JP3414657B2 - Air electrode materials for nickel-iron based perovskite solid fuel cells - Google Patents

Air electrode materials for nickel-iron based perovskite solid fuel cells

Info

Publication number
JP3414657B2
JP3414657B2 JP33326298A JP33326298A JP3414657B2 JP 3414657 B2 JP3414657 B2 JP 3414657B2 JP 33326298 A JP33326298 A JP 33326298A JP 33326298 A JP33326298 A JP 33326298A JP 3414657 B2 JP3414657 B2 JP 3414657B2
Authority
JP
Japan
Prior art keywords
air electrode
solid
fuel cell
solid fuel
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33326298A
Other languages
Japanese (ja)
Other versions
JPH11242960A (en
Inventor
玲一 千葉
文一 吉村
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP33326298A priority Critical patent/JP3414657B2/en
Publication of JPH11242960A publication Critical patent/JPH11242960A/en
Application granted granted Critical
Publication of JP3414657B2 publication Critical patent/JP3414657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はニッケル系ペロブス
カイト型固体燃料電池用空気極材料に関するものであ
り、特に、この種の燃料電池の信頼性を向上し、発電効
率を高めることのできる空気極材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-based perovskite-type solid fuel cell air electrode material, and in particular, an air electrode material capable of improving the reliability and the power generation efficiency of this type of fuel cell. Regarding

【0002】[0002]

【従来の技術】燃料電池とは、気体電池の1種で、陰極
に酸素または空気、陽極に水素または炭化水素等の燃料
を用い、これら反応物を外部から補給し、生成物(H2
OまたはCO2)を逐次外部に除去することによって連
続的に長く使用可能とした電池である。特にエネルギー
の有効利用という観点から見ると、固体燃料電池は、カ
ルノー効率の制約を受けないため本質的に高いエルギー
変換効率を有し、良好な環境保全が期待されるなどの優
れた特徴を持っている。
2. Description of the Related Art A fuel cell is a type of gas cell that uses a fuel such as oxygen or air for the cathode and hydrogen or hydrocarbon for the anode and supplies these reactants from the outside to produce a product (H 2
It is a battery that can be used continuously for a long time by sequentially removing O or CO 2 ) to the outside. From the viewpoint of effective use of energy, solid fuel cells have inherently high energy conversion efficiency because they are not restricted by Carnot efficiency, and have excellent characteristics such as good environmental protection. ing.

【0003】この燃料電池の中で、小型、軽量化が可能
である固体電解質を用いた固体電解質型燃料電池が、近
年特に多く研究され、特に、酸素イオン伝導体を用いた
固体電解質型燃料電池に関心が高まりつつある。
Among these fuel cells, a solid electrolyte fuel cell using a solid electrolyte, which can be reduced in size and weight, has been particularly studied in recent years, and in particular, a solid electrolyte fuel cell using an oxygen ion conductor is used. Interest is increasing.

【0004】代表的固体電解質型燃料電池の一例である
チューブ型の単セルは、図1に模式的に示す構造を持
つ。このチューブ型単セルは、空気極1を円筒型多孔質
基板としその上に固体電解質2、燃料極3、そして多数
のセルを相互に結合するためのインターコネクタ4を配
置する構造とされている。この構造を用いると、丈夫な
セルを組みやすく、ガスのシールが容易である等の利点
があるが、空気極の内部を流れる電流の経路が長いのが
欠点である。
A tube type single cell, which is an example of a typical solid oxide fuel cell, has a structure schematically shown in FIG. This tube type single cell has a structure in which an air electrode 1 is a cylindrical porous substrate, and a solid electrolyte 2, a fuel electrode 3, and an interconnector 4 for connecting a large number of cells to each other are arranged thereon. . Using this structure has advantages such as easy assembly of a durable cell and easy gas sealing, but the drawback is that the path of current flowing inside the air electrode is long.

【0005】[0005]

【発明が解決しようとする課題】固体電解質2としては
YSZ(イットリウム安定化ジルコニア)またはSAS
Z(スカンジウムアルミニウム安定化ジルコニア)が最
も有望視されている。空気極1の材料としてはペロブス
カイト型マンガン系酸化物であるLa0.8Sr0.2MnO
3が検討されている。この材料は電気伝導度が低い為、
この部分での抵抗損失が大きくセルの発電効率低下の原
因となっている。そこで発電効率を上げる為に電子伝導
性の高い空気極材料が求められている。
As the solid electrolyte 2, YSZ (yttrium-stabilized zirconia) or SAS is used.
Z (scandium aluminum stabilized zirconia) is the most promising. The material of the air electrode 1 is La 0.8 Sr 0.2 MnO which is a perovskite type manganese oxide.
3 are being considered. Because this material has low electrical conductivity,
The resistance loss in this portion is large, which causes a decrease in the power generation efficiency of the cell. Therefore, an air electrode material having high electron conductivity is required in order to increase power generation efficiency.

【0006】一般に、固体電解質型燃料電池は、100
0℃の高温動作が必要である。これは、空気極、燃料
極、固体電解質の特性が1000℃より低温では十分な
発電効率を持たないことに原因している。しかし、この
ような高温では、例えば、燃料極のシンタリング等によ
る発電効率の低下が生ずるため、実用化が遅れている。
このような観点から動作温度を800oC程度まで下げ
ることが望まれている。
Generally, the solid oxide fuel cell has 100
High temperature operation of 0 ° C is required. This is because the characteristics of the air electrode, the fuel electrode, and the solid electrolyte do not have sufficient power generation efficiency at temperatures lower than 1000 ° C. However, at such a high temperature, the power generation efficiency is lowered due to, for example, the sintering of the fuel electrode, etc., and therefore the practical application is delayed.
From this point of view, it is desired to lower the operating temperature to about 800 ° C.

【0007】動作温度の低下を行うため、種々の対策が
必要であるが、特に、空気極材料として、従来から検討
されているペロブスカイト型酸化物材料の伝導度、電気
活性等の向上が求められている。ペロブスカイト系酸化
物の中で、電子伝導度の高い材料として、La(Sr)
CoO3等が知られているが、熱膨張係数が酸化物電解
質であるYSZ(イットリウム安定化ジルコニア)のそ
れに比較して2倍と高いため、電解質との界面で剥離等
の問題が生じ、稼働時の信頼性が得られない問題があっ
た。
Various measures are required to lower the operating temperature, but in particular, as the air electrode material, it is required to improve the conductivity, electric activity and the like of the perovskite type oxide material which has been studied so far. ing. Among the perovskite oxides, La (Sr) is used as a material having high electron conductivity.
CoO 3 is known, but its coefficient of thermal expansion is twice as high as that of YSZ (yttrium-stabilized zirconia), which is an oxide electrolyte, so problems such as peeling occur at the interface with the electrolyte and it operates. There was a problem that the reliability of time was not obtained.

【0008】すなわち、空気極材料は、電解質であるY
SZあるいはSASZの熱膨張係数となるべく近い熱膨
張係数を持つことが求められる。これは、室温と動作温
度との間の温度サイクルを経ることによりYSZと空気
極基板との界面に応力がかかりYSZにクラックが入る
恐れがある為である。
That is, the air electrode material is Y which is an electrolyte.
It is required to have a thermal expansion coefficient as close as possible to that of SZ or SASZ. This is because stress may be applied to the interface between the YSZ and the air electrode substrate due to the temperature cycle between the room temperature and the operating temperature, and the YSZ may be cracked.

【0009】以上に述べたように、チューブ型燃料電池
には、動作時と停止時の熱サイクルに伴う剥離等の信頼
性の問題、抵抗損失による低い発電効率といった問題の
解決が必要であった。従って、固体電解質であるYSZ
あるいはSASZに近い熟膨張係数を有する材料であ
り、かつ抵抗損失のない電気伝導特性に優れた空気極材
料が求められている。
As described above, the tube type fuel cell needs to solve the problems of reliability such as peeling due to thermal cycles during operation and stop, and low power generation efficiency due to resistance loss. . Therefore, YSZ which is a solid electrolyte
Alternatively, there is a demand for an air electrode material which has a thermal expansion coefficient close to SASZ and which is excellent in electrical conductivity without resistance loss.

【0010】本発明は固体燃料電池用空気極に求められ
ている二つの要求、すなわち、熱膨張係数の電解質のそ
れとの整合性、および優れた電気伝導特性の二つの要求
を同時に満足させた空気極材料を提供することを目的と
する。
The present invention is an air which simultaneously satisfies the two requirements required for an air electrode for a solid fuel cell, that is, the compatibility of the coefficient of thermal expansion with that of an electrolyte and the excellent electrical conductivity characteristics. The purpose is to provide polar materials.

【0011】[0011]

【課題を解決するための手段】本発明の第1の発明であ
るニッケル・鉄系固体燃料電池用空気極材料は、固体電
解質とそれに隣接して設けられた多孔質な空気極および
燃料極からなるセル、そして前記セルを電気的に接続す
るためのインターコネクタを有し、燃料ガスと空気また
は酸素ガスとの化学反応を電気エネルギーに変換する固
体燃料電池の空気極材料において、前記空気極がLnN
1-xFex3、(Ln:希土類元素)あるいはYNi
1-xFex3で表される組成を有し、式中xが0.30
〜0.60の範囲にある。
The air electrode material for a nickel-iron based solid fuel cell according to the first aspect of the present invention comprises a solid electrolyte and a porous air electrode and fuel electrode provided adjacent to the solid electrolyte. And an interconnector for electrically connecting the cells, wherein the air electrode material of a solid fuel cell converts a chemical reaction of fuel gas and air or oxygen gas into electric energy, wherein the air electrode is LnN
i 1-x Fe x O 3 , (Ln: rare earth element) or YNi
It has a composition represented by 1-x Fe x O 3 and x is 0.30.
˜0.60.

【0012】本発明の第2の発明であるニッケル系固体
燃料電池用空気極材料は、電子伝導性が従来材料のLa
0.8Sr0.2MnO3に比べ優れ、且つ熱膨張係数が固体
電解質とほぼ同じ値を持つLnNi1-xFex3、(L
n:希土類元素)またはYNi1-xFex3の組成を有
し、前記式中のxが0.4−0.55の範囲にあるた
め、改良された電気的特性を持ち、かつ固体電解質の熱
膨張係数と整合した熱膨張係数を持つという二つの要求
を同時に満足させることがてきる。
The air electrode material for a nickel-based solid fuel cell, which is the second invention of the present invention, has a conventional electron conductivity of La.
0.8 Sr 0.2 MnO 3 superior to, LnNi 1-x Fe x O 3 where and thermal expansion coefficient with almost the same value as the solid electrolyte, (L
(n: rare earth element) or YNi 1-x Fex O 3 and x in the above formula is in the range of 0.4 to 0.55, so that it has improved electrical characteristics and is solid. The two requirements of having a coefficient of thermal expansion that matches that of the electrolyte can be satisfied at the same time.

【0013】本発明の第3の発明である二ッケル・鉄系
ペロブスカイト型固体燃料電池用空気極として用いられ
るLaNi1-xFex3系材料において、前記LnがL
a,Pr,Nd,Sm、の何れか1つ、または、La,
Pr,Nd,Sm、Ceの中から選ばれた2つ以上の元
素で構成されているニッケル鉄系ペロブスカイト型固体
燃料電池用空気極材料である。
In the LaNi 1-x Fe x O 3 system material used as the air electrode for the nickel-iron system perovskite type solid fuel cell of the third invention of the present invention, the Ln is L
Any one of a, Pr, Nd, Sm, or La,
It is a nickel-iron-based perovskite solid fuel cell air electrode material composed of two or more elements selected from Pr, Nd, Sm, and Ce.

【0014】十分な緻密性が要求される固体電解質とイ
ンターコネクタ材は、ほぼ熱膨張係数が一致している。
これに対して燃料極であるNi−YSZおよび空気極の
La 0.8Sr0.2MnO3は、約20〜80%程度熱膨張
係数が大きいが、この程度の不整合は許容されると考え
られる。これは燃料極及び空気極は多孔質なので、熱膨
張係数が電解質と異なっていても熱膨張差はある程度吸
収されることによる。
Solid electrolytes and electrolytes required to have sufficient compactness
The thermal expansion coefficients of the connector connectors are almost the same.
On the other hand, the fuel electrode Ni-YSZ and the air electrode
La 0.8Sr0.2MnO3Is about 20-80% thermal expansion
Although the coefficient is large, we think that this degree of inconsistency is acceptable.
To be This is because the fuel electrode and air electrode are porous,
Even if the expansion coefficient is different from that of the electrolyte, the difference in thermal expansion is absorbed to some extent.
It depends on being collected.

【0015】また、空気極としてLnNi1-xFe
x3、(Ln:希土類元素)について検討したところ、
xが0.3〜0.6の範囲、より好ましくは0.4〜
0.55の範囲において電気伝導性が従来材料であるに
比べ優れ、熱膨張係数が従来材料とほぼ同等であること
が分かった。以上のような構成とすることによって、電
気的特性および熱膨張係数の電解質との整合性といった
二つの要求を同時に満足するニッケル系ペロブスカイト
型固体燃料電池用空気極材料を実現できる。
Further, as an air electrode, LnNi 1-x Fe is used.
When x O 3 and (Ln: rare earth element) were examined,
x is in the range of 0.3 to 0.6, more preferably 0.4 to
It was found that in the range of 0.55, the electric conductivity was superior to that of the conventional material and the coefficient of thermal expansion was almost the same as that of the conventional material. With the above-described structure, it is possible to realize a nickel-based perovskite solid fuel cell air electrode material that simultaneously satisfies two requirements such as electrical characteristics and thermal expansion coefficient matching with the electrolyte.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施例を添付の図
面を参照して説明する。なお、当然のことであるが本発
明は以下の実施例に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. Of course, the present invention is not limited to the following examples.

【0017】一般に、固体電解質型燃料電池は、上述の
ように、図1に示すような概略の構成をもつチューブ型
単セルが多数組み合わされている。チューブ型単セルの
電気伝導性の空気極内部は、反応ガスである空気または
酸素(図中O2と表示)が流れ、単セル最外面の燃料極
周囲には、反応ガスである水素または炭化水素(図1中
H2と表示)が流れる。インターコネクタ4は、単セル
同士を内部的に接続する。
Generally, in the solid oxide fuel cell, as described above, a large number of tube type single cells having a schematic structure as shown in FIG. 1 are combined. Air or oxygen (represented by O2 in the figure) that is a reaction gas flows inside the electrically conductive air electrode of the tube type single cell, and hydrogen or hydrocarbon that is a reaction gas is present around the fuel electrode on the outermost surface of the single cell. (Displayed as H2 in FIG. 1) flows. The interconnector 4 internally connects the single cells.

【0018】上記構造の単セルは、空気極材料を変え
て、単セルとしての特質を比較検討するには必ずしも適
していない。本発明においては、図2及び3に示す構造
の簡易型の単セルを用いて試験を行ない、選ばれた材料
について実用的な単セルとした試験をも行った。
The single cell having the above structure is not necessarily suitable for comparing and examining the characteristics as a single cell by changing the material of the air electrode. In the present invention, a simple unit cell having a structure shown in FIGS. 2 and 3 was used for the test, and a practical unit cell for the selected material was also tested.

【0019】以下に、簡易型の単セルを用いた空気極材
料の選定を行った各種の実施の形態を以下に述べる。な
お、従来の単セルに用いられている各種材料の熱膨張係
数を表1に示した。
Various embodiments in which the air electrode material is selected using a simple type single cell will be described below. Table 1 shows the thermal expansion coefficients of various materials used in conventional single cells.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【実施例】[実施例1]本発明の効果を示すために、図2
および図3に示す構造の簡易型の単セルで試験を行なっ
た。図2は前記単セルの平面図、図3は断面図であり、
図中、1は空気極、2は固体電解質、3は燃料極、5は
集電用白金メッシュ、6は自金電極、7はガスシールで
ある。
[Embodiment] [Embodiment 1] In order to show the effect of the present invention, FIG.
The test was conducted on a simple unit cell having the structure shown in FIG. 2 is a plan view of the single cell, FIG. 3 is a sectional view,
In the figure, 1 is an air electrode, 2 is a solid electrolyte, 3 is a fuel electrode, 5 is a platinum mesh for current collection, 6 is a gold electrode, and 7 is a gas seal.

【0022】この簡易型単セルにおいて、空気極1、燃
料極3の厚みは0.5mm、固体電解質2の厚みは0.
2mm、直径は20mmとした。固体電解質は、SAS
Z(0.89ZrO2−0.105ScO3−0.005
Al23)を、燃料極にはNi−YSZ(Ni:60m
ol%)を、そして空気極には、x=0.3,0.4,
0.5、0.6の範囲のLnNi1-xFex3(試料N
o.1〜5)を用いた。
In this simple unit cell, the thickness of the air electrode 1 and the fuel electrode 3 is 0.5 mm, and the thickness of the solid electrolyte 2 is 0.
The diameter was 2 mm and the diameter was 20 mm. The solid electrolyte is SAS
Z (0.89ZrO 2 -0.105 ScO 3 -0.005
Al 2 O 3 ) and Ni-YSZ (Ni: 60 m) on the fuel electrode.
ol%), and for the cathode x = 0.3, 0.4,
LnNi ranging 0.5,0.6 1-x Fe x O 3 ( Sample N
o. 1 to 5) were used.

【0023】本実施例に使用した単セルの作製方法を以
下に示す。まずドクターブレード法により固体電解質2
のセラミックス薄板のグリーンシートを形成し、空気中
において1400℃で焼成した。これに燃料極3として
Ni−YSZを塗布し、空気中において1200℃で焼
成し、この後、燃料極3の対面に上記の空気極1を塗布
し1000℃で焼き付けた。すなわち固体電解質2の表
裏面に空気極1及び燃料極2を形成し、前記空気極1及
び燃料極3に集電用白金メッシュ5を被せるとともに前
記集電用自金メッシュ5に白金端子6を接続して、それ
ぞれ空気極1に酸素、燃料極3に水素を供給して端子電
圧を測定した。
A method of manufacturing the single cell used in this example is shown below. First, the solid electrolyte 2 by the doctor blade method
Was formed into a green sheet of a ceramic thin plate and was fired at 1400 ° C. in air. Ni-YSZ was applied to this as a fuel electrode 3 and fired at 1200 ° C. in air, and then the air electrode 1 was applied to the opposite side of the fuel electrode 3 and baked at 1000 ° C. That is, the air electrode 1 and the fuel electrode 2 are formed on the front and back surfaces of the solid electrolyte 2, the air electrode 1 and the fuel electrode 3 are covered with a platinum mesh 5 for current collection, and the platinum terminal 6 is placed on the self-collecting mesh 5 for current collection. After connecting, oxygen was supplied to the air electrode 1 and hydrogen was supplied to the fuel electrode 3, and the terminal voltage was measured.

【0024】表2に、この単セルの800℃での試験結
果を示す。ここで端子電圧は電流密度が1.0A/cm
2時の値で、この端子電圧が高いほど、燃料電池とし
て、優れた特性である。
Table 2 shows the test results of this single cell at 800 ° C. Here, the terminal voltage has a current density of 1.0 A / cm.
At 2 o'clock, the higher this terminal voltage, the better the characteristics as a fuel cell.

【0025】空気極材料の特性測定のために、空気極材
料検討のための本実施の形態において、ペロブスカイト
系酸化物を形成するため、粉末(LaO、NiO、Fe
23)を成形し、仮焼きを行った後、1250℃〜14
00℃で焼成して、ペレット状に焼結したものを使用し
た。
In order to measure the characteristics of the air electrode material, in the present embodiment for studying the air electrode material, in order to form a perovskite oxide, powder (LaO, NiO, Fe) is formed.
2 O 3 ) is molded and calcined, then 1250 ° C. to 14 ° C.
The pellet was used after firing at 00 ° C.

【0026】熱膨張係数の測定は、ペレット状焼結体を
棒状に切りだし、熱膨張測定装置により空気中で室温か
ら800℃までについて行った。表2に空気極の熱膨張
係数の組成依存性を示す。ここで、熱膨張係数は、25
〜800℃までの平均値である。
The coefficient of thermal expansion was measured by cutting out a pellet-shaped sintered body into a rod and measuring the coefficient of thermal expansion in the air from room temperature to 800 ° C. Table 2 shows the compositional dependence of the thermal expansion coefficient of the air electrode. Here, the coefficient of thermal expansion is 25
Average value up to 800 ° C.

【0027】これら本発明のLaNi1-xFex3系材
料は、いずれも従来のLa0.8Sr0. 2MnO3系材料と
比較して固体電解質のそれに近い良好な熱膨張特性を示
した。すなわち、固体電解質として用いられるYSZは
10x10-6/Kであるのに対し、従来の空気極材料の
La0.8Sr0.2MnO3は、12x10-6/Kであり、
20%の膨張差のあり、この膨張差が破損などの信頼性
低下の原因となっていた。
The LaNi 1-x Fe x O 3 based material of the present invention were all compared with conventional La 0.8 Sr 0. 2 MnO 3 material showed good thermal expansion characteristics close to that of the solid electrolyte . That is, the YSZ used as a solid electrolyte whereas a 10x10 -6 / K, La 0.8 Sr 0.2 MnO 3 of the conventional air electrode material is 12x10 -6 / K,
There is a difference of 20% in expansion, and this difference in expansion is a cause of deterioration in reliability such as damage.

【0028】これに反し、表2、No.1〜4に示す組
成式LaNi1-xFex3において、x=0.3〜0.
6の範囲の材料を用いると、その膨張差は10%以下で
あった。実用的な単セルをこの材料によって組み立てた
場合、従来の材料のように熱膨張差よる破損が発生せ
ず、燃料電池の信頼性が向上することが認められた。特
に、熱膨張から見ると、LaNi1-xFex3の式中x
=0.4〜0.55の範囲の材料が(試料No.3,
4)特に好ましいことが認められた。
On the contrary, in Table 2, No. In the composition formula shown in 1~4 LaNi 1-x Fe x O 3, x = 0.3~0.
When materials in the range of 6 were used, the difference in expansion was 10% or less. It was confirmed that when a practical single cell was assembled from this material, the damage due to the difference in thermal expansion did not occur unlike the conventional material, and the reliability of the fuel cell was improved. In particular, when viewed from thermal expansion, LaNi 1-x Fe x O 3 of wherein x
= 0.4 to 0.55 for materials (Sample No. 3,
4) It was found to be particularly preferable.

【0029】一方、電子伝導度の測定には、熱膨張係数
の測定に用いた試料に白金端子を焼き付け、直流4端子
法によって測定した。一例として、4端子法によって測
定された、従来材料と本願材料であるLaNi0.6Fe
0.43の電子伝導度の温度依存性を図4に示した。
On the other hand, for measuring the electronic conductivity, a platinum terminal was baked on the sample used for measuring the coefficient of thermal expansion, and the measurement was carried out by the direct current 4-terminal method. As an example, the conventional material and the material of the present application, LaNi 0.6 Fe, measured by the four-terminal method.
The temperature dependence of the electronic conductivity of 0.4 O 3 is shown in FIG.

【0030】本燃料電池において、目標としている動作
温度800℃での電子伝導度は、従来材料の150Sc
-1に対して580Scm-1と大きく改良されているこ
とがわかる。この良好な電子伝導性によって、従来の空
気極材料を用いた単セルの端子電圧が0.20Vであっ
たものが、本発明の新しい空気極材料を用いることによ
って、0.24〜0.28Vまで上昇させることができ
る。
In this fuel cell, the electron conductivity at the target operating temperature of 800 ° C. is 150 Sc of the conventional material.
It can be seen that it is greatly improved to 580 Scm -1 with respect to m -1 . Due to this good electron conductivity, the terminal voltage of the single cell using the conventional air electrode material was 0.20 V, but it was 0.24 to 0.28 V by using the new air electrode material of the present invention. Can be raised up to.

【0031】本発明のLaNi1-xFex3の組成式で
表される空気極材料は、熱膨張係数の適合、電子伝導性
において、x=0.3〜0.6の範囲のいずれも好まし
い特質を有するが、特に、x=0.4〜0.55の範囲
において、より好ましい特性をもつ燃料電池が得られ
る。
The air electrode material expressed by the composition formula of LaNi 1-x Fe x O 3 of the present invention, adaptation of the thermal expansion coefficient, the electron conductivity, any range of x = 0.3 to 0.6 Although it also has preferable characteristics, a fuel cell having more preferable characteristics can be obtained particularly in the range of x = 0.4 to 0.55.

【0032】[実施例2]実施例1と同様の単セルにおい
て、空気極の材料を、PrNi1-xFex3(x=0.
3,0.4,0.5、0.6)に代えて実施例1と同様
の実験を行った。表2、試料No.5−10にその結果
を示す。試料No.5−8のいずれも熱膨張係数は、従
来材料であるLa0.8Sr0.2MnO3に比較して小さ
い。また、試料No.5−8に対する端子電圧(電流密
度が1.0A/cm2時の値)は、いずれも従来材料で
あるLa0.8Sr0.2MnO3に対して高い。
[0032] In single cell similar to Example 2 Example 1, the material of the air electrode, PrNi 1-x Fe x O 3 (x = 0.
3, 0.4, 0.5, 0.6), and the same experiment as in Example 1 was performed. Table 2, sample No. The results are shown in 5-10. Sample No. The coefficient of thermal expansion of any of 5-8 is smaller than that of La 0.8 Sr 0.2 MnO 3 which is a conventional material. In addition, the sample No. The terminal voltage for 5-8 (value at current density of 1.0 A / cm 2 ) is higher than that of the conventional material La 0.8 Sr 0.2 MnO 3 .

【0033】実施例1とほぼ同様に、従来材料に比べい
ずれも好ましい良好な結果を得た。また、これら試料の
うち、試料No.7−9、すなわち、組成式PrNi
1-xFex3中において、x=0.4〜0.55の範囲
においてより好ましい結果を示した。
In almost the same manner as in Example 1, favorable results were obtained in comparison with the conventional materials. In addition, among these samples, the sample No. 7-9, that is, the composition formula PrNi
During 1-x Fe x O 3, it showed better results in the range of x = 0.4 to 0.55.

【0034】[実施例3]実施例1と同様の単セルを空気
極の材料だけをNdNi1-xFex3(x=0.3,
0.4,0.5、0.6)に代えて実施例1と同様の実
験を行った。表2、試料No.11−15に示す様に、
実施例1とほぼ同様に、従来材料であるLa0.8Sr0.2
MnO3に比べいずれも良好な結果を得た。特に、試料
No.12〜14、すなわち、組成式NdNi1-xFex
3において、x=0.4〜0.55の範囲の材料がよ
り好ましい結果を示した。
[Embodiment 3] A single cell similar to that of Embodiment 1 is prepared by using NdNi 1-x Fe x O 3 (x = 0.3,
0.4, 0.5, 0.6) was replaced with the same experiment as in Example 1. Table 2, sample No. As shown in 11-15,
Almost the same as in Example 1, the conventional material La 0.8 Sr 0.2
Good results were obtained in comparison with MnO 3 . In particular, the sample No. 12-14, namely, composition formula NdNi 1-x Fe x
In O 3 , materials in the range of x = 0.4 to 0.55 showed more preferable results.

【0035】[実施例4]実施例1と同様の単セルを空気
極の材料だけをSmNi1-xFex3、(x=0.3,
0.4,0.5、0.6)に代えて実施例1と同様の実
験を行った。表2、試料No.16〜20に示す様に実
施例1とほぼ同様l、従来材料であるLa0.8Sr0.2
nO3に比べいずれも好ましい良好な結果を得た、特に
試料No.17−19、すなわち、組成式SmNi1-x
Fex3においてx=0.4〜0.55の範囲の材料
が、より好ましい結果を示した。
[0035] [Example 4] The unit cells as in Example 1 only material of the air electrode SmNi 1-x Fe x O 3 , (x = 0.3,
0.4, 0.5, 0.6) was replaced with the same experiment as in Example 1. Table 2, sample No. 16 to 20, almost the same as in Example 1, the conventional material La 0.8 Sr 0.2 M
Good results were obtained in all cases compared to nO 3 , especially sample No. 17-19, that is, the composition formula SmNi 1-x
Materials with Fe x O 3 in the range of x = 0.4 to 0.55 showed more favorable results.

【0036】[実施例5]実施例1と同様の単セルを、空
気極の材料だけを、EuNi1-xFex3に代えて実施
例1と同様の実験を行った。表2、No.20−25に
示す様に実施例1とほぼ同様に、従来材料であるLa
0.8Sr0.2MnO3に比べいずれも良好な結果を得た。
また、特に、試料No.21〜24に示す、組成式Eu
Ni1-xFex3において、x=0.4〜0.55の範
囲の材料がより良好な結果を示した。
[0036] [Example 5] Similar single cell of Example 1, only the material of the air electrode was subjected to the same experiment as in Example 1 in place of the EuNi 1-x Fe x O 3 . Table 2, No. As shown in 20-25, the conventional material La is almost the same as in the first embodiment.
Good results were obtained in comparison with 0.8 Sr 0.2 MnO 3 .
Further, in particular, the sample No. 21-24, composition formula Eu
In Ni 1-x Fe x O 3 , the material in the range of x = 0.4 to 0.55 showed better results.

【0037】[実施例6]実施例1と同様の単セルを、空
気極の材料だけを、YNi1-xFex3に代えて実施例1
と同様の実験を行った。表2、No.26−30に示す
様に実施例1とほぼ同様に、従来材料であるLa0.8
0.2MnO3に比べいずれも良好な結果を得た。また、
特に、試料No.27〜29に示す組成式YNi1-x
x3において、X=0.4〜0.55の範囲の材料が
良好な結果を示した。
[Embodiment 6] A single cell similar to that of Embodiment 1 is used, except that only the material of the air electrode is changed to YNi 1-x Fe x O 3.
The same experiment was performed. Table 2, No. 26-30, La 0.8 S which is a conventional material is almost the same as in Example 1.
Good results were obtained in comparison with r 0.2 MnO 3 . Also,
In particular, the sample No. 27-29 composition formula YNi 1-x F
In e x O 3 , materials in the range of X = 0.4 to 0.55 showed good results.

【0038】[実施例7]実施例1と同様の単セルを、空
気極の材料だけを、希土類の複合組成を用いたLa0.4
Ce0.1Pr0.3Nd0.1Sm0.1Ni0.6Fe0.43(試
料No.31)に代えて実施例1と同様の実験を行っ
た。表2、No.31に示す様に実施例1とほぼ同様
に、従来材料であるLa0.8Sr0.2MnO3に比べ良好
な結果を得た。
[Embodiment 7] A single cell similar to that of Embodiment 1 was used, in which only the material of the air electrode was La 0.4 using a composite composition of rare earths.
An experiment similar to that of Example 1 was conducted in place of Ce 0.1 Pr 0.3 Nd 0.1 Sm 0.1 Ni 0.6 Fe 0.4 O 3 (Sample No. 31). Table 2, No. As shown in FIG. 31, almost the same as in Example 1, good results were obtained as compared with the conventional material La 0.8 Sr 0.2 MnO 3 .

【0039】上述の実施例においては、材料の特性評価
に簡易型の単セル(図2、図3)を使用したが、上記特
性評価には前記簡易型単セルを使用すれば十分であり、
その特性より実際のチューブ型(図1参照)のセル特性
を予測可能であることは幾つかの試料についての試験の
結果確認されている。
In the above embodiments, the simple type single cell (FIGS. 2 and 3) was used for the characteristic evaluation of the material, but it is sufficient to use the simple type single cell for the characteristic evaluation.
It has been confirmed as a result of tests on some samples that the actual tube type (see FIG. 1) cell characteristics can be predicted from the characteristics.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】以上説明したように、固体電解質燃料電
池の空気極材料をLnNi1-xFex 3、(Ln:希土
類元素、x=0.30〜0.60)とすることによっ
て、従来の材料である熱La0.8Sr0.2MnO3に比較
して電子伝導性に優れ、熱膨張係数が固体電解質に対し
てより近い空気極を得ることに成功した。本発明は固体
燃料電池の信頼性の向上、高効率動作化に大きく貢献を
なすものである。
As described above, the solid electrolyte fuel cell is
The air electrode material of the pond is LnNi1-xFexO 3, (Ln: rare earth
Group elements, x = 0.30-0.60)
Heat La which is a conventional material0.8Sr0.2MnO3Compare to
It has excellent electronic conductivity, and its thermal expansion coefficient is
Succeeded in obtaining a closer air electrode. The present invention is solid
Greatly contributes to the improvement of fuel cell reliability and high-efficiency operation
It is an eggplant.

【図面の簡単な説明】[Brief description of drawings]

【図1】 チューブ型燃料電池セルの構造模式図であ
る。
FIG. 1 is a schematic view of the structure of a tubular fuel cell.

【図2】 本発明の一実施例で使用した燃料電池の単セ
ルの構造模式平面図である。
FIG. 2 is a structural schematic plan view of a single cell of a fuel cell used in one example of the present invention.

【図3】 本発明の一実施例で使用した燃料電池の単セ
ルおよびセル測定系の構造模式断面図である。
FIG. 3 is a structural schematic cross-sectional view of a single cell and a cell measuring system of a fuel cell used in one example of the present invention.

【図4】 空気極用の従来材料であるLa0.8Sr0.2
3と本発明の材料の一つであるLaNi0.6Fe0.43
の電子伝導度の温度依存性の比較図である。
FIG. 4 La 0.8 Sr 0.2 O which is a conventional material for air electrode
3 is a comparative diagram of the temperature dependence of the electron conductivity of the LaNi 0.6 Fe 0.4 O 3, which is one of the materials of the present invention.

【符号の説明】[Explanation of symbols]

1 空気極 2 固体電解質 3 燃料極 1 air pole 2 Solid electrolyte 3 fuel pole

フロントページの続き (56)参考文献 特開 平4−275923(JP,A) 特開 平4−51461(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 C04B 35/495 H01M 8/12 Front page continued (56) References JP-A-4-275923 (JP, A) JP-A-4-51461 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4 / 86 C04B 35/495 H01M 8/12

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体電解質とそれに接合して設けられた
多孔質空気極および燃料極からなる単セル、そして前記
単セルを電気的に接続するためのインターコネクタを有
し、水素または燃料ガスと空気または酸素ガスとの化学
反応を電気エネルギーに変換する固体燃料電池の空気極
材料であって、該空気極がLnNi1- xFex3(L
n:希土類元素)またはYNi1-xFex3の式で表さ
れる組成を有し、前記式中のxが0.30〜0.60の
範囲であることを特徴とする二ッケル系ペロブスカイト
型固体燃料電池用空気極材料。
1. A single cell comprising a solid electrolyte and a porous air electrode and a fuel electrode which are provided so as to be bonded to the solid electrolyte, and an interconnector for electrically connecting the single cell, and hydrogen or fuel gas is provided. the chemical reaction with air or oxygen gas to a cathode material for a solid fuel cell for converting into electrical energy, the air Kikyoku is LnNi 1- x Fe x O 3 ( L
(n: rare earth element) or YNi 1-x Fex O 3 and the x in the formula is in the range of 0.30 to 0.60. Air electrode material for perovskite type solid fuel cells.
【請求項2】 該空気極が、特にLnNi1-xFe11x
3(Ln:希土類元素)またはYNi1-xFex3の式
で表される組成を有し、前記式中のxが0.40〜0.
55の範囲にあることを特徴とする請求項1に記載の二
ッケル系ペロブスカイト型固体燃料電池用空気極材料。
2. The cathode comprises, in particular, LnNi 1-x Fe11 x
O 3: having a composition represented by the formula (Ln rare earth element) or YNi 1-x Fe x O 3 , x in the formula is from 0.40 to 0.
It is in the range of 55, The air electrode material for Nikkell-based perovskite solid fuel cells according to claim 1.
【請求項3】 前記LnNi1-xFex3系の空気極材
料において、LnがLa,Pr,Nd,Sm、Euの何
れか1つ、またはLa,Pr,Nd,Sm、Eu、Ce
の中から選ばれた2つ以上の元素の組み合わせで構成さ
れていることを特徴とする請求項1に記載のニッケル系
ペロブスカイト型固体燃料電池用空気極材料。
3. A wherein LnNi 1-x Fe x O 3 system of the air electrode material, Ln is one of La, Pr, Nd, Sm, Eu, or La, Pr, Nd, Sm, Eu, Ce
The nickel-based perovskite-type solid fuel cell air electrode material according to claim 1, which is composed of a combination of two or more elements selected from the above.
【請求項4】 固体電解質とそれに接合して設けられた
多孔質空気極および燃料極からなる単セル、そして前記
単セルを電気的に接続するためのインターコネクタを有
し、水素または燃料ガスと空気または酸素ガスとの化学
反応を電気エネルギーに変換する固体燃料電池であっ
て、該固体燃料電池の空気極がLnNi 1-xFex
3(Ln:希土類元素)またはYNi1-xFex3の式で
表される組成を有し、前記式中のxが0.30〜0.6
0の範囲にあることを特徴とする二ッケル系ペロブスカ
イト型材料の多孔質空気極を有することを特徴とする固
体電解質型固体燃料電池。
4. A solid electrolyte and a solid electrolyte bonded to the solid electrolyte.
A single cell consisting of a porous air electrode and a fuel electrode, and
Has an interconnector for electrically connecting single cells
Chemistry of hydrogen or fuel gas with air or oxygen gas
A solid fuel cell that converts reactions into electrical energy.
And the air electrode of the solid fuel cell is LnNi 1-xFexO
3(Ln: rare earth element) or YNi1-xFexO3With the formula
It has a composition represented and x in the above formula is 0.30 to 0.6
Nickel-type Perovska characterized by being in the range of 0
It is characterized by having a porous air electrode of an ITO type material.
Body-electrolyte solid fuel cell.
【請求項5】 該多孔質空気極が、LnNi1-xFex
3(Ln:希土類元素)またはYNi1-xFex3の式で
表される組成を有し、前記式中のxが0.40〜0.5
5の範囲にあるの組成を有する材料を用いた多孔質空気
極を有することを特徴とする請求項4に記載の固体電解
質型固体燃料電池。
5. The porous air electrode, LnNi 1-x Fe x O
3: having a composition represented by the formula (Ln rare earth element) or YNi 1-x Fe x O 3 , x in the formula is 0.40 to 0.5
The solid oxide fuel cell according to claim 4, which has a porous air electrode using a material having a composition within the range of 5.
【請求項6】 前記LnNi1-xFex3系の空気極材
料において、LnがLa,Pr,Nd,Sm、Euの何
れか1つ、または、La,Pr,Nd,Sm、Eu、C
eの中から選ばれた2つ以上の元素の組み合わせで構成
されている組成の材料からなる空気極を有することを特
徴とする請求項4に記載の固体電解質型固体燃料電池。
6. The LnNi 1-x Fe x O 3 -based air electrode material, wherein Ln is any one of La, Pr, Nd, Sm, and Eu, or La, Pr, Nd, Sm, Eu, C
The solid oxide solid fuel cell according to claim 4, further comprising an air electrode made of a material having a composition composed of a combination of two or more elements selected from e.
JP33326298A 1997-12-09 1998-11-24 Air electrode materials for nickel-iron based perovskite solid fuel cells Expired - Lifetime JP3414657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33326298A JP3414657B2 (en) 1997-12-09 1998-11-24 Air electrode materials for nickel-iron based perovskite solid fuel cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-356061 1997-12-09
JP35606197 1997-12-09
JP33326298A JP3414657B2 (en) 1997-12-09 1998-11-24 Air electrode materials for nickel-iron based perovskite solid fuel cells

Publications (2)

Publication Number Publication Date
JPH11242960A JPH11242960A (en) 1999-09-07
JP3414657B2 true JP3414657B2 (en) 2003-06-09

Family

ID=26574446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33326298A Expired - Lifetime JP3414657B2 (en) 1997-12-09 1998-11-24 Air electrode materials for nickel-iron based perovskite solid fuel cells

Country Status (1)

Country Link
JP (1) JP3414657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2369667A1 (en) 2010-03-25 2011-09-28 NGK Insulators, Ltd. Electrode material, fuel cell including the same, and method of manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4257419B2 (en) * 2003-11-07 2009-04-22 独立行政法人産業技術総合研究所 Composite oxide having n-type thermoelectric conversion characteristics
US7347887B2 (en) 2003-12-22 2008-03-25 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP5107509B2 (en) * 2005-06-02 2012-12-26 日本電信電話株式会社 Method for producing solid oxide fuel cell
JP5044392B2 (en) * 2006-02-10 2012-10-10 株式会社日本触媒 Air electrode materials for solid oxide fuel cells
JP5107643B2 (en) * 2007-09-20 2012-12-26 株式会社チノー Tube type cell evaluation holder
JP2009181928A (en) * 2008-02-01 2009-08-13 Toto Ltd Solid oxide fuel cell body and fuel cell using the same
JP6320238B2 (en) * 2013-08-13 2018-05-09 日本特殊陶業株式会社 Single cell for fuel cell, fuel cell, and method for manufacturing single cell for fuel cell
KR102270111B1 (en) * 2019-10-28 2021-06-28 주식회사케이세라셀 Perobskite based cathode material, cathode containing the same, and solid oxide fuel cell containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2369667A1 (en) 2010-03-25 2011-09-28 NGK Insulators, Ltd. Electrode material, fuel cell including the same, and method of manufacturing the same
US8865368B2 (en) 2010-03-25 2014-10-21 Ngk Insulators, Ltd. Electrode material, fuel cell including the same, and method of manufacturing the same

Also Published As

Publication number Publication date
JPH11242960A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP3453283B2 (en) Solid oxide fuel cell
US5281490A (en) Process for producing solid oxide fuel cells
JP4972468B2 (en) Solid oxide fuel cell
JP5368139B2 (en) Solid oxide fuel cell
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JP3414657B2 (en) Air electrode materials for nickel-iron based perovskite solid fuel cells
JP4796895B2 (en) Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same
CN108390087B (en) Composite solid electrolyte and preparation method thereof
JP2001332122A (en) Oxide ion conducting material, its manufacturing method, and fuel cell using it
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
US20050095496A1 (en) Fuel cell
JP5005431B2 (en) Solid oxide fuel cell
JP2810104B2 (en) Ceramic electrode and fuel cell having the same
JP2511095B2 (en) Electrode material
CN102097626A (en) Method for preparing cathode material of ITSOFC (Intermediate Temperature Solid Oxide Fuel Cell)
US6120924A (en) Perovskite-type oxide materials containing nickel and iron for air electrode and solid oxide fuel cell using the same
JP5390655B2 (en) Solid oxide fuel cell
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP5133787B2 (en) Solid oxide fuel cell
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP3256919B2 (en) Solid electrolyte fuel cell
Kening et al. Fabrication and performance of La0. 8Sr0. 2MnO3/YSZ graded composite cathodes for SOFC
US7758992B2 (en) Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices
JPH05234604A (en) Solid electrolyte type fuel cell
JP3141911B2 (en) Air electrode material for solid fuel cell and solid fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term