−XFe(LnはLa,Pr,Nd,Smから選ばれた1つ以上の元素;AはSr,Ba,Caから選ばれた1つ以上の元素;組成範囲はX−0.2≦Y≦X−0.4で、かつ0.55≦X≦0.90である)について検討したところ、650℃前後における電気伝導性および電極活性が従来材料であるLa0.8Sr0.2MnOに比べ優れ、熱膨張係数が従来材料とほぼ同等であることが分かった。なお、XおよびYは、LnまたはAが複数の元素の場合、前記複数の元素の総量を示す。
【0019】
前記組成範囲は、特にX−0.25≦Y≦X−0.35で、かつ0.55≦X≦0.85であるのが好ましい。上記組成範囲の場合、熱膨張係数は従来とほぼ同様であり、かつ電気電導性、電極活性が、特に良好な値を示すからである。
【0020】
以上のことから、電気的特性および熱膨張係数における電解質との整合性の二つの要求を同時に満足するアルカリ土類添加ニッケル−鉄系ぺロブスカイト型低温動作固体燃料電池用空気極材料を空気極に用いることにより、650℃前後で動作する固体電解質型燃料電池を実現できる。
【0021】
【表1】

Figure 0003617814
【0022】
【実施例】
以下に本発明の実施例を説明する。なお、当然のことであるが本発明は以下の実施例に限定されるものではない。
【0023】
【実施例1】
本発明の効果を示すために、図2aに示す構造の単セルで,図2bに示すセル測定径を使用して試験を行なった。図2a、図2bにおいて、1は空気極、2は固体電解質、3は燃料極、5は白金製の集電メッシュ、6はガスシール、7は白金端子、8はアルミナ管である。また空気極、燃料極の厚みは0.5mm、直径は6mm、固体電解質の厚みは0.1mm、大きさは22mm角である。
【0024】
固体電解質は、SASZ(0.89ZrO−0.104Sc−0.006Al)を、燃料極にはNi−YSZ(Ni:60wt%,0.92ZrO−0.08Y:40wt%)を、そして空気極にはLa1−YSrNi1−XFe、{(X,Y)=(0.55,0.15),(0.90,0.50),(0.90,0.70),(0.80,0.50),(0.60,0.30),(0.55,0.35)}を用いた。
【0025】
これらのセルの番号を本発明の組成範囲を示す図1と対応づけてセル♯1−1〜セル♯1−6(図1中の1〜6はセル♯1−1〜セル♯1−6に対応する:以下の実施例でも同様である)とした。また、比較例として従来のLa0.8Sr0.2MnOを空気極に用いたセルをセル♯0とした。図中、外側で示した範囲が本発明の範囲であり、内側の範囲は、本発明における、好ましい範囲を示す。
【0026】
本実施例に使用した単セルの作製方法を以下に示す。まずドクターブレード法により固体電解質2のセラミックス薄板のグリーンシートを形成し1600℃で焼上げる。これに燃料極3としてNi−YSZを塗布し1300℃で焼き、この後、燃料極3の対面に上記の空気極1を塗布し750℃で焼き付けた。表2に、この単セルの650℃での試験結果を示す。ここで端子電圧は電流密度が200mA/cm時の値で、この端子電圧が高いほど優れた特性である。
【0027】
熱膨張係数の測定には、空気極材料を1250℃でペレット状に焼結したものを棒状に切りだし、熱膨張測定装置により空気中で室温から700℃まで測定した。表2に空気極の熱膨張係数の組成依存性を示す。ここで、熱膨張係数は、25−700℃までの平均値である。
【0028】
これら本発明の空気極を用いた時は、いずれも従来のLa0.8Sr0.2MnOを空気極に用いたセルに比べ良好な特性を示した。
【0029】
【表2】
Figure 0003617814
【0030】
【実施例2】
実施例1と同様の単セルにおいて、空気極の材料をLa1−YBaNi1−XFe、{(X,Y)=(0.55,0.15),(0.90,0.50),(0.90,0.70),(0.80,0.50),(0.60,0.30),(0.55,0.35)}に代えて実施例1と同様の実験を行った。表3にその結果を示す。これらのセルの番号を組成範囲の図(図1)と対応づけてセル♯2−1〜セル♯2−7とした。実施例1とほぼ同様に、従来材料であるLa0.8Sr0.2MnOに比べいずれも良好な結果を得た。
【0031】
【表3】
Figure 0003617814
【0032】
【実施例3】
実施例1と同様の単セルを空気極の材料だけをLa1−YCaNi1−XFe、{(X,Y)=(0.55,0.15),(0.90,0.50),(0.90,0.70),(0.80,0.50),(0.60,0.30),(0.55,0.35)}に代えて実施例1と同様の実験を行った。これらのセルの番号を組成範囲の図(図1)と対応づけてセル♯3−1〜セル♯3−7とした。表4に示す様に実施例1とほぼ同様に、従来材料であるLa0.8Sr0.2MnOに比べいずれも良好な結果を得た。
【0033】
【実施例4】
実施例1と同様の単セルを空気極の材料だけをLa0.5Sr0.3Ca0.1Ba0.1Ni0.2Fe0.8に代えて実施例1と同様の実験を行った。表4のセル♯4−1に示す様に実施例1とほぼ同様に、従来材料であるLa0.8Sr0.2MnOに比べいずれも良好な結果を得た。
【0034】
【表4】
Figure 0003617814
【0035】
【実施例5】
実施例1と同様の単セルにおいて、空気極の材料をLn0.5Sr0.5Ni0.2Fe0.8,(Ln=Pr,Nd,Sm)、またはLa0.2pr0.1Nd0.1Sm0.1Sr0.5Ni0.2Fe0.8に代えて実施例1と同様の実験を行った。表5にその結果をセル♯5−1〜セル♯5−4に示す。実施例1とほぼ同様に、従来材料であるLa0.8Sr0.2MnOに比べいずれも良好な結果を得た。
【0036】
【表5】
Figure 0003617814
【0037】
【発明の効果】
以上説明したように、固体電解質燃料電池の空気極材料をLn1−YNi1−XFe(LnはLa,Pr,Nd,Smから選ばれた1つ以上の元素;AはSr,Ba,Caから選ばれた1つ以上の元素;組成範囲;X−0.2≦Y≦X−0.4で、かつ0.55≦X≦0.90)とすることで、650℃においても電気特性が従来の材料であるLa0.8Sr0.2MnOに比べ優れ、熱膨張係数は従来とほぼ同等である空気極を得ることに成功した。本発明は固体燃料電池の低コスト化に大きな貢献をなすものである。
【図面の簡単な説明】
【図1】本発明の組成範囲を示す図。
【図2a】実施例で使用した燃料電池の単セルの平面図。
【図2b】実施例で使用したセル測定系の構造模式図。
【図3】チューブ型燃料電池セルの構造模式図。
【図4a】平板型低温動作燃料電池の単セルの構造模式図。
【図4b】平板型低温動作燃料電池の構造模式図。
【符号の説明】
1 燃料極
2 固体電解質
3 空気極
4 インターコネクタ[0001]
[Industrial application fields]
The present invention relates to an air electrode material for an alkaline earth-added nickel-iron-based perovskite type low temperature operation solid fuel cell.
[0002]
[Prior art and problems]
In recent years, there has been an increasing interest in solid electrolyte fuel cells using oxygen ion conductors. In particular, from the viewpoint of effective use of energy, solid fuel cells have excellent characteristics such as essentially high energy conversion efficiency because they are not restricted by Carnot efficiency, and better environmental conservation is expected. .
[0003]
FIG. 3 schematically shows a cross section of a single cell (tube type) of a solid fuel cell that has been most well studied in recent years. Such a tube type battery has a structure in which a solid electrolyte 2 is formed on the outer wall of a hollow cylindrical porous air electrode substrate 1 and a fuel electrode 3 is formed on the outside thereof. Then, power is generated by passing oxygen through the hollow portion of the cylindrical air electrode substrate 1 and hydrogen through the outside of the single cell. Reference numeral 4 denotes an interconnector for connecting single cells.
[0004]
YSZ (yttrium-stabilized zirconia) is regarded as the most promising solid electrolyte for fuel cells as described above. As the electrode material, La 0.8 Sr 0.2 MnO 3 which is a perovskite-type manganese-based oxide is most frequently studied.
[0005]
In this tube type cell, an air electrode is used as a porous substrate, and an electrolyte, a fuel electrode and an interconnector are arranged thereon. This method has the advantage that it is easy to assemble a strong cell and easy to seal the gas, but the main part is a lanthanum oxide, so the material cost is high, and it becomes a ceramic of complicated shape, so the manufacturing cost Reduction is difficult.
[0006]
The above cell is designed on the assumption of operation at around 1000 ° C. If this operating temperature can be reduced to about 650 ° C., corrosion of a heat-resistant alloy or the like will not occur, so that these metals can be used for interconnectors, manifolds for accommodating cells, and the like. In this case, a cell having a flat plate structure with a large volume of the interconnector portion is suitable.
[0007]
This schematic diagram is shown in FIGS. 4a and 4b. This is a fuel electrode-supporting flat plate cell using Ni-YSZ as a fuel electrode as a support (substrate). That is, the single cell has a structure in which the solid electrolyte 2 is laminated on the fuel electrode substrate 3, and the air electrode 1 is further laminated on the solid electrolyte 2 (see FIG. 4a). Then, electricity is generated by supplying hydrogen and oxygen from both sides of the fuel electrode 3 and the air electrode 1, respectively. Further, for interconnecting the single cells C, a metal interconnector 4 in which a fuel supply passage 41 and / or an oxygen supply passage 42 is formed is laminated (see FIG. 4b). In the figure, 5 is a current collecting mesh and 6 is a gas seal.
[0008]
In such a structure, it is relatively easy to make the solid electrolyte into a thin and dense film, and a high-conductivity and low-cost fuel electrode is a main structure. For this reason, it is easy to reduce the cost and the operating temperature.
[0009]
However, when the operating temperature is decreased, the conductivity of the electrolyte constituting the cell and the activity of the electrode are lowered, and the output voltage of the cell is lowered. Therefore, it is necessary to solve these problems in order to reduce the operating temperature.
[0010]
For the electrolyte, the resistance is reduced by thinning, the Sc-doped zirconia system having high conductivity even at a low temperature (for example, SASZ (0.89ZrO 2 -0.104Sc 2 O 3 -0.006Al 2 O 3 )), or ( This can be dealt with by using a La—Sr) (Ga—Mg) O 3 system. As for the electrode, it is possible to improve the electrode performance by using a fine powder for the electrode.
[0011]
However, the miniaturized electrode has a limit because sintering is likely to proceed at the cell production stage. Therefore, development of materials with high electrode activity is essential. In particular, in the air electrode, since the electrode activity rapidly decreases as the temperature is lowered, development of a material having excellent electrode characteristics is required. Here, the high electrode characteristics mean that a large current can flow even with a small voltage drop.
[0012]
In addition, high electron conductivity is required in order to suppress current collection loss from the electrode to the interconnector. The thermal expansion coefficient between the air electrode substrate and the electrolyte must be as close as possible. This is because stress may be applied to the interface between the electrolyte and the air electrode substrate through a temperature cycle between room temperature and the operating temperature, and the electrolyte may crack.
[0013]
The present invention is an alkaline earth-added nickel that simultaneously satisfies the two requirements of the electrical characteristics required for an air electrode for a solid fuel cell operating at 700 ° C. to 600 ° C. and the compatibility with the electrolyte in the coefficient of thermal expansion. An object of the present invention is to provide an air electrode material for iron-based perovskite type low-temperature operation solid fuel cells.
[0014]
[Means for solving problems]
In order to solve the above problems, an alkaline earth-added nickel-iron-based perovskite-type air electrode material for low-temperature operation solid fuel cell according to the present invention comprises a solid electrolyte, a porous air electrode and a fuel electrode provided adjacent thereto. A solid fuel cell air electrode material for a solid fuel cell, which has an interconnector for electrically connecting them, and converts a chemical reaction between the fuel gas and air or oxygen gas into electrical energy, Ln 1 -Y A Y Ni 1-X Fe X O 3 (Ln is any one of La, Pr, Nd, Sm or two or more elements selected from La, Pr, Nd, Sm; Is one of Sr, Ba, and Ca or two or more elements selected from Sr, Ba, and Ca), and the composition range is X−0.2 ≦ Y ≦ X−0. .4 and 0.55 ≦ X ≦ 0.90.
[0015]
According to the present invention, Ln 1-Y A Y Ni 1-X Fe X O 3 (Ln is La, Pr, Nd, 1 or more elements selected from Sm; A is selected Sr, Ba, and Ca X and Y have a composition range of X−0.2 ≦ Y ≦ X−0.4 and 0.55 ≦ X ≦ 0.90. Is used for the air electrode, has good electrode activity at around 650 ° C., and is superior in electronic conductivity to La 0.8 Sr 0.2 MnO 3 of the conventional material, and further has a thermal expansion. The advantage is that the coefficients have approximately the same values as conventional materials.
[0016]
[Action]
The operation of the present invention will be described below.
[0017]
Table 1 shows the coefficient of thermal expansion of a substance that is currently most frequently studied as a constituent material for solid fuel cells. The solid electrolyte and interconnector material, which require perfect density, have almost the same thermal expansion coefficient. On the other hand, the fuel electrode Ni-YSZ and the air electrode La 0.8 Sr 0.2 MnO 3 have a large coefficient of thermal expansion of about 20-30%. Conceivable. This is because since the fuel electrode and the air electrode are porous, the difference in thermal expansion is absorbed to some extent even if the thermal expansion coefficient is different from that of the electrolyte.
[0018]
This time, Ln 1-Y A Y Ni 1-X Fe X O 3 (Ln is an air electrode La, Pr, Nd, 1 or more elements selected from Sm; A is selected Sr, Ba, and Ca One or more elements; the composition range is X−0.2 ≦ Y ≦ X−0.4 and 0.55 ≦ X ≦ 0.90), and the electrical conductivity at around 650 ° C. It was also found that the electrode activity was superior to that of the conventional material La 0.8 Sr 0.2 MnO 3 and the thermal expansion coefficient was almost the same as that of the conventional material. X and Y indicate the total amount of the plurality of elements when Ln or A is a plurality of elements.
[0019]
The composition range is particularly preferably X−0.25 ≦ Y ≦ X−0.35 and 0.55 ≦ X ≦ 0.85. This is because, in the case of the above composition range, the thermal expansion coefficient is almost the same as the conventional one, and the electrical conductivity and electrode activity show particularly good values.
[0020]
Based on the above, an air electrode material for an alkaline earth-added nickel-iron perovskite-type low-temperature operation solid fuel cell that satisfies the two requirements of compatibility with the electrolyte in terms of electrical characteristics and coefficient of thermal expansion is used as the air electrode. By using it, a solid oxide fuel cell operating at around 650 ° C. can be realized.
[0021]
[Table 1]
Figure 0003617814
[0022]
【Example】
Examples of the present invention will be described below. Of course, the present invention is not limited to the following examples.
[0023]
[Example 1]
In order to show the effect of the present invention, a test was performed on a single cell having the structure shown in FIG. 2a using the cell measurement diameter shown in FIG. 2b. 2a and 2b, 1 is an air electrode, 2 is a solid electrolyte, 3 is a fuel electrode, 5 is a current collecting mesh made of platinum, 6 is a gas seal, 7 is a platinum terminal, and 8 is an alumina tube. The thickness of the air electrode and the fuel electrode is 0.5 mm, the diameter is 6 mm, the thickness of the solid electrolyte is 0.1 mm, and the size is 22 mm square.
[0024]
Solid electrolyte, SASZ a (0.89ZrO 2 -0.104Sc 2 O 3 -0.006Al 2 O 3), the fuel electrode is Ni-YSZ (Ni: 60wt% , 0.92ZrO 2 -0.08Y 2 O 3 : 40 wt%) and La 1 -Y Sr Y Ni 1-X Fe X O 3 , {(X, Y) = (0.55,0.15), (0.90,0) .50), (0.90, 0.70), (0.80, 0.50), (0.60, 0.30), (0.55, 0.35)}.
[0025]
These cell numbers are associated with FIG. 1 showing the composition range of the present invention, and cell # 1-1 to cell # 1-6 (1 to 6 in FIG. 1 are cell # 1-1 to cell # 1-6). The same applies to the following examples). As a comparative example, a cell using conventional La 0.8 Sr 0.2 MnO 3 for the air electrode was designated as cell # 0. In the figure, the range indicated on the outside is the range of the present invention, and the range on the inside indicates a preferred range in the present invention.
[0026]
A method for manufacturing the single cell used in this example is described below. First, a green sheet of a ceramic thin plate of the solid electrolyte 2 is formed by a doctor blade method and baked at 1600 ° C. Ni-YSZ was applied to the fuel electrode 3 and baked at 1300 ° C., and then the air electrode 1 was applied to the opposite surface of the fuel electrode 3 and baked at 750 ° C. Table 2 shows the test results of this single cell at 650 ° C. Here, the terminal voltage is a value when the current density is 200 mA / cm 2 , and the higher the terminal voltage, the better the characteristics.
[0027]
For measurement of the thermal expansion coefficient, the air electrode material sintered in a pellet form at 1250 ° C. was cut into a rod shape and measured from room temperature to 700 ° C. in the air with a thermal expansion measuring device. Table 2 shows the composition dependence of the thermal expansion coefficient of the air electrode. Here, a thermal expansion coefficient is an average value to 25-700 degreeC.
[0028]
When these air electrodes of the present invention were used, all of them exhibited better characteristics than the conventional cell using La 0.8 Sr 0.2 MnO 3 as the air electrode.
[0029]
[Table 2]
Figure 0003617814
[0030]
[Example 2]
In the single cell as in Example 1, the material of the air electrode La 1-Y Ba Y Ni 1 -X Fe X O 3, {(X, Y) = (0.55,0.15), (0. 90, 0.50), (0.90, 0.70), (0.80, 0.50), (0.60, 0.30), (0.55, 0.35)} The same experiment as in Example 1 was performed. Table 3 shows the results. These cell numbers were associated with the composition range diagram (FIG. 1) and designated as cell # 2-1 to cell # 2-7. In substantially the same manner as in Example 1, all of the results were better than those of La 0.8 Sr 0.2 MnO 3 which is a conventional material.
[0031]
[Table 3]
Figure 0003617814
[0032]
[Example 3]
The unit cells in the same manner as in Example 1 only material of the air electrode La 1-Y Ca Y Ni 1 -X Fe X O 3, {(X, Y) = (0.55,0.15), (0. 90, 0.50), (0.90, 0.70), (0.80, 0.50), (0.60, 0.30), (0.55, 0.35)} The same experiment as in Example 1 was performed. These cell numbers are associated with the composition range diagram (FIG. 1) and designated as cell # 3-1 to cell # 3-7. As shown in Table 4, almost the same results as in Example 1 were obtained as compared with the conventional material La 0.8 Sr 0.2 MnO 3 .
[0033]
[Example 4]
A single cell similar to that in Example 1 is replaced with La 0.5 Sr 0.3 Ca 0.1 Ba 0.1 Ni 0.2 Fe 0.8 O 3 in the same manner as in Example 1, except that only the air electrode material is used. The experiment was conducted. As shown in cell # 4-1 of Table 4, almost the same results as in Example 1 were obtained as compared with La 0.8 Sr 0.2 MnO 3 which is a conventional material.
[0034]
[Table 4]
Figure 0003617814
[0035]
[Example 5]
In the same single cell as in Example 1, the material of the air electrode is Ln 0.5 Sr 0.5 Ni 0.2 Fe 0.8 O 3 , (Ln = Pr, Nd, Sm), or La 0.2 pr. An experiment similar to Example 1 was performed in place of 0.1 Nd 0.1 Sm 0.1 Sr 0.5 Ni 0.2 Fe 0.8 O 3 . Table 5 shows the results in cell # 5-1 to cell # 5-4. In substantially the same manner as in Example 1, all of the results were better than those of La 0.8 Sr 0.2 MnO 3 which is a conventional material.
[0036]
[Table 5]
Figure 0003617814
[0037]
【The invention's effect】
As described above, the air electrode material of the solid electrolyte fuel cell Ln 1-Y A Y Ni 1 -X Fe X O 3 (Ln is La, Pr, Nd, 1 or more elements selected from Sm; A Is one or more elements selected from Sr, Ba and Ca; composition range; X-0.2 ≦ Y ≦ X-0.4 and 0.55 ≦ X ≦ 0.90) Even at 650 ° C., the present inventors have succeeded in obtaining an air electrode which is superior in electrical characteristics to La 0.8 Sr 0.2 MnO 3 which is a conventional material and has a thermal expansion coefficient substantially equal to that of the conventional material. The present invention greatly contributes to cost reduction of the solid fuel cell.
[Brief description of the drawings]
FIG. 1 is a diagram showing a composition range of the present invention.
FIG. 2a is a plan view of a single cell of a fuel cell used in Examples.
FIG. 2b is a structural schematic diagram of a cell measurement system used in Examples.
FIG. 3 is a structural schematic diagram of a tubular fuel cell.
FIG. 4a is a structural schematic diagram of a single cell of a flat plate type low temperature operation fuel cell.
FIG. 4b is a structural schematic diagram of a flat plate type low-temperature operating fuel cell.
[Explanation of symbols]
1 Fuel electrode 2 Solid electrolyte 3 Air electrode 4 Interconnector

Claims (2)

固体電解質とそれに隣接して設けられた多孔質な空気極および燃料極からなるセル、それらを電気的に接続するインターコネクタを有し、燃料ガスと空気または酸素ガスとの化学反応を電気エネルギーに変換する固体燃料電池の固体燃料電池用空気極材料であって、Ln1−YNi1−XFe(LnはLa,Pr,Nd,Smの何れか1つあるいはLa,Pr,Nd,Smの中から選ばれた2つ以上の元素であり、AはSr,Ba,Caの何れか1つあるいはSr,Ba,Caの中から選ばれた2つ以上の元素である)で表され、その組成範囲がX−0.2≦Y≦X−0.4で、かつ0.55≦X≦0.90であることを特徴とするアルカリ土類添加ニッケル−鉄系ペロブスカイト型低温動作固体燃料電池用空気極材料。It has a cell consisting of a solid electrolyte and a porous air electrode and fuel electrode provided adjacent to it, and an interconnector that electrically connects them. The chemical reaction between fuel gas and air or oxygen gas is converted into electrical energy. a solid fuel air electrode material for a battery of the solid fuel cell for converting, Ln 1-Y a Y Ni 1-X Fe X O 3 (Ln is La, Pr, Nd, any one or La of Sm, Pr , Nd, Sm are two or more elements, and A is one of Sr, Ba, Ca or two or more elements selected from Sr, Ba, Ca) An alkaline earth-added nickel-iron perovskite type characterized in that the composition range is X−0.2 ≦ Y ≦ X−0.4 and 0.55 ≦ X ≦ 0.90 Air electrode material for low temperature operation solid fuel cell. 前記組成範囲がX−0.25≦Y≦X−0.35で、かつ0.55≦X≦0.85であることを特徴とする請求項2記載のアルカリ土類添加ニッケル−鉄系ペロブスカイト型低温動作固体燃料電池用空気極材料。3. The alkaline earth-added nickel-iron perovskite according to claim 2, wherein the composition range is X−0.25 ≦ Y ≦ X−0.35 and 0.55 ≦ X ≦ 0.85. Type cathode material for low temperature operation solid fuel cell.
JP2000344882A 2000-11-13 2000-11-13 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell Expired - Fee Related JP3617814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344882A JP3617814B2 (en) 2000-11-13 2000-11-13 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344882A JP3617814B2 (en) 2000-11-13 2000-11-13 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell

Publications (2)

Publication Number Publication Date
JP2002151091A JP2002151091A (en) 2002-05-24
JP3617814B2 true JP3617814B2 (en) 2005-02-09

Family

ID=18819012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344882A Expired - Fee Related JP3617814B2 (en) 2000-11-13 2000-11-13 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell

Country Status (1)

Country Link
JP (1) JP3617814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865368B2 (en) 2010-03-25 2014-10-21 Ngk Insulators, Ltd. Electrode material, fuel cell including the same, and method of manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573526B2 (en) * 2003-11-20 2010-11-04 日本電信電話株式会社 Solid oxide fuel cell
US7347887B2 (en) 2003-12-22 2008-03-25 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP4528021B2 (en) * 2004-04-27 2010-08-18 新日本製鐵株式会社 Oxide ion mixed conductor, composite structure, oxygen separation device, and chemical reaction device
NL1026861C2 (en) * 2004-08-18 2006-02-24 Stichting Energie SOFC stack concept.
JP5044392B2 (en) * 2006-02-10 2012-10-10 株式会社日本触媒 Air electrode materials for solid oxide fuel cells
JP5286766B2 (en) * 2007-12-07 2013-09-11 Toto株式会社 Air electrode support for solid oxide fuel cell and solid oxide fuel cell body using the same
JP2009181928A (en) * 2008-02-01 2009-08-13 Toto Ltd Solid oxide fuel cell body and fuel cell using the same
GB201019156D0 (en) * 2010-11-12 2010-12-29 Ulive Entpr Ltd Mixed metal oxide
JP5769646B2 (en) * 2012-02-08 2015-08-26 京セラ株式会社 Conductor and solid oxide fuel cell, cell stack, fuel cell device
CN104591302B (en) * 2015-01-05 2016-11-23 华北水利水电大学 A kind of calcium-titanium ore type nano material and preparation method thereof
KR20230069015A (en) * 2021-11-11 2023-05-18 블룸 에너지 코퍼레이션 Ni-Fe BASED CATHODE FUNCTIONAL LAYERS FOR SOLID OXIDE ELECTROCHEMICAL CELLS
CN115650312B (en) * 2022-08-22 2024-02-23 南京工业大学 Proton conductor reversible battery air electrode, preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865368B2 (en) 2010-03-25 2014-10-21 Ngk Insulators, Ltd. Electrode material, fuel cell including the same, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2002151091A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP2002289249A (en) Stack structural body for solid electrolytic fuel cell
JP2007172846A (en) Tube type electrochemical reactor cell and electrochemical reaction system composed by it
JP2009205933A (en) Electrochemical reactor bundle, stack and electrochemical reaction system constituted of the bundle and the stack
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JP6370696B2 (en) Cell structure, electrolyte membrane-electrode assembly, and fuel cell
JP4972468B2 (en) Solid oxide fuel cell
KR101245626B1 (en) Anode supported flat-tube SOFC and manufacturing method thereof
JP5079991B2 (en) Fuel cell and fuel cell
JP2011119178A (en) Solid oxide fuel cell
US5387476A (en) Power connection element for solid-electrolyte fuel cells
JP5226656B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP3414657B2 (en) Air electrode materials for nickel-iron based perovskite solid fuel cells
JPWO2011138915A1 (en) High-temperature structural material, structure for solid oxide fuel cell, and solid oxide fuel cell
JP5373668B2 (en) Single cell for solid oxide fuel cell and solid oxide fuel cell
JP4130135B2 (en) Surface treatment method for current collecting member
KR100699074B1 (en) Honeycomb-type solid oxide fuel cell and method for manufacturing the same
US6120924A (en) Perovskite-type oxide materials containing nickel and iron for air electrode and solid oxide fuel cell using the same
JP3448242B2 (en) Solid electrolyte fuel cell
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP5390655B2 (en) Solid oxide fuel cell
JP4173029B2 (en) Current collector
US20130171539A1 (en) Tubular solid oxide fuel cell module and method of manufacturing the same
JPH09161824A (en) Solid electrolytic fuel cell and its manufacture
JP3894103B2 (en) Current collector material for solid oxide fuel cells
JP2016085921A (en) Cell support and solid oxide fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R151 Written notification of patent or utility model registration

Ref document number: 3617814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees