JPH07226209A - Air electrode material for solid fuel cell and solid fuel cell - Google Patents

Air electrode material for solid fuel cell and solid fuel cell

Info

Publication number
JPH07226209A
JPH07226209A JP6037909A JP3790994A JPH07226209A JP H07226209 A JPH07226209 A JP H07226209A JP 6037909 A JP6037909 A JP 6037909A JP 3790994 A JP3790994 A JP 3790994A JP H07226209 A JPH07226209 A JP H07226209A
Authority
JP
Japan
Prior art keywords
fuel cell
air electrode
solid fuel
mno
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6037909A
Other languages
Japanese (ja)
Other versions
JP3256919B2 (en
Inventor
Reiichi Chiba
玲一 千葉
Takao Ishii
隆生 石井
Yukimichi Tajima
幸道 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03790994A priority Critical patent/JP3256919B2/en
Publication of JPH07226209A publication Critical patent/JPH07226209A/en
Application granted granted Critical
Publication of JP3256919B2 publication Critical patent/JP3256919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an air electrode material for a solid fuel cell simultaneously satisfying two requirements of electric performance and consistency of coefficient of thermal expansion with an electrolyte necessary for an air electrode of the solid fuel cell, and provide a solid fuel cell. CONSTITUTION:Material of an air electrode 3 is Pr1-xAxMnO3. Wherein A is an alkali earth metal element or Ce, and 0.05<=x<=0.4. Unconformity of thermal expansion is low compared with La0.8Sr0.2MnO3 conventionally used, but electric performance is almost equal to the conventional material. An electrode simultaneously satisfying the electric performance and consistency of electric characteristics with coefficient of thermal expansion is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体燃料電池用空気極材
料およびその空気極材料を使用した固体燃料電池、特に
プラセオジウム系固体燃料電池用空気極材料および固体
燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air electrode material for a solid fuel cell, a solid fuel cell using the air electrode material, and more particularly to an air electrode material for a praseodymium-based solid fuel cell and a solid fuel cell.

【0002】[0002]

【従来の技術および問題点】近年、酸素イオン伝導体を
用いた固体電解質燃料電池に関心が高まりつつある。特
にエネルギーの有効利用という観点から、固体燃料電池
はカルノー効率の制約を受けないため本質的に高いエネ
ルギー変換効率を有し、さらに良好な環境保全が期待さ
れるなどの優れた特徴をもっている。
2. Description of the Related Art In recent years, solid electrolyte fuel cells using oxygen ion conductors have been gaining interest. In particular, from the viewpoint of effective use of energy, the solid fuel cell has essentially high energy conversion efficiency because it is not restricted by Carnot efficiency, and further has excellent characteristics such as good environmental protection is expected.

【0003】図1に固体燃料電池の単セル(平板型)の
断面を模式的に示す。固体電解質としては1000℃動
作用にはYSZ(イットリウム安定化ジルコニア)が最
も有望視されているが、800℃の低温動作用として、
ジルコニア−スカンジウム系、セリア系およびYSZの
薄層化などの検討が行なわれている。
FIG. 1 schematically shows a cross section of a single cell (flat plate type) of a solid fuel cell. As a solid electrolyte, YSZ (yttrium-stabilized zirconia) is most promising for operation at 1000 ° C, but for low temperature operation at 800 ° C,
Studies have been conducted on thinning zirconia-scandium, ceria, and YSZ.

【0004】固体燃料電池セル構成材として現在最もよ
く検討されている物質の熱膨張係数を表2に示す。完全
な緻密性が要求される固体電解質とインターコネクタ材
は、ほぼ熱膨張係数が一致している。これに対して、燃
料極であるNi−YSZおよび空気極のLa0.8Sr0.2
MnO3は、約24〜40%程度熱膨張係数が大きく、
熱膨張、収縮により電解質に応力がかかる。
Table 2 shows the coefficients of thermal expansion of the substances currently most studied as solid fuel cell component materials. The thermal expansion coefficient of the solid electrolyte and that of the interconnector material, which are required to be completely dense, are almost the same. On the other hand, the fuel electrode Ni-YSZ and the air electrode La 0.8 Sr 0.2
MnO 3 has a large coefficient of thermal expansion of about 24 to 40%,
The electrolyte is stressed by thermal expansion and contraction.

【0005】電極材料としてはペロブスカイト型マンガ
ン系酸化物であるLa1-xSrxMnO3、(x=0.1
5−0.4)が最も多く検討されている。YSZとLa
1-xSrxMnO3では熱膨張差があるため、室温と動作
温度である1000−800℃の間の温度サイクルを経
ることによりYSZにクラックが入る恐れがある。特に
空気極を支持体としてセルを組む場合、空気極の断面積
が大きくなるため、空気極の熱膨張がセルの熱膨張を決
定するため、空気極材料と固体電解質の熱膨張係数が一
致しなければならない。また、固体電解質を支持体とす
る場合でもセルの一辺が熱膨張差による電解質/電極間
の不整合に比例するので、大きなセルをつくる場合には
やはり問題となる。
As the electrode material, La 1-x Sr x MnO 3 , which is a perovskite type manganese oxide, (x = 0.1
5-0.4) is the most studied. YSZ and La
Since 1-x Sr x MnO 3 has a difference in thermal expansion, YSZ may be cracked through a temperature cycle between room temperature and operating temperature of 1000 to 800 ° C. Especially when assembling a cell using the air electrode as a support, the cross-sectional area of the air electrode becomes large, and the thermal expansion of the air electrode determines the thermal expansion of the cell.Therefore, the thermal expansion coefficients of the air electrode material and the solid electrolyte are the same. There must be. Further, even when a solid electrolyte is used as a support, one side of the cell is proportional to the mismatch between the electrolyte and the electrode due to the difference in thermal expansion.

【0006】そこで、電気伝導特性はマンガン系と同等
で固体電解質であるYSZと熱膨張係数がほぼ一致した
空気極が求められている。
Therefore, there is a demand for an air electrode whose electric conductivity is similar to that of manganese and whose thermal expansion coefficient is almost the same as that of YSZ which is a solid electrolyte.

【0007】 表2 固体燃料電池材料の熱膨張係数 ───────────────────────────────── 材料 熱膨張係数 部分 ───────────────────────────────── (ZrO2)0.9(Sc2O3)0.09(Al2O3)0.01 10.2×10-6 固体電解質 ───────────────────────────────── YSZ 10.0 固体電解質 ───────────────────────────────── La0.8Sr0.2MnO3 12.4 空気極 ───────────────────────────────── YSZ-Niサーメット(Ni:60mol%) 13.0 燃料極 ───────────────────────────────── La0.8Sr0.2CrO3 10.0 インターコネクタ ───────────────────────────────── 25〜1000℃での熱膨張係数の平均値を示す。Table 2 Thermal expansion coefficient of solid fuel cell material ────────────────────────────────── Material thermal expansion coefficient Part ───────────────────────────────── (ZrO 2 ) 0.9 (Sc 2 O 3 ) 0.09 (Al 2 O 3 ) 0.01 10.2 × 10 -6 Solid electrolyte ───────────────────────────────── YSZ 10.0 Solid electrolyte ─── ────────────────────────────── La 0.8 Sr 0.2 MnO 3 12.4 Air electrode ─────────── ────────────────────── YSZ-Ni cermet (Ni: 60mol%) 13.0 Fuel electrode ─────────────── ────────────────── La 0.8 Sr 0.2 CrO 3 10.0 Interconnector ──────────────────────── ────────── Indicates the average value of the coefficient of thermal expansion at 25 to 1000 ° C.

【0008】[0008]

【発明の目的】本発明は、固体燃料電池用空気極に求め
られている電気的特性および熱膨張係数の電解質との整
合性の二つの要求を同時に満足させた固体燃料電池用空
気電極材料および固体燃料電池を提供することを目的と
する。
An object of the present invention is to provide an air electrode material for a solid fuel cell, which simultaneously satisfies the two requirements of the electric characteristics and the compatibility of the thermal expansion coefficient with the electrolyte required for the air electrode for the solid fuel cell. An object is to provide a solid fuel cell.

【0009】[0009]

【問題点を解決するための手段】上記目的を達成するた
め、本発明による固体燃料電池用空気極材料は、固体燃
料電池用空気極材料において、前記空気極材料が、Pr
1-xxMnO3であることを特徴とする固体燃料電池用
空気極材料。ただし、Aはアルカリ土類金属元素または
Ce元素であり、かつ0.05≦x≦0.4である。
In order to achieve the above object, an air electrode material for a solid fuel cell according to the present invention is the air electrode material for a solid fuel cell, wherein the air electrode material is Pr.
1-x A x air electrode material for a solid fuel cell which is a MnO 3. However, A is an alkaline earth metal element or a Ce element, and 0.05 ≦ x ≦ 0.4.

【0010】また、本発明による固体燃料電池は、空気
極と固体電解質と燃料極からなる固体燃料電池におい
て、前記空気極にPr1-xxMnO3である空気極材料
が含有されてなることを特徴とする。ただし、Aはアル
カリ土類金属元素またはCe元素であり、かつzについ
ては0.05≦x≦0.4である。
Further, the solid fuel cell according to the present invention is a solid fuel cell comprising an air electrode, a solid electrolyte and a fuel electrode, wherein the air electrode contains an air electrode material of Pr 1-x A x MnO 3. It is characterized by However, A is an alkaline earth metal element or Ce element, and z is 0.05 ≦ x ≦ 0.4.

【0011】すなわち電気伝導性が従来材料のLa1-x
SrxMnO3、(x=0.15−0.4)と同等で、熱
膨張係数が固体電解質とほぼ同じ値を持つPr1-xx
nO3、(A:アルカリ土類金属元素、またはCe元
素)を用いることを特徴とする。
That is, the electrical conductivity of the conventional material La 1 -x
Pr 1-x A x M, which is equivalent to Sr x MnO 3 (x = 0.15-0.4) and has a thermal expansion coefficient almost the same as that of the solid electrolyte.
nO 3 (A: alkaline earth metal element or Ce element) is used.

【0012】本発明を更に詳しく説明すると、本発明に
よる固体燃料電池用空気極材料は、Pr1-xxMnO3
である。ただし、式中、Aはアルカリ土類金属元素また
はCeであり、かつxは0.05≦x≦0.4である。
The present invention will be described in more detail. The cathode material for a solid fuel cell according to the present invention comprises Pr 1-x A x MnO 3
Is. However, in the formula, A is an alkaline earth metal element or Ce, and x is 0.05 ≦ x ≦ 0.4.

【0013】上記式中、Aはアルカリ土類金属またはC
eである。特に、イオン半径の大きさによって格子の整
合性を満足させるために、アルカリ土類金属元素として
はSr、Caが好適に用いることができ、またCeも好
適に用いることができる。
In the above formula, A is an alkaline earth metal or C
It is e. In particular, Sr and Ca can be preferably used as the alkaline earth metal element, and Ce can also be preferably used in order to satisfy the lattice matching depending on the size of the ionic radius.

【0014】さらにxは熱膨張係数の整合性の点から、
後述の実施例より明らかなように0.05≦x≦0.4
である。
Further, x is from the point of conformity of the coefficient of thermal expansion,
As is clear from the examples described below, 0.05 ≦ x ≦ 0.4
Is.

【0015】本発明は、また固体燃料電池に関するもの
であり、上述のような固体燃料電池用空気極材料を使用
している。
The present invention also relates to a solid fuel cell, which uses the cathode material for a solid fuel cell as described above.

【0016】固体電解質としては、前述のように熱膨張
率が10.0×10-6付近の熱膨張率を有するものが使
用できる。このような固体電解質としては、たとえばジ
ルコニウム化合物−スナンジウム化合物−アルミナ固体
電解質(たとえば(ZrO20.9(Sc230.09(A
230.01など)、イットリウム−スカンジウム−ジ
ルコニア系(たとえばYSZ)固体電解質などを挙げる
ことができる。
As the solid electrolyte, one having a coefficient of thermal expansion of about 10.0 × 10 −6 can be used as described above. Such solid electrolyte, such as zirconium compound - Sunanjiumu compound - alumina solid electrolyte (e.g. (ZrO 2) 0.9 (Sc 2 O 3) 0.09 (A
1 2 ) 3 ) 0.01 etc.), yttrium-scandium-zirconia-based (for example, YSZ) solid electrolyte, and the like.

【0017】燃料極としては、従来燃料電池として使用
していたものを有効に使用できる。
As the fuel electrode, those conventionally used as fuel cells can be effectively used.

【0018】[0018]

【作用】以下に本発明の作用を説明する。The function of the present invention will be described below.

【0019】空気極のランタンをプラセオジウムで置換
したPr1-xxMnO3、(A:アルカリ土類金属元素
またはCe元素)について検討したところ、電気伝導性
は従来材料とほぼ同等で、熱膨張係数が従来材料のLa
1-xSrxMnO3よりも固体電解質であるYSZに近い
ことを知見した。以上のような構成とすることによっ
て、電気的特性および熱膨張係数の電解質との整合性の
二つの要求を同時に満足する固体燃料電池用空気極材料
を実現できる。
When Pr 1-x A x MnO 3 (A: alkaline earth metal element or Ce element) in which lanthanum of the air electrode is replaced by praseodymium was examined, the electric conductivity was almost the same as that of the conventional material, La coefficient of expansion of conventional material
It was found that it is closer to YSZ, which is a solid electrolyte, than 1-x Sr x MnO 3 . With the above-described structure, it is possible to realize an air electrode material for a solid fuel cell that simultaneously satisfies two requirements of electrical characteristics and compatibility of thermal expansion coefficient with an electrolyte.

【0020】[0020]

【実施例】以下に本発明の実施例を説明する。なお、本
発明は以下の実施例に特に限定されるものではない。
EXAMPLES Examples of the present invention will be described below. The present invention is not particularly limited to the examples below.

【0021】[0021]

【実施例1】本発明の効果を示すために、図1に示す構
造の単セルで試験を行なった。図1において、1は燃料
極、2は固体電解質、3は空気極である。また空気極、
燃料極の厚みはそれぞれ0.1mm、固体電解質の厚み
は0.3mm、直径は20mmである。固体電解質は、
YSZ(イットリウム8mol%;Zr0.84
0.162)を、燃料極にはNi粉末をYSZ(イットリ
ウム8mol%)に分散させた(Ni:60mol%;
Ni0.6−(Zr0.840.1620.4)のものを、そし
て空気極にはPr1-xSrxMnO3を用いた。
Example 1 In order to show the effect of the present invention, a test was conducted on a single cell having the structure shown in FIG. In FIG. 1, 1 is a fuel electrode, 2 is a solid electrolyte, and 3 is an air electrode. Also the air electrode,
The thickness of the fuel electrode is 0.1 mm, the thickness of the solid electrolyte is 0.3 mm, and the diameter is 20 mm. The solid electrolyte is
YSZ (Yttrium 8 mol%; Zr 0.84 Y
0.16 O 2 ) and Ni powder in the fuel electrode were dispersed in YSZ (yttrium 8 mol%) (Ni: 60 mol%;
Ni 0.6- (Zr 0.84 Y 0.16 O 2 ) 0.4 ) and Pr 1-x Sr x MnO 3 were used for the air electrode.

【0022】ここで、x=0.05、0.1、0.2、
0.3、0.4としてそれぞれ単セルを作製した。本実
施例に使用した単セルの作製方法を以下に示す。まず、
ドクターブレード法により固体電解質のセラミックス薄
板のグリーンシートを形成し1600℃で焼きあげる。
これにスクリーンプリントで燃料電極にNi−YSZを
塗布し1400℃で焼き、この後、上記の空気極を塗布
し1100℃で焼き付けた。
Where x = 0.05, 0.1, 0.2,
Single cells were prepared with 0.3 and 0.4, respectively. The method for producing the single cell used in this example is shown below. First,
A green sheet of a ceramic thin plate of solid electrolyte is formed by the doctor blade method and baked at 1600 ° C.
Ni-YSZ was applied to the fuel electrode by screen printing and baked at 1400 ° C, and then the above air electrode was applied and baked at 1100 ° C.

【0023】表1−1に、これらの単セルの800℃で
の試験結果を示す。ここで、端子電圧は電流密度が0.
2A/cm2時の値である。熱膨張係数の測定には、空
気極材料を1300℃でペレット状に焼結したものを棒
状に切りだし、熱膨張測定装置により室温から800℃
までの温度範囲で空気中で測定を行なった。表1−1に
空気極における熱膨張係数の空気極組成依存性を示す。
ここで、熱膨張係数は、25〜800℃までの平均値で
ある。
Table 1-1 shows the test results of these single cells at 800 ° C. Here, the terminal voltage has a current density of 0.
It is a value at 2 A / cm 2 . To measure the coefficient of thermal expansion, the cathode material was sintered into pellets at 1300 ° C and cut into rods.
Measurements were performed in air over the temperature range up to. Table 1-1 shows the dependence of the thermal expansion coefficient of the air electrode on the air electrode composition.
Here, the coefficient of thermal expansion is an average value from 25 to 800 ° C.

【0024】これら本発明の空気極を用いたときは、い
ずれも従来のLa0.8Sr0.2MnO3を空気極に用いた
セルに比べ良好な特性を示した。プラセオジウムの置換
量(xの割合)が5〜40%において従来材料以下の熱
膨張係数を持ち、電解質材との整合性が向上しているこ
とがわかる。
When the air electrodes of the present invention were used, all exhibited better characteristics than the cells using the conventional La 0.8 Sr 0.2 MnO 3 as the air electrode. It can be seen that when the substitution amount of praseodymium (ratio of x) is 5 to 40%, the coefficient of thermal expansion is equal to or lower than that of the conventional material, and the compatibility with the electrolyte material is improved.

【0025】 表1−1 実施例1における端子電圧と熱膨張係数の空気極組成依存性 ────────────────────────────── Pr1-xSrxMnO3 端子電圧 熱膨張係数 ────────────────────────────── Pr0.95Sr0.05MnO3 0.22 (V) 9.3×10-6 ────────────────────────────── Pr0.90Sr0.10MnO3 0.24 9.4 ────────────────────────────── Pr0.80Sr0.20MnO3 0.28 9.5 ────────────────────────────── Pr0.70Sr0.30MnO3 0.30 11.0 ────────────────────────────── Pr0.60Sr0.40MnO3 0.32 12.0 ────────────────────────────── La0.8Sr0.2MnO3 (比較例) 0.22 12.0 ──────────────────────────────Table 1-1 Dependence of terminal voltage and coefficient of thermal expansion on air electrode composition in Example 1 ──────────────────────────── ─── Pr 1-x Sr x MnO 3 terminal voltage thermal expansion coefficient ────────────────────────────── Pr 0.95 Sr 0.05 MnO 3 0.22 (V) 9.3 × 10 -6 ────────────────────────────── Pr 0.90 Sr 0.10 MnO 3 0.24 9.4 ─ ───────────────────────────── Pr 0.80 Sr 0.20 MnO 3 0.28 9.5 ───────────── ───────────────── Pr 0.70 Sr 0.30 MnO 3 0.30 11.0 ───────────────────────── ───── Pr 0.60 Sr 0.40 MnO 3 0.32 12.0 ────────────────────────────── La 0.8 Sr 0.2 MnO 3 ( Comparative example) 0.22 12.0 ───────────────────────────────

【0026】端子電圧:電流0.2A/cm2における
値 熱膨張係数:室温から800℃までの平均値
Terminal voltage: value at current 0.2 A / cm 2 coefficient of thermal expansion: average value from room temperature to 800 ° C.

【0027】[0027]

【実施例2】実施例1と同様の単セルを固体電解質とし
てYSZの代わりに(ZrO20.9(Sc23
0.09(Al230.01から成る組成の酸化物を、そして
空気極材料をPr1-xCaxMnO3(0.05≦x≦
0.3)として、実施例1と同様の実験を行なった。表
1−2にその結果を示す。ここで端子電圧は電流密度が
1.0A/cm2時の値である。実施例1とほぼ同様
に、従来の材料であるLa0.8Sr0.2MnO3に比べい
ずれも良好な結果を得た。
Example 2 The same single cell as in Example 1 was used as a solid electrolyte instead of YSZ with (ZrO 2 ) 0.9 (Sc 2 O 3 ).
An oxide having a composition of 0.09 (Al 2 O 3 ) 0.01 and an air electrode material of Pr 1-x Ca x MnO 3 (0.05 ≦ x ≦
0.3), the same experiment as in Example 1 was performed. The results are shown in Table 1-2. Here, the terminal voltage is a value when the current density is 1.0 A / cm 2 . Almost the same results as in Example 1 were obtained as compared with the conventional material La 0.8 Sr 0.2 MnO 3 .

【0028】 表1−2 実施例2における端子電圧と熱膨張係数の空気極組成依存性 ────────────────────────────── Pr1-xCaxMnO3 端子電圧 熱膨張係数 ────────────────────────────── Pr0.95Ca0.05MnO3 0.20 (V) 9.3×10-6 ────────────────────────────── Pr0.90Ca0.10MnO3 0.22 9.3 ────────────────────────────── Pr0.80Ca0.20MnO3 0.24 9.4 ────────────────────────────── Pr0.70Ca0.30MnO3 0.26 10.0 ────────────────────────────── Pr0.60Ca0.40MnO3 0.26 11.0 ────────────────────────────── La0.8Sr0.2MnO3 (比較例) 0.20 12.0 ──────────────────────────────Table 1-2 Dependence of Terminal Voltage and Coefficient of Thermal Expansion on Air Electrode Composition in Example 2 ──────────────────────────── ─── Pr 1-x Ca x MnO 3 terminal voltage coefficient of thermal expansion ────────────────────────────── Pr 0.95 Ca 0.05 MnO 3 0.20 (V) 9.3 × 10 -6 ────────────────────────────── Pr 0.90 Ca 0.10 MnO 3 0.22 9.3 ─ ───────────────────────────── Pr 0.80 Ca 0.20 MnO 3 0.24 9.4 ───────────── ───────────────── Pr 0.70 Ca 0.30 MnO 3 0.26 10.0 ───────────────────────── ───── Pr 0.60 Ca 0.40 MnO 3 0.26 11.0 ────────────────────────────── La 0.8 Sr 0.2 MnO 3 ( Comparative example) 0.20 12.0 ───────────────────────────────

【0029】端子電圧:電流1.0A/cm2における
値 熱膨張係数:室温から800℃までの平均値
Terminal voltage: value at current 1.0 A / cm 2 coefficient of thermal expansion: average value from room temperature to 800 ° C.

【0030】[0030]

【実施例3】実施例2と同様の単セルにおいて空気極の
材料だけをPr1-xCexMnO3(0.05≦x≦0.
4)として、実施例1と同様の実験を行なった。結果は
表1−3に示すように実施例1とほぼ同様に、従来材料
であるLa0.8Sr0.2MnO3に比べいずれも良好であ
った。
[Embodiment 3] In the same single cell as in Embodiment 2, only the material of the air electrode is Pr 1 -x Ce x MnO 3 (0.05 ≦ x ≦ 0.
As 4), the same experiment as in Example 1 was performed. As shown in Table 1-3, the results were almost the same as in Example 1 and were good as compared with the conventional material La 0.8 Sr 0.2 MnO 3 .

【0031】 表1−3 実施例3における端子電圧と熱膨張係数の空気極組成依存性 ────────────────────────────── Pr1-xCexMnO3 端子電圧 熱膨張係数 ────────────────────────────── Pr0.95Ce0.05MnO3 0.21 (V) 9.3×10-6 ────────────────────────────── Pr0.90Ce0.10MnO3 0.22 9.8 ────────────────────────────── Pr0.80Ce0.20MnO3 0.26 10.6 ────────────────────────────── Pr0.70Ce0.30MnO3 0.28 11.4 ────────────────────────────── Pr0.60Ce0.40MnO3 0.30 11.8 ──────────────────────────────Table 1-3 Dependence of terminal voltage and thermal expansion coefficient on air electrode composition in Example 3 ──────────────────────────── ─── Pr 1-x Ce x MnO 3 terminal voltage thermal expansion coefficient ────────────────────────────── Pr 0.95 Ce 0.05 MnO 3 0.21 (V) 9.3 × 10 -6 ────────────────────────────── Pr 0.90 Ce 0.10 MnO 3 0.22 9.8 ─ ───────────────────────────── Pr 0.80 Ce 0.20 MnO 3 0.26 10.6 ───────────── ───────────────── Pr 0.70 Ce 0.30 MnO 3 0.28 11.4 ────────────────────────── ───── Pr 0.60 Ce 0.40 MnO 3 0.30 11.8 ──────────────────────────────

【0032】端子電圧:電流1.0A/cm2における
値 熱膨張係数:室温から800℃までの平均値
Terminal voltage: value at current 1.0 A / cm 2 coefficient of thermal expansion: average value from room temperature to 800 ° C.

【0033】[0033]

【発明の効果】以上説明したように、固体電解質燃料電
池の空気極材料をPr1-xxMnO3、(A:アルカリ
土類金属元素またはCe元素)とすることで、熱膨張係
数の不整合が従来材料のLa0.8Sr0.2MnO3に比べ
低く、電気特性は従来とほぼ同等である、すなわち、電
気的特性と熱膨張係数の整合性について同時に満足すべ
き特性を有する空気極を得ることに成功した。本発明は
固体燃料電池の高効率動作化に大きな貢献をなすもので
ある。
As described above, by using Pr 1-x A x MnO 3 (A: alkaline earth metal element or Ce element) as the air electrode material of the solid electrolyte fuel cell, the thermal expansion coefficient The mismatch is lower than that of the conventional material, La 0.8 Sr 0.2 MnO 3 , and the electric characteristics are almost the same as the conventional one, that is, the air electrode having the characteristics satisfying the matching of the electric characteristics and the thermal expansion coefficient at the same time is obtained. Was successful. The present invention makes a great contribution to high efficiency operation of a solid fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に用いた単セルの断面図。FIG. 1 is a sectional view of a single cell used in an example.

【符号の説明】[Explanation of symbols]

1 燃料極 2 固体電解質 3 空気極 1 Fuel electrode 2 Solid electrolyte 3 Air electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固体燃料電池用空気極材料において、前記
空気極材料が、Pr1-xxMnO3であることを特徴と
する固体燃料電池用空気極材料。ただし、Aはアルカリ
土類金属元素またはCe元素であり、かつ0.05≦x
≦0.4である。
1. An air electrode material for a solid fuel cell, wherein the air electrode material is Pr 1-x A x MnO 3 . However, A is an alkaline earth metal element or Ce element, and 0.05 ≦ x
≦ 0.4.
【請求項2】前記アルカリ土類金属元素はSrまたはC
aであることを特徴とする請求項1記載の固体燃料電池
用空気材料。
2. The alkaline earth metal element is Sr or C
The air material for a solid fuel cell according to claim 1, wherein the air material is a.
【請求項3】空気極と固体電解質と燃料極からなる固体
燃料電池において、前記空気極にPr1-xxMnO3
ある空気極材料が含有されてなることを特徴とする固体
燃料電池。ただし、Aはアルカリ土類金属元素またはC
e元素であり、かつxについては0.05≦x≦0.4
である。
3. A solid fuel cell comprising an air electrode, a solid electrolyte and a fuel electrode, wherein the air electrode contains an air electrode material of Pr 1-x A x MnO 3. . However, A is an alkaline earth metal element or C
e element and x is 0.05 ≦ x ≦ 0.4
Is.
【請求項4】前記アルカリ土類金属元素はSrまたはC
aであることを特徴とする請求項1記載の固体燃料電池
用空気材料。
4. The alkaline earth metal element is Sr or C.
The air material for a solid fuel cell according to claim 1, wherein the air material is a.
【請求項5】前記固体電解質は、イットリウム−スカン
ジウム−ジルコニア系またはジルコニウム化合物−スカ
ンジウム化合物−アルミナからなる固体電解質であるこ
とを特徴とする請求項3又は4記載の固体燃料電池。
5. The solid fuel cell according to claim 3, wherein the solid electrolyte is a yttrium-scandium-zirconia system or a zirconium compound-scandium compound-alumina solid electrolyte.
JP03790994A 1994-02-10 1994-02-10 Solid electrolyte fuel cell Expired - Lifetime JP3256919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03790994A JP3256919B2 (en) 1994-02-10 1994-02-10 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03790994A JP3256919B2 (en) 1994-02-10 1994-02-10 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH07226209A true JPH07226209A (en) 1995-08-22
JP3256919B2 JP3256919B2 (en) 2002-02-18

Family

ID=12510677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03790994A Expired - Lifetime JP3256919B2 (en) 1994-02-10 1994-02-10 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3256919B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295521A (en) * 2008-06-09 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
WO2009157546A1 (en) * 2008-06-27 2009-12-30 住友大阪セメント株式会社 Composite ceramic powder, process for production of same and solid oxide fuel cell
JP2010006648A (en) * 2008-06-27 2010-01-14 Sumitomo Osaka Cement Co Ltd Composite ceramic powder, production method of the same, and solid oxide fuel cell
JP2010277877A (en) * 2009-05-29 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JPWO2013140677A1 (en) * 2012-03-22 2015-08-03 富士電機株式会社 Manganese oxide thin film and oxide laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295521A (en) * 2008-06-09 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
WO2009157546A1 (en) * 2008-06-27 2009-12-30 住友大阪セメント株式会社 Composite ceramic powder, process for production of same and solid oxide fuel cell
JP2010006648A (en) * 2008-06-27 2010-01-14 Sumitomo Osaka Cement Co Ltd Composite ceramic powder, production method of the same, and solid oxide fuel cell
CN102066263A (en) * 2008-06-27 2011-05-18 住友大阪水泥股份有限公司 Composite ceramic powder, process for production of same and solid oxide fuel cell
JP2010277877A (en) * 2009-05-29 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JPWO2013140677A1 (en) * 2012-03-22 2015-08-03 富士電機株式会社 Manganese oxide thin film and oxide laminate

Also Published As

Publication number Publication date
JP3256919B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
JP3460727B2 (en) Oxygen ion conductor and solid fuel cell
JP5144236B2 (en) Solid oxide fuel cell
JP5336207B2 (en) Solid oxide fuel cell
JP3218555B2 (en) Ceria based solid electrolyte with protective layer
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
JP3256919B2 (en) Solid electrolyte fuel cell
JP2511095B2 (en) Electrode material
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP3259756B2 (en) Multilayer solid electrolyte for solid fuel cells
JP5133787B2 (en) Solid oxide fuel cell
JPH0562688A (en) Solid electrolyte type fuel cell
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode
JP3501409B2 (en) Self-supporting flat-plate solid electrolyte fuel cell
JP3141911B2 (en) Air electrode material for solid fuel cell and solid fuel cell
JP3403055B2 (en) Oxygen side electrode
JP5117834B2 (en) Solid oxide fuel cell
JPH0773886A (en) Solid electrolyte type fuel cell
JPH09147876A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JP3119084B2 (en) Air electrode and air electrode side current collector for solid oxide fuel cell
JPH0541237A (en) Solid fuel cell
JP5243286B2 (en) Solid oxide fuel cell
JP5462063B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

EXPY Cancellation because of completion of term