JP3256919B2 - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP3256919B2
JP3256919B2 JP03790994A JP3790994A JP3256919B2 JP 3256919 B2 JP3256919 B2 JP 3256919B2 JP 03790994 A JP03790994 A JP 03790994A JP 3790994 A JP3790994 A JP 3790994A JP 3256919 B2 JP3256919 B2 JP 3256919B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
mno
thermal expansion
air electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03790994A
Other languages
Japanese (ja)
Other versions
JPH07226209A (en
Inventor
玲一 千葉
隆生 石井
幸道 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03790994A priority Critical patent/JP3256919B2/en
Publication of JPH07226209A publication Critical patent/JPH07226209A/en
Application granted granted Critical
Publication of JP3256919B2 publication Critical patent/JP3256919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質燃料電池、特
にプラセオジウム系固体燃料電池用空気極材料を使用し
固体電解質燃料電池に関するものである。
The present invention relates are those related to the solid electrolyte fuel cell using a solid electrolyte fuel cell, in particular praseodymium based solid fuel cell air electrode material.

【0002】[0002]

【従来の技術および問題点】近年、酸素イオン伝導体を
用いた固体電解質燃料電池に関心が高まりつつある。特
にエネルギーの有効利用という観点から、固体燃料電池
はカルノー効率の制約を受けないため本質的に高いエネ
ルギー変換効率を有し、さらに良好な環境保全が期待さ
れるなどの優れた特徴をもっている。
2. Description of the Related Art In recent years, interest has been growing in solid electrolyte fuel cells using oxygen ion conductors. In particular, from the viewpoint of effective use of energy, solid fuel cells are not limited by the Carnot efficiency, and have inherently high energy conversion efficiencies, and are expected to have better environmental conservation.

【0003】図1に固体燃料電池の単セル(平板型)の
断面を模式的に示す。固体電解質としては1000℃動
作用にはYSZ(イットリウム安定化ジルコニア)が最
も有望視されているが、800℃の低温動作用として、
ジルコニア−スカンジウム系、セリア系およびYSZの
薄層化などの検討が行なわれている。
FIG. 1 schematically shows a cross section of a single cell (flat plate type) of a solid fuel cell. As a solid electrolyte, YSZ (yttrium-stabilized zirconia) is most promising for operation at 1000 ° C., but for operation at a low temperature of 800 ° C.
Studies have been made on zirconia-scandium-based, ceria-based, and YSZ thinner layers.

【0004】固体燃料電池セル構成材として現在最もよ
く検討されている物質の熱膨張係数を表2に示す。完全
な緻密性が要求される固体電解質とインターコネクタ材
は、ほぼ熱膨張係数が一致している。これに対して、燃
料極であるNi−YSZおよび空気極のLa0.8Sr0.2
MnO3は、約24〜40%程度熱膨張係数が大きく、
熱膨張、収縮により電解質に応力がかかる。
[0004] Table 2 shows the coefficients of thermal expansion of substances currently most frequently studied as constituent materials of solid fuel cells. The solid electrolyte, which requires complete denseness, and the interconnector material have almost the same thermal expansion coefficient. On the other hand, the fuel electrode Ni-YSZ and the air electrode La 0.8 Sr 0.2
MnO 3 has a large thermal expansion coefficient of about 24 to 40%,
Stress is applied to the electrolyte due to thermal expansion and contraction.

【0005】電極材料としてはペロブスカイト型マンガ
ン系酸化物であるLa1-xSrxMnO3、(x=0.1
5−0.4)が最も多く検討されている。YSZとLa
1-xSrxMnO3では熱膨張差があるため、室温と動作
温度である1000−800℃の間の温度サイクルを経
ることによりYSZにクラックが入る恐れがある。特に
空気極を支持体としてセルを組む場合、空気極の断面積
が大きくなるため、空気極の熱膨張がセルの熱膨張を決
定するため、空気極材料と固体電解質の熱膨張係数が一
致しなければならない。また、固体電解質を支持体とす
る場合でもセルの一辺が熱膨張差による電解質/電極間
の不整合に比例するので、大きなセルをつくる場合には
やはり問題となる。
As electrode materials, La 1-x Sr x MnO 3 , which is a perovskite-type manganese-based oxide, (x = 0.1
5-0.4) is most often studied. YSZ and La
Since 1-x Sr x MnO 3 has a thermal expansion difference, YSZ may be cracked through a temperature cycle between room temperature and an operating temperature of 1000 to 800 ° C. In particular, when a cell is assembled using the air electrode as a support, the cross-sectional area of the air electrode increases, and the thermal expansion of the air electrode determines the thermal expansion of the cell. There must be. Further, even when a solid electrolyte is used as a support, one side of the cell is proportional to the mismatch between the electrolyte and the electrode due to the difference in thermal expansion.

【0006】そこで、電気伝導特性はマンガン系と同等
で固体電解質であるYSZと熱膨張係数がほぼ一致した
空気極が求められている。
Therefore, there is a demand for an air electrode having the same electrical conductivity as that of a manganese-based material and having a thermal expansion coefficient substantially equal to that of YSZ, which is a solid electrolyte.

【0007】 表2 固体燃料電池材料の熱膨張係数 ───────────────────────────────── 材料 熱膨張係数 部分 ───────────────────────────────── (ZrO2)0.9(Sc2O3)0.09(Al2O3)0.01 10.2×10-6 固体電解質 ───────────────────────────────── YSZ 10.0 固体電解質 ───────────────────────────────── La0.8Sr0.2MnO3 12.4 空気極 ───────────────────────────────── YSZ-Niサーメット(Ni:60mol%) 13.0 燃料極 ───────────────────────────────── La0.8Sr0.2CrO3 10.0 インターコネクタ ───────────────────────────────── 25〜1000℃での熱膨張係数の平均値を示す。Table 2 Thermal expansion coefficient of solid fuel cell material ───────────────────────────────── Material Thermal expansion coefficient Partial ───────────────────────────────── (ZrO 2 ) 0.9 (Sc 2 O 3 ) 0.09 (Al 2 O 3 ) 0.01 10.2 × 10 -6 Solid electrolyte ───────────────────────────────── YSZ 10.0 Solid electrolyte ─── ────────────────────────────── La 0.8 Sr 0.2 MnO 3 12.4 Air electrode ─────────── ────────────────────── YSZ-Ni cermet (Ni: 60mol%) 13.0 Fuel electrode ─────────────── ────────────────── La 0.8 Sr 0.2 CrO 3 10.0 interconnector ───────────────────────示 す Indicates the average value of the coefficient of thermal expansion at 25 to 1000 ° C.

【0008】[0008]

【発明の目的】本発明は、固体燃料電池用空気極に求め
られている電気的特性および熱膨張係数の電解質との整
合性の二つの要求を同時に満足させた固体電解質燃料電
池を提供することを目的とする。
An object of the present invention is to provide a solid electrolyte fuel cell which simultaneously satisfies the two requirements of the electrical characteristics and the thermal expansion coefficient matching with the electrolyte required for the cathode for a solid fuel cell.
The purpose is to provide a pond .

【0009】[0009]

【問題点を解決するための手段】上記目的を達成するた
め、本発明による固体電解質燃料電池は、空気極と固体
電解質と燃料極からなる固体電解質燃料電池であって、
前記空気極にPr1-xxMnO3である空気極材料が含
有されてなり、前記Aはアルカリ土類金属元素またはC
eであり、かつ前記xについては、0.05≦x≦0.
4であり、前記固体電解質は、イットリウム−ジルコニ
ア系またはジルコニウム化合物−スカンジウム化合物−
アルミナからなることを特徴とするものである。
Means for Solving the Problems] To achieve the above object, the solid electrolyte fuel cell according to the present invention is a solid electrolyte fuel cell comprising the air electrode and the solid electrolyte and the fuel electrode,
The air electrode contains an air electrode material of Pr 1-x A x MnO 3 , wherein A is an alkaline earth metal element or C
e and x is 0.05 ≦ x ≦ 0.
4, wherein the solid electrolyte is yttrium- zirconia.
A or zirconium compounds-scandium compounds-
It is characterized by being made of alumina .

【0010】[0010]

【0011】すなわち電気伝導性が従来材料のLa1-x
SrxMnO3、(x=0.15−0.4)と同等で、熱
膨張係数が固体電解質とほぼ同じ値を持つPr1-xx
nO3、(A:アルカリ土類金属元素、またはCe元
素)を用いることを特徴とする。
[0011] That is, the electrical conductivity of the conventional material La 1-x
Pr 1-x A x M, which is equivalent to Sr x MnO 3 , (x = 0.15-0.4) and has a coefficient of thermal expansion almost equal to that of the solid electrolyte
It is characterized by using nO 3 (A: alkaline earth metal element or Ce element).

【0012】本発明を更に詳しく説明すると、本発明に
よる固体電解質燃料電池に使用する空気極材料は、Pr
1-xxMnO3である。ただし、式中、Aはアルカリ土
類金属元素またはCeであり、かつxは0.05≦x≦
0.4である。
More specifically, the cathode material used in the solid oxide fuel cell according to the present invention is Pr
1-x A x MnO 3 . Here, in the formula, A is an alkaline earth metal element or Ce, and x is 0.05 ≦ x ≦
0.4.

【0013】上記式中、Aはアルカリ土類金属またはC
eである。特に、イオン半径の大きさによって格子の整
合性を満足させるために、アルカリ土類金属元素として
はSr、Caが好適に用いることができ、またCeも好
適に用いることができる。
In the above formula, A is an alkaline earth metal or C
e. In particular, Sr and Ca can be suitably used as alkaline earth metal elements, and Ce can also be suitably used in order to satisfy lattice matching depending on the magnitude of the ion radius.

【0014】さらにxは熱膨張係数の整合性の点から、
後述の実施例より明らかなように0.05≦x≦0.4
である。
Further, x is determined from the viewpoint of the consistency of the coefficient of thermal expansion.
As is clear from the examples described below, 0.05 ≦ x ≦ 0.4
It is.

【0015】本発明による固体電解質燃料電池は、上述
のような空気極材料を使用している
The solid electrolyte fuel cell according to the present invention
The air electrode material is used .

【0016】固体電解質としては、前述のように熱膨張
率が10.0×10-6付近の熱膨張率を有するものが使
用できる。このような固体電解質としては、たとえばジ
ルコニウム化合物−スカンジウム化合物−アルミナ固体
電解質(たとえば(ZrO20.9(Sc230.09(A
230.01など)、イットリウム−ジルコニア系(た
とえばYSZ)挙げることができる。
As described above, a solid electrolyte having a coefficient of thermal expansion of about 10.0 × 10 −6 can be used. As such a solid electrolyte, for example, a zirconium compound-scandium compound-alumina solid electrolyte (for example, (ZrO 2 ) 0.9 (Sc 2 O 3 ) 0.09 (A
l like 2 O 3) 0.01), yttrium - can be cited zirconia (e.g. YSZ).

【0017】燃料極としては、従来燃料電池として使用
していたものを有効に使用できる。
As a fuel electrode, conventionally used as a fuel cell
You can use what you did effectively.

【0018】[0018]

【作用】以下に本発明の作用を説明する。The operation of the present invention will be described below.

【0019】空気極のランタンをプラセオジウムで置換
したPr1-xxMnO3、(A:アルカリ土類金属元素
またはCe元素)について検討したところ、電気伝導性
は従来材料とほぼ同等で、熱膨張係数が従来材料のLa
1-xSrxMnO3よりも固体電解質であるYSZに近い
ことを知見した。以上のような構成とすることによっ
て、電気的特性および熱膨張係数の電解質との整合性の
二つの要求を同時に満足する固体電解質燃料電池用空気
極材料を実現できる。
Examination of Pr 1-x A x MnO 3 (A: alkaline earth metal element or Ce element) in which lanthanum of the air electrode was replaced by praseodymium showed that the electric conductivity was almost the same as that of the conventional material, Expansion coefficient is La of conventional material
It was found that 1-x Sr x MnO 3 was closer to YSZ, which is a solid electrolyte, than 1-x Sr x MnO 3 . With the above configuration, air for a solid electrolyte fuel cell that simultaneously satisfies the two requirements of the electrical characteristics and the matching of the coefficient of thermal expansion with the electrolyte.
Extreme materials can be realized.

【0020】[0020]

【実施例】以下に本発明の実施例を説明する。なお、本
発明は以下の実施例に特に限定されるものではない。
Embodiments of the present invention will be described below. The present invention is not particularly limited to the following examples.

【0021】[0021]

【実施例1】本発明の効果を示すために、図1に示す構
造の単セルで試験を行なった。図1において、1は燃料
極、2は固体電解質、3は空気極である。また空気極、
燃料極の厚みはそれぞれ0.1mm、固体電解質の厚み
は0.3mm、直径は20mmである。固体電解質は、
YSZ(イットリウム8mol%;Zr0.84
0.162)を、燃料極にはNi粉末をYSZ(イットリ
ウム8mol%)に分散させた(Ni:60mol%;
Ni0.6−(Zr0.840.1620.4)のものを、そし
て空気極にはPr1-xSrxMnO3を用いた。
EXAMPLE 1 In order to show the effect of the present invention, a test was conducted with a single cell having the structure shown in FIG. In FIG. 1, 1 is a fuel electrode, 2 is a solid electrolyte, and 3 is an air electrode. Also the cathode,
The thickness of the fuel electrode is 0.1 mm, the thickness of the solid electrolyte is 0.3 mm, and the diameter is 20 mm. The solid electrolyte is
YSZ (yttrium 8 mol%; Zr 0.84 Y
0.16 O 2 ) and Ni powder dispersed in YSZ (yttrium 8 mol%) for the fuel electrode (Ni: 60 mol%;
Ni 0.6- (Zr 0.84 Y 0.16 O 2 ) 0.4 ) and Pr 1-x Sr x MnO 3 for the air electrode.

【0022】ここで、x=0.05、0.1、0.2、
0.3、0.4としてそれぞれ単セルを作製した。本実
施例に使用した単セルの作製方法を以下に示す。まず、
ドクターブレード法により固体電解質のセラミックス薄
板のグリーンシートを形成し1600℃で焼きあげる。
これにスクリーンプリントで燃料電極にNi−YSZを
塗布し1400℃で焼き、この後、上記の空気極を塗布
し1100℃で焼き付けた。
Here, x = 0.05, 0.1, 0.2,
Single cells were prepared at 0.3 and 0.4, respectively. A method for manufacturing a single cell used in this example is described below. First,
A green sheet of a solid electrolyte ceramic thin plate is formed by a doctor blade method and baked at 1600 ° C.
Ni-YSZ was applied to the fuel electrode by screen printing and baked at 1400 ° C., and then the above air electrode was applied and baked at 1100 ° C.

【0023】表1−1に、これらの単セルの800℃で
の試験結果を示す。ここで、端子電圧は電流密度が0.
2A/cm2時の値である。熱膨張係数の測定には、空
気極材料を1300℃でペレット状に焼結したものを棒
状に切りだし、熱膨張測定装置により室温から800℃
までの温度範囲で空気中で測定を行なった。表1−1に
空気極における熱膨張係数の空気極組成依存性を示す。
ここで、熱膨張係数は、25〜800℃までの平均値で
ある。
Table 1-1 shows the test results of these single cells at 800 ° C. Here, the terminal voltage has a current density of 0.
The value at 2 A / cm 2 . For the measurement of the coefficient of thermal expansion, a material obtained by sintering the air electrode material into a pellet at 1300 ° C. was cut into a rod, and the temperature was measured from room temperature to 800 ° C. using a thermal expansion measuring device.
The measurement was performed in air in the temperature range up to. Table 1-1 shows the dependency of the coefficient of thermal expansion on the air electrode composition in the air electrode.
Here, the coefficient of thermal expansion is an average value from 25 to 800 ° C.

【0024】これら本発明の空気極を用いたときは、い
ずれも従来のLa0.8Sr0.2MnO3を空気極に用いた
セルに比べ良好な特性を示した。プラセオジウムの置換
量(xの割合)が5〜40%において従来材料以下の熱
膨張係数を持ち、電解質材との整合性が向上しているこ
とがわかる。
When these air electrodes of the present invention were used, all exhibited better characteristics than the conventional cell using La 0.8 Sr 0.2 MnO 3 as the air electrode. It can be seen that when the substitution amount of praseodymium (ratio of x) is 5 to 40%, the material has a thermal expansion coefficient lower than that of the conventional material, and the compatibility with the electrolyte material is improved.

【0025】 表1−1 実施例1における端子電圧と熱膨張係数の空気極組成依存性 ────────────────────────────── Pr1-xSrxMnO3 端子電圧 熱膨張係数 ────────────────────────────── Pr0.95Sr0.05MnO3 0.22 (V) 9.3×10-6 ────────────────────────────── Pr0.90Sr0.10MnO3 0.24 9.4 ────────────────────────────── Pr0.80Sr0.20MnO3 0.28 9.5 ────────────────────────────── Pr0.70Sr0.30MnO3 0.30 11.0 ────────────────────────────── Pr0.60Sr0.40MnO3 0.32 12.0 ────────────────────────────── La0.8Sr0.2MnO3 (比較例) 0.22 12.0 ──────────────────────────────Table 1-1 Dependence of Terminal Voltage and Thermal Expansion Coefficient on Air Electrode Composition in Example 1 ─── Pr 1-x Sr x MnO 3- terminal voltage Thermal expansion coefficient ────────────────────────────── Pr 0.95 Sr 0.05 MnO 3 0.22 (V) 9.3 × 10 -6 ────────────────────────────── Pr 0.90 Sr 0.10 MnO 3 0.24 9.4 ─ ───────────────────────────── Pr 0.80 Sr 0.20 MnO 3 0.28 9.5 ───────────── ───────────────── Pr 0.70 Sr 0.30 MnO 3 0.30 11.0 ───────────────────────── ───── Pr 0.60 Sr 0.40 MnO 3 0.32 12.0 ────────────────────────────── La 0.8 Sr 0.2 MnO 3 ( Comparative example) 0.22 12.0 ──────────────────────────────

【0026】端子電圧:電流0.2A/cm2における
値 熱膨張係数:室温から800℃までの平均値
Terminal voltage: value at current 0.2 A / cm 2 Thermal expansion coefficient: average value from room temperature to 800 ° C.

【0027】[0027]

【実施例2】実施例1と同様の単セルを固体電解質とし
てYSZの代わりに(ZrO20.9(Sc23
0.09(Al230.01から成る組成の酸化物を、そして
空気極材料をPr1-xCaxMnO3(0.05≦x≦
0.3)として、実施例1と同様の実験を行なった。表
1−2にその結果を示す。ここで端子電圧は電流密度が
1.0A/cm2時の値である。実施例1とほぼ同様
に、従来の材料であるLa0.8Sr0.2MnO3に比べい
ずれも良好な結果を得た。
[Embodiment 2] A single cell similar to that of Embodiment 1 was used as a solid electrolyte instead of YSZ instead of (ZrO 2 ) 0.9 (Sc 2 O 3 ).
An oxide having a composition of 0.09 (Al 2 O 3 ) 0.01 and an air electrode material as Pr 1-x Ca x MnO 3 (0.05 ≦ x ≦
0.3), the same experiment as in Example 1 was performed. Table 1-2 shows the results. Here, the terminal voltage is a value when the current density is 1.0 A / cm 2 . In almost the same manner as in Example 1, good results were obtained in comparison with the conventional material La 0.8 Sr 0.2 MnO 3 .

【0028】 表1−2 実施例2における端子電圧と熱膨張係数の空気極組成依存性 ────────────────────────────── Pr1-xCaxMnO3 端子電圧 熱膨張係数 ────────────────────────────── Pr0.95Ca0.05MnO3 0.20 (V) 9.3×10-6 ────────────────────────────── Pr0.90Ca0.10MnO3 0.22 9.3 ────────────────────────────── Pr0.80Ca0.20MnO3 0.24 9.4 ────────────────────────────── Pr0.70Ca0.30MnO3 0.26 10.0 ────────────────────────────── Pr0.60Ca0.40MnO3 0.26 11.0 ────────────────────────────── La0.8Sr0.2MnO3 (比較例) 0.20 12.0 ──────────────────────────────Table 1-2 Dependence of Terminal Voltage and Thermal Expansion Coefficient on Air Electrode Composition in Example 2 ─── Pr 1-x Ca x MnO 3 terminal voltage Thermal expansion coefficient ────────────────────────────── Pr 0.95 Ca 0.05 MnO 3 0.20 (V) 9.3 × 10 -6 ────────────────────────────── Pr 0.90 Ca 0.10 MnO 3 0.22 9.3 ─ ───────────────────────────── Pr 0.80 Ca 0.20 MnO 3 0.24 9.4 ───────────── ───────────────── Pr 0.70 Ca 0.30 MnO 3 0.26 10.0 ───────────────────────── ───── Pr 0.60 Ca 0.40 MnO 3 0.26 11.0 ────────────────────────────── La 0.8 Sr 0.2 MnO 3 ( Comparative example) 0.20 12.0 ──────────────────────────────

【0029】端子電圧:電流1.0A/cm2における
値 熱膨張係数:室温から800℃までの平均値
Terminal voltage: value at current of 1.0 A / cm 2 Thermal expansion coefficient: average value from room temperature to 800 ° C.

【0030】[0030]

【実施例3】実施例2と同様の単セルにおいて空気極の
材料だけをPr1-xCexMnO3(0.05≦x≦0.
4)として、実施例1と同様の実験を行なった。結果は
表1−3に示すように実施例1とほぼ同様に、従来材料
であるLa0.8Sr0.2MnO3に比べいずれも良好であ
った。
EXAMPLE 3 Only the material of the air electrode of the single cell as in Example 2 Pr 1-x Ce x MnO 3 (0.05 ≦ x ≦ 0.
As 4), the same experiment as in Example 1 was performed. As shown in Table 1-3, the results were almost the same as those of Example 1 and all were better than the conventional material, La 0.8 Sr 0.2 MnO 3 .

【0031】 表1−3 実施例3における端子電圧と熱膨張係数の空気極組成依存性 ────────────────────────────── Pr1-xCexMnO3 端子電圧 熱膨張係数 ────────────────────────────── Pr0.95Ce0.05MnO3 0.21 (V) 9.3×10-6 ────────────────────────────── Pr0.90Ce0.10MnO3 0.22 9.8 ────────────────────────────── Pr0.80Ce0.20MnO3 0.26 10.6 ────────────────────────────── Pr0.70Ce0.30MnO3 0.28 11.4 ────────────────────────────── Pr0.60Ce0.40MnO3 0.30 11.8 ──────────────────────────────Table 1-3 Dependence of Terminal Voltage and Thermal Expansion Coefficient on Air Electrode Composition in Example 3 ─── Pr 1-x Ce x MnO 3- terminal voltage Thermal expansion coefficient ────────────────────────────── Pr 0.95 Ce 0.05 MnO 3 0.21 (V) 9.3 × 10 -6 ────────────────────────────── Pr 0.90 Ce 0.10 MnO 3 0.22 9.8 ─ ───────────────────────────── Pr 0.80 Ce 0.20 MnO 3 0.26 10.6 ───────────── ───────────────── Pr 0.70 Ce 0.30 MnO 3 0.28 11.4 ───────────────────────── ───── Pr 0.60 Ce 0.40 MnO 3 0.30 11.8 ──────────────────────────────

【0032】端子電圧:電流1.0A/cm2における
値 熱膨張係数:室温から800℃までの平均値
Terminal voltage: value at current of 1.0 A / cm 2 Thermal expansion coefficient: average value from room temperature to 800 ° C.

【0033】[0033]

【発明の効果】以上説明したように、固体電解質燃料電
池の空気極材料をPr1-xxMnO3、(A:アルカリ
土類金属元素またはCe元素)とすることで、熱膨張係
数の不整合が従来材料のLa0.8Sr0.2MnO3に比べ
低く、電気特性は従来とほぼ同等である、すなわち、電
気的特性と熱膨張係数の整合性について同時に満足すべ
き特性を有する空気極を得ることに成功した。このた
め、本発明による固体電解質燃料電池は高効率動作が可
能であるという大きな利点を有する。
As described above, when the air electrode material of the solid oxide fuel cell is Pr 1-x A x MnO 3 (A: alkaline earth metal element or Ce element), the thermal expansion coefficient The mismatch is lower than that of the conventional material La 0.8 Sr 0.2 MnO 3 , and the electrical characteristics are almost the same as those of the conventional material. That is, an air electrode having characteristics that simultaneously satisfy both the electrical characteristics and the coefficient of thermal expansion is obtained. Succeeded. others
Therefore, the solid electrolyte fuel cell according to the present invention can operate with high efficiency.
It has the great advantage of being capable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に用いた単セルの断面図。FIG. 1 is a sectional view of a single cell used in an example.

【符号の説明】[Explanation of symbols]

1 燃料極 2 固体電解質 3 空気極 1 fuel electrode 2 solid electrolyte 3 air electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−225821(JP,A) 特開 平7−14584(JP,A) 特表 平2−504445(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02 H01M 8/12 H01M 4/86 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-225821 (JP, A) JP-A-7-14584 (JP, A) JP-A-2-504445 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) H01M 8/02 H01M 8/12 H01M 4/86

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空気極と固体電解質と燃料極からなる固体
電解質燃料電池であって、前記空気極にPr1-xxMn
3である空気極材料が含有されてなり、前記Aはアル
カリ土類金属元素またはCeであり、かつ前記xについ
ては、0.05≦x≦0.4であり、前記固体電解質
は、イットリウム−ジルコニア系またはジルコニウム化
合物−スカンジウム化合物−アルミナからなることを特
徴とする固体電解質燃料電池。
1. A solid comprising a cathode and a solid electrolyte and a fuel electrode
An electrolyte fuel cell , wherein the air electrode comprises Pr 1-x A x Mn.
Wherein the air electrode material is O 3 , wherein A is an alkaline earth metal element or Ce, and x is 0.05 ≦ x ≦ 0.4, and the solid electrolyte is yttrium. -Zirconia-based or zirconium-based
Compound-scandium compound-alumina
Features solid electrolyte fuel cells.
【請求項2】前記アルカリ土類金属元素はSrまたはC
aであることを特徴とする請求項1記載の固体電解質燃
料電池
2. The method according to claim 1, wherein said alkaline earth metal element is Sr or C.
2. The solid electrolyte fuel according to claim 1, wherein
Battery .
JP03790994A 1994-02-10 1994-02-10 Solid electrolyte fuel cell Expired - Lifetime JP3256919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03790994A JP3256919B2 (en) 1994-02-10 1994-02-10 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03790994A JP3256919B2 (en) 1994-02-10 1994-02-10 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH07226209A JPH07226209A (en) 1995-08-22
JP3256919B2 true JP3256919B2 (en) 2002-02-18

Family

ID=12510677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03790994A Expired - Lifetime JP3256919B2 (en) 1994-02-10 1994-02-10 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3256919B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133787B2 (en) * 2008-06-09 2013-01-30 日本電信電話株式会社 Solid oxide fuel cell
WO2009157546A1 (en) * 2008-06-27 2009-12-30 住友大阪セメント株式会社 Composite ceramic powder, process for production of same and solid oxide fuel cell
JP5401847B2 (en) * 2008-06-27 2014-01-29 住友大阪セメント株式会社 Composite ceramic powder, method for producing the same, and solid oxide fuel cell
JP5290870B2 (en) * 2009-05-29 2013-09-18 日本電信電話株式会社 Solid oxide fuel cell
WO2013140677A1 (en) * 2012-03-22 2013-09-26 富士電機株式会社 Manganese oxide thin film and oxide laminate

Also Published As

Publication number Publication date
JPH07226209A (en) 1995-08-22

Similar Documents

Publication Publication Date Title
JP3460727B2 (en) Oxygen ion conductor and solid fuel cell
JP5368139B2 (en) Solid oxide fuel cell
JP5144236B2 (en) Solid oxide fuel cell
JP5336207B2 (en) Solid oxide fuel cell
JP3218555B2 (en) Ceria based solid electrolyte with protective layer
JP3256919B2 (en) Solid electrolyte fuel cell
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
JP3456436B2 (en) Solid oxide fuel cell
JP2511095B2 (en) Electrode material
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP3259756B2 (en) Multilayer solid electrolyte for solid fuel cells
JPH0562688A (en) Solid electrolyte type fuel cell
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP5133787B2 (en) Solid oxide fuel cell
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JP4743949B2 (en) Solid electrolyte fuel cell
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
JP3501409B2 (en) Self-supporting flat-plate solid electrolyte fuel cell
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode
JP3403055B2 (en) Oxygen side electrode
JP5117834B2 (en) Solid oxide fuel cell
JP3141911B2 (en) Air electrode material for solid fuel cell and solid fuel cell
JPH0773886A (en) Solid electrolyte type fuel cell
JP3119084B2 (en) Air electrode and air electrode side current collector for solid oxide fuel cell
JP3108256B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

EXPY Cancellation because of completion of term