JP3128099B2 - Air electrode material for low temperature operation type solid fuel cell - Google Patents

Air electrode material for low temperature operation type solid fuel cell

Info

Publication number
JP3128099B2
JP3128099B2 JP05339969A JP33996993A JP3128099B2 JP 3128099 B2 JP3128099 B2 JP 3128099B2 JP 05339969 A JP05339969 A JP 05339969A JP 33996993 A JP33996993 A JP 33996993A JP 3128099 B2 JP3128099 B2 JP 3128099B2
Authority
JP
Japan
Prior art keywords
air electrode
fuel cell
solid fuel
operation type
type solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05339969A
Other languages
Japanese (ja)
Other versions
JPH07161360A (en
Inventor
玲一 千葉
隆生 石井
幸道 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP05339969A priority Critical patent/JP3128099B2/en
Publication of JPH07161360A publication Critical patent/JPH07161360A/en
Application granted granted Critical
Publication of JP3128099B2 publication Critical patent/JP3128099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は低温動作型固体燃料電池
用空気極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air electrode for a low temperature operation type solid fuel cell.

【0002】[0002]

【従来の技術および問題点】近年酸素イオン伝導体を用
いた固体電解質燃料電池に関心が高まりつつある。特
に、エネルギーの有効利用という観点から、固体燃料電
池はカルノー効率の制約を受けないため本質的に高いエ
ネルギー変換効率を有し、さらに良好な環境保全が期待
されるなどの優れた特徴を持っている。固体電解質とし
ては、従来YSZ(イットリウム安定化ジルコニア)が
最も有望視されているが、十分な酸素イオン伝導度を得
るには1000℃の高温で動作させる必要があり、この
ような高温では電極と電解質の界面での劣化反応等が生
じ、部品寿命の劣化が激しく信頼性の高い電池の実現が
難しい。
2. Description of the Related Art In recent years, interest has been growing in solid electrolyte fuel cells using oxygen ion conductors. In particular, from the viewpoint of effective use of energy, solid fuel cells have essentially high energy conversion efficiencies because they are not restricted by Carnot efficiency, and have excellent features such as better environmental protection. I have. As a solid electrolyte, YSZ (yttrium-stabilized zirconia) has conventionally been regarded as the most promising. However, it is necessary to operate at a high temperature of 1000 ° C. in order to obtain sufficient oxygen ion conductivity. Deterioration reactions and the like occur at the interface of the electrolyte, and the life of parts is greatly deteriorated, making it difficult to realize a highly reliable battery.

【0003】そこで800℃程度の低温度で動作する固
体燃料電池の開発が求められている。低温動作時に十分
な酸素イオン伝導度を得るためにジルコニア−スカンジ
ウム系、セリア系およびYSZの薄層化などの検討が行
なわれている。
Therefore, development of a solid fuel cell that operates at a low temperature of about 800 ° C. is required. In order to obtain a sufficient oxygen ion conductivity during low-temperature operation, studies have been made on zirconia-scandium-based, ceria-based, and YSZ thinner layers.

【0004】低温動作化には固体電解質の他に空気極の
電気伝導性の低下の問題が生じる。図1に示すように空
気極3は多孔質であり、固体電解質2に接して、これに
酸素ガスを供給するとともに、電流を取り出す役割を持
っている(なお、符号1は燃料極)。電気的接続の観点
から、空気極3の電気伝導性は極力高くする必要があ
る。一方、固体電解質2へのガス供給の観点からは、な
るべく多孔質であり、この多孔質状態が動作温度で安定
に保たれる必要がある。
[0004] In addition to the solid electrolyte, the problem of lowering the electrical conductivity of the air electrode arises in operating at a low temperature. As shown in FIG. 1, the air electrode 3 is porous and has a role of contacting the solid electrolyte 2, supplying oxygen gas thereto, and extracting current (reference numeral 1 is a fuel electrode). From the viewpoint of electrical connection, the electrical conductivity of the air electrode 3 needs to be as high as possible. On the other hand, from the viewpoint of gas supply to the solid electrolyte 2, it is as porous as possible, and this porous state needs to be stably maintained at the operating temperature.

【0005】従来、空気極として検討されているLa
0.8Sr0.2MnO3では1000℃の動作温度でも微細
構造が安定に保たれ、熱膨張係数も12.4×10-6
固体電解質であるYSZ(イットリウム添加ジルコニ
ア)の10.0×10-6とほぼ同じ値を持っているが、
電気伝導性が100S/cmと低いことが欠点である。
また1000℃から800℃まで動作温度を下げるとさ
らに電気伝導性が低下し90S/cmとなる。
Conventionally, La which has been studied as an air electrode is
In 0.8 Sr 0.2 MnO 3 , the fine structure is kept stable even at an operating temperature of 1000 ° C., and the thermal expansion coefficient is 12.4 × 10 −6 , which is 10.0 × 10 −6 of YSZ (yttrium-doped zirconia) as a solid electrolyte. Has almost the same value as
The drawback is that the electrical conductivity is as low as 100 S / cm.
When the operating temperature is lowered from 1000 ° C. to 800 ° C., the electric conductivity is further reduced to 90 S / cm.

【0006】[0006]

【発明の目的】本発明は低温動作型固体燃料電池用空気
極に求められている電気的特性および動作温度における
微細構造の安定性の二つの要求を同時に満足させること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to simultaneously satisfy two requirements of electrical characteristics and microstructure stability at operating temperatures required for a cathode for a low-temperature operation type solid fuel cell.

【0007】[0007]

【問題点を解決するための手段】上述の問題点を解決す
るため、本発明による低温動作型固体燃料電池用空気極
材料は、低温動作型固体燃料電池の空気極を形成する空
気極材料において、前記空気極が、ジルコニア、アルミ
ナおよびランタノイド系パイロクロアから選ばれた1種
と、K2NiF4構造の銅酸化物との体積混合比1:9乃
至7:3の混合物であることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an air electrode material for a low temperature operation type solid fuel cell according to the present invention is an air electrode material forming an air electrode of a low temperature operation type solid fuel cell. Wherein the air electrode is a mixture of one selected from zirconia, alumina, and a lanthanoid pyrochlore and a copper oxide having a K 2 NiF 4 structure in a volume mixing ratio of 1: 9 to 7: 3. I do.

【0008】本発明の低温動作型固体燃料電池用空気極
材料は電気伝導性に優れ、熱膨張係数が固体電解質とほ
ぼ同じ値を持つK2NiF4構造のペロブスカイト型銅酸
化物に、この酸化物に対して化学的に不活性な酸化物を
分散させることで、動作温度における焼結を防ぎ空気の
供給に適した多孔質状態を保持する。
The air electrode material for a low-temperature operation type solid fuel cell of the present invention has excellent electrical conductivity and a K 2 NiF 4 structure perovskite type copper oxide having a thermal expansion coefficient substantially equal to that of the solid electrolyte. Dispersing a chemically inert oxide into the material prevents sintering at operating temperatures and maintains a porous state suitable for air supply.

【0009】[0009]

【作用】以下に本発明の作用を説明する。The operation of the present invention will be described below.

【0010】K2NiF4構造のペロブスカイト型銅酸化
物の一種であるLa1.86Sr0.14CuO4は、酸化物超
伝導物質として知られており、室温で10000S/c
m以上、800℃の高温でも1000S/cm以上と電
気伝導性が非常に高い。しかし、ペロブスカイト型酸化
物の中では融点が1300℃と比較的低いため、動作温
度を1000〜800℃付近にした場合、各微結晶粒子
が融合し、粒成長を起こし、焼結収縮するため多孔質構
造が失われてしまう。そこでこの酸化物に対して化学的
に不活性なアルミナ、ジルコニア、パイロクロア等の酸
化物を分散させ、酸化物複合体とすることで、動作温度
における焼結を防ぎ空気の供給に適した多孔質状態を長
時間に渡り保持することができる。
[0010] La 1.86 Sr 0.14 CuO 4 , a kind of perovskite type copper oxide having a K 2 NiF 4 structure, is known as an oxide superconducting material, and is 10000 S / c at room temperature.
m and 1000 S / cm or more even at a high temperature of 800 ° C., and the electric conductivity is very high. However, among the perovskite oxides, the melting point is relatively low at 1300 ° C., and when the operating temperature is set at around 1000 to 800 ° C., each microcrystalline particle is fused, grain growth occurs, and sintering shrinks, so that the porosity increases. Quality structure is lost. Therefore, oxides such as alumina, zirconia, and pyrochlore, which are chemically inert to this oxide, are dispersed to form an oxide composite, which prevents sintering at operating temperatures and is suitable for supplying air. The state can be maintained for a long time.

【0011】表4に本実施例で用いたアルミナ、ジルコ
ニア、パイロクロア、銅酸化物の一例としてLaCuO
4とLa1.86Sr0.14CuO4の25〜1000℃での熱
膨張係数の平均値を示す。これらの微粒子を混合し酸化
物複合体としたときの熱膨張係数は両者の値の間にな
り、その値はほぼ混合体積比からの比例配分値になる。
したがって、YSZとの熱膨張差は、混合比に依存する
が従来の空気極材料であるLa0.8Sr0.2MnO3とほ
ぼ同等であることがわかる。
[0011] Table 4 shows alumina, zirconia, pyrochlore and LaCuO as examples of copper oxide used in this embodiment.
4 shows the average values of the thermal expansion coefficients of La 1.86 Sr 0.14 CuO 4 at 25 to 1000 ° C. When these fine particles are mixed to form an oxide composite, the coefficient of thermal expansion is between the two values, and the value is substantially a proportional distribution value from the mixing volume ratio.
Therefore, it can be seen that the difference in thermal expansion from YSZ depends on the mixing ratio, but is almost the same as that of La 0.8 Sr 0.2 MnO 3 which is a conventional air electrode material.

【0012】ここでこれらの不活性な酸化物は絶縁体で
あるため、良導体である銅酸化物との混合比をある一定
範囲以下にする必要がある。すなわち、アルミナ、ジル
コニア、パイロクロアから選択された一種の酸化物と銅
酸化物との体積混合比は、後述の実施例1表1−2より
明らかなように1:9〜7:3である。この範囲では銅
酸化物の粒成長は抑制され、また銅酸化物の微粒子同士
が接触しているため高い電気伝導性を持つ。
Here, since these inactive oxides are insulators, the mixing ratio with copper oxide, which is a good conductor, needs to be within a certain range. That is, the volume mixing ratio of copper oxide and one kind of oxide selected from alumina, zirconia, and pyrochlore is 1: 9 to 7: 3, as is clear from Table 1-2 in Example 1 described later. In this range, the copper oxide grain growth is suppressed, and the copper oxide fine particles are in contact with each other, so that they have high electric conductivity.

【0013】また、前述の銅酸化物としては、一般式
(Ln2-xx1-dCu1+d4(ただし、Lnはランタ
ノイド系元素あるいはイットリウムであり、Aは2価の
金属元素であり、0.05≦x≦0.44かつ−0.0
5≦d≦0.10)であるのが好ましい。前述のように
良好な伝導性を有するからである。ここでx、dが上述
の範囲を逸脱すると、伝導性が小さくなる恐れがあるか
らである。
The above-mentioned copper oxide is represented by the general formula (Ln 2-x A x ) 1-d Cu 1 + d O 4 (where Ln is a lanthanoid element or yttrium, and A is divalent A metal element, 0.05 ≦ x ≦ 0.44 and −0.0
5 ≦ d ≦ 0.10). This is because it has good conductivity as described above. This is because if x and d deviate from the above ranges, conductivity may be reduced.

【0014】以上のような構成とすることによって、電
気的特性および動作温度における微細構造の安定性を同
時に満足する低温動作型固体燃料電池用空気極材料を実
現できる。
With the above configuration, it is possible to realize an air electrode material for a low-temperature operation type solid fuel cell which simultaneously satisfies the electrical characteristics and the stability of the microstructure at the operating temperature.

【0015】[0015]

【実施例】以下に本発明の実施例を説明する。なお、当
然のことであるが本発明は以下の実施例に限定されるも
のではない。
Embodiments of the present invention will be described below. Note that, needless to say, the present invention is not limited to the following embodiments.

【0016】[0016]

【実施例1】本発明の効果を示すために、図1に示す構
造の単セルで試験を行なった。本発明において、1は燃
料極、2は固体電解質、3は空気極である。固体電解質
として、(ZrO20.9(Sc230.09(Al23
0.01なる組成よりなる酸化物を、燃料極にはNi−YS
Zを、そして空気極にはLa2-xSrxCuO4+YSZ
を用いた。ここでYSZは安定化ジルコニアで組成はY
0.16Zr0.842である。また30vol.%≦{La
1.86Sr0.14CuO4/(La1.86Sr0.14CuO4+Y
SZ)}≦90vol.%の範囲、および0.05≦x
≦0.44で{La2-xSrxCuO4/(La2-xSrx
CuO4+YSZ)}=60vol.%の条件の2種類
の実験を行なった。
EXAMPLE 1 In order to show the effect of the present invention, a test was conducted with a single cell having the structure shown in FIG. In the present invention, 1 is a fuel electrode, 2 is a solid electrolyte, and 3 is an air electrode. As a solid electrolyte, (ZrO 2 ) 0.9 (Sc 2 O 3 ) 0.09 (Al 2 O 3 )
An oxide having a composition of 0.01 and a fuel electrode of Ni-YS
Z and La 2-x Sr x CuO 4 + YSZ for the air electrode
Was used. Here, YSZ is stabilized zirconia and the composition is Y
0.16 Zr 0.84 O 2 . 30 vol. % ≦ {La
1.86 Sr 0.14 CuO 4 / (La 1.86 Sr 0.14 CuO 4 + Y
SZ)} ≦ 90 vol. % Range, and 0.05 ≦ x
When ≦ 0.44, ΔLa 2-x Sr x CuO 4 / (La 2-x Sr x
CuO 4 + YSZ)} = 60 vol. Two types of experiments were performed under the condition of%.

【0017】本実施例に使用した単セルの作製方法を以
下に示す。まずドクターブレード法により固体電解質の
セラミックス薄板のグリーンシートを形成し1600℃
で焼上げる。これにスクリーンプリントで燃料電極にN
i−YSZを塗布し1400℃で焼き、この後、上記の
空気極を塗布し1000℃で焼き付けた。
A method for manufacturing a single cell used in this embodiment will be described below. First, a green sheet of a ceramic thin plate of a solid electrolyte is formed by a doctor blade method, and 1600 ° C.
Bake with. This is screen printed with N on the fuel electrode.
i-YSZ was applied and baked at 1400 ° C., after which the air electrode was applied and baked at 1000 ° C.

【0018】図1の空気極、燃料極の厚みは0.1m
m、固体電解質の厚みを3mmとし、20mmΦの単セ
ルを形成した。図2に空気極をLa1.86Sr0.14CuO
4としYSZの混合比が40vol.%の条件の単セル
の水素−酸素雰囲気800℃における電流密度−電圧特
性を示す。比較のために上記の単セルの空気極だけをL
0.8Sr0.2MnO3としたセルの特性も同時に示す。
表1−1、表1−2に空気極における端子電圧と銅酸化
物組成、銅酸化物とYSZとの混合比と端子電圧との関
係を示す。ここで、端子電圧は電流密度が1A/cm2
時の値である。これら本発明の空気極を用いたときはい
ずれも従来のLa0.8Sr0.2MnO3を空気極に用いた
セルに比べ良好な特性を示した。
The thickness of the air electrode and fuel electrode in FIG. 1 is 0.1 m.
m, the thickness of the solid electrolyte was 3 mm, and a single cell of 20 mmφ was formed. In FIG. 2, the air electrode is La 1.86 Sr 0.14 CuO
4 and the mixture ratio of YSZ is 40 vol. 5 shows current density-voltage characteristics of a single cell in a hydrogen-oxygen atmosphere at 800 ° C. under the condition of%. For comparison, only the air electrode of the above single cell is L
The characteristics of the cell with a 0.8 Sr 0.2 MnO 3 are also shown.
Tables 1-1 and 1-2 show the relationship between the terminal voltage and the terminal voltage and the copper oxide composition at the air electrode, and the mixing ratio of the copper oxide and YSZ and the terminal voltage. Here, the terminal voltage is such that the current density is 1 A / cm 2
The hour value. When these air electrodes of the present invention were used, all exhibited better characteristics than the conventional cell using La 0.8 Sr 0.2 MnO 3 as the air electrode.

【0019】 端子電圧は電流1A/cm2における値 La2-xSrxCuO4/(YSZ+La2-xSrxCuO4)=60vol.%[0019] The terminal voltage is a value at a current of 1 A / cm 2 La 2-x Sr x CuO 4 / (YSZ + La 2-x Sr x CuO 4 ) = 60 vol.%

【0020】 端子電圧は電流1A/cm2における値 銅酸化物:La1.86Sr0.14CuO4 [0020] The terminal voltage is a value at a current of 1 A / cm 2 Copper oxide: La 1.86 Sr 0.14 CuO 4

【0021】[0021]

【実施例2】実施例1と同様の単セルを空気極の材料だ
けをアルミナとPr2-xCaxCuO4(0.05≦x≦
0.44)の複合物に代えて実施例1と同様の実験を行
なった。表2−1、2−2に示すように、実施例1とほ
ぼ同様に、従来材料であるLa0.8Sr0.2MnO3に比
べいずれも良好な結果を得た。
Embodiment 2 A single cell similar to that of Embodiment 1 was prepared by using only the material of the air electrode as alumina and Pr 2-x Ca x CuO 4 (0.05 ≦ x ≦
An experiment similar to that of Example 1 was performed in place of the composite of 0.44). As shown in Tables 2-1 and 2-2, almost in the same manner as in Example 1, good results were obtained in comparison with the conventional material La 0.8 Sr 0.2 MnO 3 .

【0022】 端子電圧は電流1A/cm2における値 Pr2-xCaxCuO4/(Al2O3+Pr2-xCaxCuO4)=60vol.%[0022] The terminal voltage is a value at a current of 1 A / cm 2 Pr 2-x Ca x CuO 4 / (Al 2 O 3 + Pr 2-x Ca x CuO 4 ) = 60 vol.%

【0023】 端子電圧は電流1A/cm2における値 銅酸化物:Pr1.86Ca0.14CuO4 [0023] The terminal voltage is a value at a current of 1 A / cm 2 Copper oxide: Pr 1.86 Ca 0.14 CuO 4

【0024】[0024]

【実施例3】実施例1と同様の単セルを空気極の材料だ
けをパイロクロア(Nd2Zr27)とNd2-xMgx
uO4(0.05≦x≦0.44)の複合物に代えて実
施例1と同様の実験を行なった。表3−1、3−2に示
すように、実施例1とほぼ同様に、従来材料であるLa
0.8Sr0.2MnO3に比べいずれも良好な結果を得た。
Example 3 A single cell similar to that of Example 1 was prepared by using only pyrochlore material (Nd 2 Zr 2 O 7 ) and Nd 2-x Mg x C
The same experiment as in Example 1 was performed instead of the composite of uO 4 (0.05 ≦ x ≦ 0.44). As shown in Tables 3-1 and 3-2, almost in the same manner as in Example 1, the conventional material La
In each case, good results were obtained as compared with 0.8 Sr 0.2 MnO 3 .

【0025】 端子電圧は電流1A/cm2における値 Nd2-xMgxCuO4/(Nd2Zr2O7+Nd2-xMgxCuO4)=60vol.%[0025] The terminal voltage is a value at a current of 1 A / cm 2. Nd 2-x Mg x CuO 4 / (Nd 2 Zr 2 O 7 + Nd 2-x Mg x CuO 4 ) = 60 vol.%

【0026】 端子電圧は電流1A/cm2における値 銅酸化物:Nd1.86Mg0.14CuO4 [0026] The terminal voltage is a value at a current of 1 A / cm 2 Copper oxide: Nd 1.86 Mg 0.14 CuO 4

【0027】 25〜1000℃での熱膨張係数の平均値を示す。[0027] The average value of the coefficient of thermal expansion at 25 to 1000 ° C is shown.

【0028】[0028]

【発明の効果】以上説明したように、固体電解質燃料電
池のインターコネクタをK2NiF4構造のペロブスカイ
ト型銅酸化物に、この酸化物に対して化学的に不活性な
酸化物を分散させることで、動作温度における焼結を防
ぎ空気の供給に適した多孔質状態を保持することがで
き、電解質への空気の供給効率を損なわずに電気抵抗を
低く抑えられる空気極を得ることに成功した。本発明は
固体燃料電池の高効率動作化に大きな貢献をなすもので
ある。
As described above, the interconnector of the solid oxide fuel cell is formed by dispersing a chemically inactive oxide in a perovskite type copper oxide having a K 2 NiF 4 structure. Thus, it was possible to prevent sintering at the operating temperature, maintain a porous state suitable for air supply, and succeed in obtaining an air electrode capable of suppressing electric resistance to a low level without impairing the efficiency of air supply to the electrolyte. . The present invention greatly contributes to high efficiency operation of a solid fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に用いた単セルの断面図。FIG. 1 is a sectional view of a single cell used in an example.

【図2】実施例1で行なった単セルの電流−電圧特性。FIG. 2 shows current-voltage characteristics of a single cell performed in Example 1.

【符号の説明】[Explanation of symbols]

1 燃料極 2 固体電解質 3 空気極 1 fuel electrode 2 solid electrolyte 3 air electrode

フロントページの続き (56)参考文献 特開 昭47−2967(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 Continuation of the front page (56) References JP-A-47-2967 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低温動作型固体燃料電池の空気極を形成す
る空気極材料において、前記空気極が、ジルコニア、ア
ルミナおよびランタノイド系パイロクロアから選ばれた
1種と、K2NiF4構造の銅酸化物との体積混合比1:
9乃至7:3の混合物であることを特徴とする低温動作
型固体燃料電池用空気極材料。
1. An air electrode material forming an air electrode of a low temperature operation type solid fuel cell, wherein the air electrode is one selected from zirconia, alumina and lanthanoid pyrochlore, and copper oxide having a K 2 NiF 4 structure. Volume mixing ratio 1:
An air electrode material for a low-temperature operation type solid fuel cell, which is a mixture of 9 to 7: 3.
【請求項2】前記銅酸化物が、(Ln2-xx1-dCu
1+d4であることを特徴とする請求項1記載の低温動作
型固体燃料電池用空気極材料。ただし、Lnはランタノ
イド系元素あるいはイットリウムであり、Aは2価の金
属元素であり、0.05≦x≦0.44かつ−0.05
≦d≦0.10である。
2. The method according to claim 1, wherein said copper oxide is (Ln 2-x A x ) 1-d Cu
1 + d O 4 cold operation type solid fuel cell air electrode material according to claim 1, wherein the a. Here, Ln is a lanthanoid element or yttrium, A is a divalent metal element, and 0.05 ≦ x ≦ 0.44 and −0.05.
≤ d ≤ 0.10.
JP05339969A 1993-12-07 1993-12-07 Air electrode material for low temperature operation type solid fuel cell Expired - Fee Related JP3128099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05339969A JP3128099B2 (en) 1993-12-07 1993-12-07 Air electrode material for low temperature operation type solid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05339969A JP3128099B2 (en) 1993-12-07 1993-12-07 Air electrode material for low temperature operation type solid fuel cell

Publications (2)

Publication Number Publication Date
JPH07161360A JPH07161360A (en) 1995-06-23
JP3128099B2 true JP3128099B2 (en) 2001-01-29

Family

ID=18332488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05339969A Expired - Fee Related JP3128099B2 (en) 1993-12-07 1993-12-07 Air electrode material for low temperature operation type solid fuel cell

Country Status (1)

Country Link
JP (1) JP3128099B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589680B1 (en) * 1999-03-03 2003-07-08 The Trustees Of The University Of Pennsylvania Method for solid oxide fuel cell anode preparation
FR2872174B1 (en) * 2004-06-23 2007-06-15 Electricite De France METHOD AND DEVICE FOR ELECTROLYSIS OF WATER COMPRISING A PARTICULAR ELECTRODE OXIDE MATERIAL
JP2010238546A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Fine particle carrying metal oxide catalyst, its manufacturing method, and electrode for fuel cell
JP2010238547A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Catalyst carrier for fuel cell, catalyst for fuel cell, and electrode for fuel cell
JP2011051809A (en) * 2009-08-31 2011-03-17 Tohoku Univ Composite metal oxide, producing method for the same and electrode material, electrode and solid oxide fuel cell using the composite metal oxide
JP7091278B2 (en) * 2019-03-29 2022-06-27 株式会社豊田中央研究所 Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using it, and solid oxide fuel cell using it

Also Published As

Publication number Publication date
JPH07161360A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
US6207311B1 (en) Solid oxide fuel cell operable over wide temperature range
Xia et al. Novel cathodes for low‐temperature solid oxide fuel cells
US6004688A (en) Solid oxide fuel cell and doped perovskite lanthanum gallate electrolyte therefor
EP1170812A2 (en) Solid oxide fuel cell having perovskite solid electrolytes
KR20040007492A (en) High performance cathodes for solid oxide fuel cells
KR20010024177A (en) Sintered electrode for solid oxide fuel cells
JP3460727B2 (en) Oxygen ion conductor and solid fuel cell
US7033690B1 (en) Solid oxide fuel cell
WO1992007393A1 (en) Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
JP3218555B2 (en) Ceria based solid electrolyte with protective layer
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JP2002151091A (en) Air electrode material for alkaline earth-added nickel- iron perovskite type low-temperature operating solid fuel cell
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JP3259756B2 (en) Multilayer solid electrolyte for solid fuel cells
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
US20060240314A1 (en) Electrode for fuel cell and solid oxide fuel cell using the same
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode
JP3256919B2 (en) Solid electrolyte fuel cell
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
RU2079935C1 (en) Active electrode for high-temperature electrochemical devices with solid electrolyte
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees