JPH11219710A - Electrode of solid electrolyte fuel cell and manufacture thereof - Google Patents

Electrode of solid electrolyte fuel cell and manufacture thereof

Info

Publication number
JPH11219710A
JPH11219710A JP10035502A JP3550298A JPH11219710A JP H11219710 A JPH11219710 A JP H11219710A JP 10035502 A JP10035502 A JP 10035502A JP 3550298 A JP3550298 A JP 3550298A JP H11219710 A JPH11219710 A JP H11219710A
Authority
JP
Japan
Prior art keywords
electrode
powder
oxide
metal
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10035502A
Other languages
Japanese (ja)
Other versions
JP3565696B2 (en
Inventor
Naoki Kato
直樹 加藤
Toshio Matsushima
敏雄 松島
Himeko Oorui
姫子 大類
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03550298A priority Critical patent/JP3565696B2/en
Publication of JPH11219710A publication Critical patent/JPH11219710A/en
Application granted granted Critical
Publication of JP3565696B2 publication Critical patent/JP3565696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode by using a fuel electrode powder having a large quantity of three-phase interfaces and high electron conductivity, and containing an electrode active metal hard to be sintered and to provide a method for manufacturing the electrode. SOLUTION: The oxide powder 2 bears a fine particle of a metal with smaller particle diameter than that of the oxide powder 2 or a fine particle 1 of the oxide of this metal on the surface. This electrode has structure produced by mixing the oxide powder bearing a fine particle of the metal or a fine particle 1 of the oxide of this metal on the surface with a metal powder or an oxide powder 3 of the metal having approximately same particle diameter as that of the oxide powder 2 and dispersing the mixture. Consequently, the metal fine particle is highly dispersed on the surface of the oxide powder 2 and the three-phase interface surface area is significantly increased and voltage decrease following the electrode reaction is suppressed and an electrode having excellent output properties can be provided. Moreover, since the metal fine particle is held in the oxide powder 2, respective metal particles are hardly sintered with one another and an electrode having excellent and durable stability and scarcely deteriorated with the lapse of time can be obtained. Further, due to the existence of the metal powder which the oxide powder 2 does not hold, high electron conductivity is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池の
電極およびその製造方法、さらに詳細には特に、固体電
解質型燃料電池(Solid Oxide Fuel
Cell、以下SOFCと略す)の燃料極材料およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a solid oxide fuel cell and a method for producing the same, and more particularly, to a solid oxide fuel cell (Solid Oxide Fuel Cell).
Cell, hereinafter abbreviated as SOFC) and a method for producing the same.

【0002】[0002]

【従来の技術】SOFCは、酸化剤と燃料の2種類のガ
スを酸化剤電極と燃料電極に供給して発電を行う燃料電
池のうち、構成材料のすべてに固体物質を用いるものの
総称である。SOFCでは、以下のようなセラミックス
が多用されており、通常、1000℃付近の温度で運転
される。
2. Description of the Related Art SOFC is a general term for a fuel cell which generates electricity by supplying two kinds of gases, an oxidant and a fuel, to an oxidant electrode and a fuel electrode, and uses a solid substance for all constituent materials. In the SOFC, the following ceramics are frequently used, and the SOFC is usually operated at a temperature around 1000 ° C.

【0003】 電解質:イットリア安定化ジルコニア(YSZ) 燃料電極:ニッケルジルコニアサーメット(Ni−YS
Z) 酸化剤電極:ストロンチウムドープランタンマンガナイ
ト(LSM)
Electrolyte: Yttria stabilized zirconia (YSZ) Fuel electrode: Nickel zirconia cermet (Ni-YS)
Z) Oxidizer electrode: strontium dopourantan manganite (LSM)

【0004】ここで、燃料電極の金属としてNiが多用
されるのは、NiがYSZに対する安定性に優れ、また
燃料として石炭ガスを用いた場合の耐硫黄性にも優れて
いることなどの理由による。なお、Ni以外の金属とし
て、Coも使用することができる。このような材料構成
よりなるSOFCの燃料電極を低コストで作製する手法
として、通常、原料であるYSZ粉未やNiO粉未をボ
ールミル等で混合し、この混合粉未をペーストとして電
解質に塗布して焼結するという手法が用いられている。
The reason why Ni is frequently used as a metal for the fuel electrode is that Ni is excellent in stability against YSZ and also excellent in sulfur resistance when coal gas is used as fuel. by. Note that Co can be used as a metal other than Ni. As a technique for producing a fuel electrode of an SOFC having such a material configuration at low cost, usually, a raw material such as YSZ powder or NiO powder is mixed by a ball mill or the like, and this mixed powder is applied to an electrolyte as a paste. The method of sintering is used.

【0005】燃料電極は、燃料ガスと酸化剤とを反応さ
せるための触媒としての役割を持ち、このとき電極反応
場となるのは三相界面であるとされている。上記のNi
−YSZ(燃料電極)/YSZ(電解質)材料系では、
Ni、YSZ、および燃料ガスが全て接する部分が三相
界面に相当する。三相界面では次の電極反応によって電
子が発生し、これがエネルギーとして利用される。
[0005] The fuel electrode has a role as a catalyst for reacting the fuel gas and the oxidizing agent. At this time, it is said that the three-phase interface serves as an electrode reaction field. Ni above
-In the YSZ (fuel electrode) / YSZ (electrolyte) material system,
A portion where Ni, YSZ, and fuel gas are all in contact corresponds to a three-phase interface. At the three-phase interface, electrons are generated by the next electrode reaction, which is used as energy.

【0006】H2+O2-→H2O+2e- H 2 + O 2- → H 2 O + 2e

【0007】従って、SOFCの出力特性の向上には、
燃料電極の三相界面の増大による電子の発生量の増加
と、発生した電子の外部回路への効率的な供給が必要で
ある。そこで従来より、原料粉末であるNiO粉末やY
SZ粉末の粒径や粒径比を調整することによってNi粒
子やYSZ粒子を高分散させ、三相界面を増大させる検
討や、NiO粉末とYSZ粉末の混合比の調整によって
電極の電子伝導性を向上させる検討が行われている。
Therefore, to improve the output characteristics of SOFC,
It is necessary to increase the amount of generated electrons due to the increase in the three-phase interface of the fuel electrode, and to efficiently supply the generated electrons to an external circuit. Therefore, conventionally, the raw material powder NiO powder or Y
Investigation of increasing the three-phase interface by highly dispersing Ni particles and YSZ particles by adjusting the particle diameter and particle diameter ratio of SZ powder, and adjusting the mixing ratio of NiO powder and YSZ powder to increase the electron conductivity of the electrode. Considerations are being made to improve it.

【0008】[0008]

【発明が解決しようとする課題】ところが、このような
NiO粉末やYSZ粉末の粒径や粒径比の最適化等によ
って、初期の発電特性には優れたセルが得られるもの
の、発電を長時間継続すると、焼結によって電極中のN
i粒子の凝集が進行し、これが三相界面の減少と電子伝
導性の低下につながり、出力特性が次第に低下していく
という問題点がある。これは、電極材料にCoを用いた
場合も同様である。
However, by optimizing the particle size and the particle size ratio of the NiO powder and the YSZ powder, a cell having excellent initial power generation characteristics can be obtained, but the power generation can be performed for a long time. Continuing, sintering causes N in the electrode
The agglomeration of i-particles progresses, which leads to a decrease in the three-phase interface and a decrease in electron conductivity, resulting in a problem that the output characteristics gradually decrease. This is the same when Co is used as the electrode material.

【0009】そこで、このような金属粒子の焼結の問題
点を解決する方法として、触媒能がNiやCoと同等で
かつ1000℃付近の温度での焼結が起こりにくい別種
の金属の使用例がある。例えば、電極金属としてRuを
用いたルテニウムジルコニアサーメット(Ru−YS
Z)では、焼結による経時劣化の少ない電極が得られて
いる。このようにRuは触媒能が優れ、かつ1000℃
付近の温度でも焼結が起こりにくいが、高価である。従
って、従来のように粉末を混合する手法によって粉末材
料を調製するとRuの使用量が多く、電極材料のコスト
が増大し、実用性に乏しいという問題点がある。
As a method of solving such a problem of sintering of metal particles, an example of using another kind of metal having the same catalytic activity as that of Ni or Co and hardly causing sintering at a temperature around 1000 ° C. There is. For example, ruthenium-zirconia cermet using Ru as an electrode metal (Ru-YS)
In Z), an electrode with little deterioration over time due to sintering is obtained. As described above, Ru has excellent catalytic ability and is 1000 ° C.
Sintering hardly occurs even at a temperature in the vicinity, but it is expensive. Therefore, if a powder material is prepared by a conventional method of mixing powder, there is a problem that the amount of Ru used is large, the cost of the electrode material increases, and the practicality is poor.

【0010】本発明は、このような高価な貴金属を用い
ることなく、三相界面が多く、電子伝導性にも優れ、か
つ電極活性な金属の焼結も起こりにくい燃料電極粉末を
使用した電極およびその製造方法を提供し、従来の燃料
電極における問題点の解決を図ったものである。
The present invention provides an electrode using a fuel electrode powder which does not use such expensive noble metal, has many three-phase interfaces, has excellent electron conductivity, and does not easily cause sintering of an electrode active metal. An object of the present invention is to provide a method for manufacturing the same and to solve the problems of the conventional fuel electrode.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明による固体電解質型燃料電池の電極は、酸素
イオン導電牲を有する酸化物粉末と、電極活性を有する
金属または該金属の酸化物とから成る固体電解質型燃料
電池の電極において、前記酸化物粉末はその表面に該酸
化物粉未よりも粒径の小さい前記金属の微粒子または前
記金属の酸化物の微粒子を保持し、表面に前記金属の微
粒子または前記金属の酸化物微粒子を保持した前記酸化
物粉末と、該酸化物粉末と同程度の粒径を有する前記金
属粉末または前記金属の酸化物粉末とが、混合して分散
した構造を有することを特徴とする。
In order to solve the above-mentioned problems, an electrode of a solid oxide fuel cell according to the present invention comprises an oxide powder having oxygen ion conductivity, a metal having electrode activity or an oxide of the metal. Wherein the oxide powder holds fine particles of the metal or fine particles of the metal oxide having a smaller particle size than the oxide powder on the surface thereof, and A structure in which the oxide powder holding the metal fine particles or the metal oxide fine particles, and the metal powder or the metal oxide powder having the same particle size as the oxide powder are mixed and dispersed. It is characterized by having.

【0012】また、本発明による固体電解質型燃料電池
の電極の製造方法によれば、酸素イオン導電性を有する
酸化物粉末をニッケルイオンまたはコバルトイオンを含
む溶液中に浸す工程と、該酸化物粉末を乾燥する工程
と、乾燥した該酸化物粉末を加熱処理によって該酸化物
粉末の粒子表面にニッケルまたはコバルトを酸化物の状
態で保持させる工程と、以上の工程によって得られた表
面にニッケル酸化物またはコバルト酸化物の微粒子を保
持した酸素イオン導電性を有する酸化物粉末に、ニッケ
ルまたはコバルトの酸化物粉末を混合して固体電解質型
燃料電池の電極の原料粉末を作製する工程と、前記原料
粉末を成形する工程と、成形した前記原料粉末を焼結す
る工程と、から成ることを特徴とする。
Further, according to the method for producing an electrode of a solid oxide fuel cell according to the present invention, a step of immersing an oxide powder having oxygen ion conductivity in a solution containing nickel ions or cobalt ions; Drying the oxide powder, and heating the dried oxide powder to keep nickel or cobalt in an oxide state on the particle surface of the oxide powder, and forming a nickel oxide on the surface obtained by the above steps. Or a step of preparing a raw material powder for an electrode of a solid oxide fuel cell by mixing a nickel or cobalt oxide powder with an oxide powder having oxygen ion conductivity holding fine particles of cobalt oxide; and And sintering the formed raw material powder.

【0013】[0013]

【作用】本発明の製造方法による燃料電極原料粉末を適
用した固体電解質型燃料電池の電極構造にあっては、以
下の作用を有する
The electrode structure of a solid oxide fuel cell using the fuel electrode raw material powder according to the production method of the present invention has the following effects.

【0014】本発明による固体電解質型燃料電池の電極
は、図1に示すように酸素イオン導電性を有する酸化物
粉末2と、電極活性を有する金属または前記金属の酸化
物とから基本的に構成されている。そして、該金属また
は前記金属の酸化物は該酸化物粉末2の表面に保持され
ている金属微粒子(または該金属の酸化物微粒子)1
と、該酸化物粉末2に保持されていない金属粉末(また
は該金属の酸化物粉末)3を有している。そして金属粉
末(または該金属の酸化物粉末)3は酸化物粉末2とほ
ぼ同程度の粒径を有しており、前記金属微粒子(または
該金属の酸化物微粒子)1よりも大きな粒径である。
As shown in FIG. 1, the electrode of the solid oxide fuel cell according to the present invention basically comprises an oxide powder 2 having oxygen ion conductivity and a metal having electrode activity or an oxide of the metal. Have been. The metal or the oxide of the metal is composed of fine metal particles (or fine metal oxide particles) 1 held on the surface of the oxide powder 2.
And a metal powder (or an oxide powder of the metal) 3 not held by the oxide powder 2. The metal powder (or the metal oxide powder) 3 has a particle size substantially equal to that of the oxide powder 2, and has a larger particle size than the metal fine particles (or the metal oxide fine particles) 1. is there.

【0015】図1を参照して、本発明の固体電解質型燃
料電池の電極構造の具体例を、Ni−YSZ(燃料電
極)/YSZ(電解質)材料系について模式的に示す。
ここに記載した実施の態様においては、この電極は、N
i微粒子(金属微粒子)1を保持したYSZ粉末(酸化
物粉末)2と、Ni粉末(金属粉末)3が混在した構造
をとる。
Referring to FIG. 1, a specific example of an electrode structure of a solid oxide fuel cell according to the present invention is schematically shown for a Ni-YSZ (fuel electrode) / YSZ (electrolyte) material system.
In the embodiment described here, this electrode is
It has a structure in which YSZ powder (oxide powder) 2 holding i fine particles (metal fine particles) 1 and Ni powder (metal powder) 3 are mixed.

【0016】周知のように、燃料電池運転時には燃料電
極は水素で還元される。そのため、運転前はNiO微粒
子を保持したYSZ粉末とNiO粉末が混在した構造で
あるが、運転することによってNiO微粒子とNiO粉
末が、それぞれNi微粒子とNi粉末に変化する。
As is well known, the fuel electrode is reduced with hydrogen during fuel cell operation. Therefore, before the operation, the YSZ powder and the NiO powder holding the NiO fine particles are mixed, but the operation changes the NiO fine particles and the NiO powder into the Ni fine particles and the Ni powder, respectively.

【0017】YSZ粉末2上に保持されたNi微粒子1
は、数nm〜数十nmのオーダーの粒径でYSZ粉未の
表面に高分散しているため、非常に大きな三相界面を得
ることができる。また、Ni微粒子1はYSZ粉末2に
束縛されるため、Ni微粒子1同士の焼結が起こりにく
くなり、長期安定牲に優れた電極となる。更に、電極中
にはYSZ粉未2に保持されたNi微粒子1と同種のN
i粉末3が存在するため、三相界面で発生した電子を接
触電位差が発現することなく捕集することができ、電子
伝導性にも優れた電極となる。
Ni fine particles 1 held on YSZ powder 2
Has a particle size on the order of several nm to several tens of nm and is highly dispersed on the surface of the YSZ powder, so that a very large three-phase interface can be obtained. Further, since the Ni fine particles 1 are bound by the YSZ powder 2, sintering of the Ni fine particles 1 hardly occurs, and an electrode having excellent long-term stability is obtained. Further, the same type of N particles as Ni fine particles 1 held in YSZ powder 2
Since the i-powder 3 is present, electrons generated at the three-phase interface can be collected without developing a contact potential difference, and an electrode having excellent electron conductivity can be obtained.

【0018】前記酸素イオン導電性を有する酸化物粉末
の粒径は、好ましくは0.2〜1μmである。後述の実
施例より明らかなようにこの範囲を逸脱すると、三相界
面が多く、電子伝導性にも優れ、かつ電極活性な金属の
焼結も起こりにくい電極材料とならない恐れがある。こ
のようなイオン導電性を有する酸化物粉末としては、上
述のYSZの他サーマリアドープセリアなどを有効に使
用することができる。
The particle diameter of the oxide powder having oxygen ion conductivity is preferably 0.2 to 1 μm. As will be apparent from the examples described later, if the ratio deviates from this range, there is a possibility that an electrode material having many three-phase interfaces, excellent electron conductivity, and hardly causing sintering of an electrode active metal may not be obtained. As such an oxide powder having ionic conductivity, thermistor-doped ceria in addition to the above-mentioned YSZ can be effectively used.

【0019】前述のように該酸素イオン導電性を有する
酸化物粉末に保持された金属微粒子または金属の酸化物
微粒子としては、ニッケルのほかコバルトも使用するこ
とができる。このような金属微粒子または金属の酸化物
微粒子の粒径は、前述のように数nm〜数十nmのオー
ダーである。
As described above, as the metal fine particles or the metal oxide fine particles held by the oxide powder having oxygen ion conductivity, not only nickel but also cobalt can be used. The particle diameter of such metal fine particles or metal oxide fine particles is on the order of several nm to several tens nm as described above.

【0020】また、前記酸化物粉末に混合される金属粉
末または金属の酸化物粉末の粒径は0.1〜3μmであ
るのが好ましい。後述の実施例より明らかなようにこの
範囲を逸脱すると、三相界面が多く、電子伝導性にも優
れ、かつ電極活性な金属の焼結も起こりにくい電極材料
とならない恐れがある。
The metal powder or the metal oxide powder mixed with the oxide powder preferably has a particle size of 0.1 to 3 μm. As will be apparent from the examples described later, if the ratio deviates from this range, there is a possibility that an electrode material having many three-phase interfaces, excellent electron conductivity, and hardly causing sintering of an electrode active metal may not be obtained.

【0021】本発明による固体電解質型燃料電池の電極
の製造方法によれば、まず酸素イオン導電性を有する酸
化物粉末をニッケルイオンまたはコバルトイオンを含む
溶液中に浸したのち、該酸化物粉末を乾燥し、乾燥した
該酸化物粉末を加熱処理によって該酸化物粉末表面にニ
ッケルまたはコバルトを酸化物の状態で保持させる。こ
のように酸化物粉末表面に付着したニッケルまたはコバ
ルト化合物を加熱して熱分解させることにより、該酸化
物粉末表面にニッケルまたはコバルト酸化物を形成させ
る。このときの加熱温度は前記ニッケルまたはコバルト
化合物が熱分解してニッケルまたはコバルト酸化物にな
る温度以上である。
According to the method for producing an electrode of a solid oxide fuel cell according to the present invention, first, an oxide powder having oxygen ion conductivity is immersed in a solution containing nickel ions or cobalt ions, and then the oxide powder is The dried oxide powder is subjected to a heat treatment to hold nickel or cobalt in an oxide state on the surface of the oxide powder. By heating and thermally decomposing the nickel or cobalt compound attached to the surface of the oxide powder, nickel or cobalt oxide is formed on the surface of the oxide powder. The heating temperature at this time is equal to or higher than the temperature at which the nickel or cobalt compound is thermally decomposed into nickel or cobalt oxide.

【0022】次いで、以上の工程によって得られた表面
にニッケル酸化物またはコバルト酸化物微粒子を保持し
た酸素イオン導電性を有する酸化物粉末に、ニッケルま
たはコバルトの酸化物粉末を混合して固体電解質型燃料
電池の電極の原料粉末を作製し、前記原料粉末を成形
し、成形した前記原料粉末を焼結する。前記原料粉末の
全重量に占める酸素イオン導電性を有する酸化物粉未の
重量は、40%から60%であるのが好ましい。後述の
実施例より明らかなようにこの範囲を逸脱すると、三相
界面が多く、電子伝導性にも優れ、かつ電極活性な金属
の焼結も起こりにくい電極材料とならない恐れがあるか
らである。また、焼成温度は、1200℃から1600
℃の範囲の温度で行うことが可能である。
Next, a nickel or cobalt oxide powder is mixed with an oxide powder having oxygen ion conductivity, which has nickel oxide or cobalt oxide fine particles on the surface obtained by the above steps, and is mixed with a solid electrolyte type. A raw material powder for a fuel cell electrode is prepared, the raw material powder is formed, and the formed raw material powder is sintered. The weight of the oxide powder having oxygen ion conductivity in the total weight of the raw material powder is preferably 40% to 60%. This is because, as will be apparent from the examples described later, if the ratio deviates from this range, there is a possibility that an electrode material having many three-phase interfaces, having excellent electron conductivity, and hardly causing sintering of an electrode active metal will not be obtained. The firing temperature is from 1200 ° C to 1600 ° C.
It is possible to work at temperatures in the range of ° C.

【0023】[0023]

【実施例】本実施例では、Ni−YSZ材料系を用いた
燃料電極によるセル発電試験結果を例に説明する。原料
粉末の調製は、まず平均粒径が0.4μmの8mol%
安定化ジルコニア粉末(以下、「8YSZ粉末」と記
す)を飽和硝酸ニッケル水溶液に室温で1時間浸した。
次にこれをろ過し、ろ紙上に残った8YSZ粉末を乾燥
させた。乾燥後の8YSZ粉末は緑色を呈しており、硝
酸ニッケルが8YSZ粉末の表面を覆っていることを確
認した。
EXAMPLE In this example, a description will be given of a cell power generation test result using a fuel electrode using a Ni-YSZ material system as an example. First, 8 mol% of the average particle diameter is 0.4 μm.
The stabilized zirconia powder (hereinafter referred to as “8YSZ powder”) was immersed in a saturated nickel nitrate aqueous solution at room temperature for 1 hour.
Next, this was filtered, and the 8YSZ powder remaining on the filter paper was dried. The dried 8YSZ powder was green, and it was confirmed that nickel nitrate covered the surface of the 8YSZ powder.

【0024】次に、この硝酸ニッケルが吸着している8
YSZ粉末を、450℃で2時間保ち、硝酸ニッケルを
熱分解した。熱分解によって硝酸ニッケルは全てNiO
となっていることをX線回折分析により確認した。ま
た、8YSZ粉未の表面をEPMAで元素分析した結
果、Ni元素が8YSZ粉末の表面に高密度で分散して
いることを確認した。ここで、電極の作製行程とは別
に、8YSZ粉末が保持しているNiOの量をICP分
析により求めたところ、15wt%であった。燃料電池
運転時には燃料電極は水素で還元されるため、NiO粒
子は還元されてNi粒子になる。そこで、8YSZ粉末
が保持しているNiOに対して還元処理を行った後の状
態をTEM観察したところ、8YSZ粉末が保持してい
るNi粒子の粒径は数nm〜数十nmの大きさであった
(図2)。
Next, the nickel nitrate adsorbed 8
The YSZ powder was kept at 450 ° C. for 2 hours to thermally decompose nickel nitrate. Nickel nitrate is all NiO by thermal decomposition
Was confirmed by X-ray diffraction analysis. In addition, as a result of elementary analysis of the surface of the 8YSZ powder that was not yet subjected to EPMA, it was confirmed that the Ni element was dispersed at a high density on the surface of the 8YSZ powder. Here, the amount of NiO held by the 8YSZ powder was determined by ICP analysis separately from the electrode manufacturing process, and was found to be 15 wt%. During operation of the fuel cell, the fuel electrode is reduced by hydrogen, and thus the NiO particles are reduced to Ni particles. Then, when the state after performing the reduction treatment on the NiO held by the 8YSZ powder was observed by TEM, the particle size of the Ni particles held by the 8YSZ powder was several nm to several tens nm. (FIG. 2).

【0025】次に、このNiOを保持している8YSZ
粉末に、更に平均粒径が2μmのNiO粉未を混合し
た。混合する割合は、全NiOの重量(8YSZ粉末に
保持されているNiOとNiO粉末の総重量)とYSZ
粉末の重量比が、50:50wt%となるようにした。
粉末混合の手法は、ポリ容器に、NiOを保持した8Y
SZ粉末、NiO粉末、エタノール、およびジルコニア
ボールを入れ、ボールミルにより24時間回転させた。
ボールミル終了後、混合粉末を乾燥させ、これに結着剤
としてポリビニルブチラール、溶剤としてテレビネオー
ルを加え、スラリーとした。
Next, 8YSZ holding this NiO
NiO powder having an average particle size of 2 μm was further mixed with the powder. The mixing ratio is determined by the total weight of NiO (total weight of NiO and NiO powder held in 8YSZ powder) and YSZ.
The weight ratio of the powder was adjusted to 50:50 wt%.
The method of powder mixing is as follows: 8Y holding NiO in a poly container
SZ powder, NiO powder, ethanol, and zirconia balls were charged and rotated by a ball mill for 24 hours.
After completion of the ball mill, the mixed powder was dried, and polyvinyl butyral as a binder and tvneol as a solvent were added thereto to form a slurry.

【0026】このスラリーを、固体電解質となる円板状
の8YSZ基板(直径3.5cm、厚さ0.5mm)の
片面に、厚さが0.1mmで正方形(1.5cm×1.
5cm)となるように塗布した。8YSZ基板のもう一
方の面には、平均粒径が0.2μmの、ストロンチウム
ドープランタンマンガナイト粉末に、ポリビニルブチラ
ールとテレピネオールを加えてスラリーとしたものを、
厚さが0.1mmで正方形(2cm×2cm)となるよ
うに塗布し酸化剤電極とした。このようにして、両面に
スラリーを塗布した8YSZ基板を1250℃で2時間
焼成処理を行うことによって燃料電極および酸化剤電極
を焼結させ、発電試験用のセルとした。この焼結のため
の焼成温度は、1200℃から1600℃の範囲の温度
で行うことが可能である。
This slurry is applied to one surface of a disk-shaped 8YSZ substrate (3.5 cm in diameter, 0.5 mm in thickness) serving as a solid electrolyte, and is 0.1 mm thick and square (1.5 cm × 1.
5 cm). On the other surface of the 8YSZ substrate, a slurry was prepared by adding polyvinyl butyral and terpineol to strontium doptantan manganite powder having an average particle size of 0.2 μm,
It was applied so as to have a thickness of 0.1 mm and a square (2 cm × 2 cm) to form an oxidant electrode. In this manner, the fuel electrode and the oxidizing electrode were sintered by performing a baking treatment at 1250 ° C. for 2 hours on the 8YSZ substrate coated with the slurry on both surfaces, thereby forming a cell for a power generation test. The sintering temperature for this sintering can be performed at a temperature in the range of 1200 ° C to 1600 ° C.

【0027】また、比較試料として、8YSZ粉末(平
均粒径0.4μm)とNiO粉末(平均粒径2μm)を
50:50wt%の割合でボールミル混合した従来法に
よる原料粉末も調製し、これを用いた燃料電極も作製し
た。従来法における8YSZ基板への電極形成条件は、
8YSZ粉未にNiOを保持させた本発明法による試料
を用いた場合と同一である。
As a comparative sample, a raw material powder prepared by a conventional method in which 8YSZ powder (average particle size: 0.4 μm) and NiO powder (average particle size: 2 μm) were mixed in a ball mill at a ratio of 50:50 wt% was prepared. The fuel electrode used was also prepared. The conditions for forming electrodes on the 8YSZ substrate in the conventional method are as follows:
This is the same as the case of using the sample according to the method of the present invention in which NiO is held in 8YSZ powder.

【0028】次に、本発明法(実施例)および従来法に
よる燃料電極(比較例)を用いたセルで発電試験を行っ
た。試験セルをアルミナ管で挟み、酸化剤電極には酸化
剤として空気を、燃料電極には燃料ガスとして水素を供
給した。酸化剤電極の集電体にはPtメッシュ、燃料電
極の集電体にはNiメッシュを使用した。試験温度は1
000℃とした。図3に、各セルの1000時間連続発
電試験における電池電圧の経時変化を示す。ここで、電
流値は0.3A/cm2と一定にした。図中、Aは本発
明の実施例による燃料電極、Bは比較例による燃料電極
の経時変化を示す。
Next, power generation tests were performed on cells using the fuel electrode according to the present invention (Example) and the fuel electrode according to the conventional method (Comparative Example). The test cell was sandwiched between alumina tubes, air was supplied to the oxidant electrode as an oxidant, and hydrogen was supplied to the fuel electrode as a fuel gas. A Pt mesh was used for the current collector of the oxidant electrode, and a Ni mesh was used for the current collector of the fuel electrode. Test temperature is 1
000 ° C. FIG. 3 shows the change over time in the battery voltage in a 1000-hour continuous power generation test of each cell. Here, the current value was kept constant at 0.3 A / cm 2 . In the figure, A shows the fuel electrode according to the embodiment of the present invention, and B shows the change over time of the fuel electrode according to the comparative example.

【0029】従来法による燃料電極を用いた場合の発電
初期電圧は0.74Vであり、時間とともに電圧の低下
が観察され、1000時間経過後の電圧は0.37Vに
まで低下した。一方、本発明法による燃料電極を用いた
場合では、発電初期電圧は0.87Vであり、1000
時間経過後も0.82Vと初期の性能をほぼ維持してい
た。
When the fuel electrode according to the conventional method was used, the initial voltage of the power generation was 0.74 V, and the voltage was observed to decrease with time, and the voltage decreased to 0.37 V after 1000 hours. On the other hand, when the fuel electrode according to the present invention was used, the initial voltage of power generation was 0.87 V,
Even after the lapse of time, the initial performance of 0.82 V was almost maintained.

【0030】本発明法および従来法によるそれぞれの燃
料電極を用いたセルについて、発電試験を1時間で終了
させたものも作製し、この発電試験1時間後のセルの燃
料電極と、発電試験1000時間後のセルの燃料電極の
断面SEM像を比較した。その結果、従来法によるもの
では、発電試験1000時間後の燃料電極は発電試験1
時間後の燃料電極に比べて、Ni粒子間の焼結によるN
i粒子の粗大化が観察されたのに対し、本発明の製造方
法を用いた燃料電極においては、発電試験1000時間
後においても発電試験1時間後の燃料電極の状態がほぼ
そのまま保たれていた。このように、本発明の製造方法
を用いた燃料電極ではNi粒子の焼結抑制効果があり、
従来法と比べ燃料電極の寿命特性を改善することができ
る。
With respect to cells using each fuel electrode according to the method of the present invention and the conventional method, a cell in which the power generation test was completed in one hour was also manufactured. The cross-sectional SEM images of the fuel electrodes of the cells after the time were compared. As a result, according to the conventional method, the fuel electrode 1000 hours after the power generation test was used for the power generation test 1
Compared to the fuel electrode after a lapse of time, N
While i-particles were observed to be coarse, in the fuel electrode using the manufacturing method of the present invention, even after 1000 hours of the power generation test, the state of the fuel electrode after one hour of the power generation test was almost maintained. . Thus, the fuel electrode using the production method of the present invention has an effect of suppressing sintering of Ni particles,
The life characteristics of the fuel electrode can be improved as compared with the conventional method.

【0031】また、電極の電子伝導性を評価する目的
で、本発明法および従来法による製造方法で作製した燃
料電極原料粉末のそれぞれを用いて成形焼結体を作製
し、この焼結体の導電率を測定した。試料とした焼結体
の作製は、まず各原料粉末のそれぞれ4gを、φ25m
mの円板状となるように2t/cm2の圧縮強度でプレ
ス成形し、次にこのプレス成形体を1250℃で焼成処
理した。焼結後の試料から幅3mm、長さ約15mmの
導電率測定用の試料を切りだし、1000℃の水素還元
雰囲気下で直流四端子法により導電率を測定した。
Further, for the purpose of evaluating the electron conductivity of the electrode, a molded sintered body was produced using each of the fuel electrode raw material powders produced by the method of the present invention and the conventional production method. The conductivity was measured. First, 4 g of each raw material powder was added to a sintered body of φ25 m
m was pressed at a compressive strength of 2 t / cm 2 to obtain a disc shape, and then the pressed product was fired at 1250 ° C. A sample for measuring conductivity having a width of 3 mm and a length of about 15 mm was cut out from the sample after sintering, and the conductivity was measured by a DC four-terminal method in a hydrogen reducing atmosphere at 1000 ° C.

【0032】図4に、本発明法および従来法による原料
粉末を用いた成形焼結体の導電率の経時間変化を示し
た。図中、Aは本発明による実施例、Bは比較例の導電
率の経時間変化である。このような特性からも、本発明
による製造方法を用いた燃料電極では、導電率の経時的
な低下が小さく、Ni粒子間の焼結が抑制されているこ
とがわかる。また導電率の値についても、本発明による
ものでは従来法によるものに比べ2桁以上も大きく、高
い電子伝導性を示すことから、三相界面で発生する電子
を効率良く捕集することができる。
FIG. 4 shows the change over time in the electrical conductivity of a molded sintered body using the raw material powder according to the method of the present invention and the conventional method. In the figure, A is the change over time in the conductivity of the example according to the present invention, and B is the change over time in the conductivity of the comparative example. From such characteristics, it can be seen that in the fuel electrode using the manufacturing method according to the present invention, the decrease in conductivity with time is small, and sintering between Ni particles is suppressed. In addition, the value of the conductivity according to the present invention is more than two orders of magnitude higher than that according to the conventional method, and exhibits high electron conductivity, so that electrons generated at the three-phase interface can be efficiently collected. .

【0033】本実施例では酸素イオン導電性を有する酸
化物8YSZの、粉末の平均粒径が0.4μmの場合を
示したが、粒径が0.2μmから1μmの範囲におい
て、同様の良好な結果が得られた。また、NiO粉末に
ついては平均粒径が2μmの場合を示したが、粒径が
0.1μmから3μmの範囲において、同様の良好な結
果が得られた。さらに、本実施例では全NiOの重量
(8YSZ粉末に保持されているNiOとNiO粉末の
総重量)と8YSZ粉末の重量比が50:50wt%の
場合を示したが、両者を合計した全重量に対する8YS
Zの重量比が40wt%から60wt%の範囲の混合比
で、同様の良好な結果が得られた。
In this embodiment, the oxide 8YSZ having oxygen ion conductivity was shown to have a powder having an average particle diameter of 0.4 μm. The result was obtained. The case where the average particle size of the NiO powder was 2 μm was shown, but similar good results were obtained when the particle size was in the range of 0.1 μm to 3 μm. Further, in the present embodiment, the case where the weight ratio of all NiO (total weight of NiO and NiO powder held in 8YSZ powder) and 8YSZ powder is 50:50 wt% is shown, but the total weight of both is added. 8YS for
Similar good results were obtained when the weight ratio of Z was in the range of 40 wt% to 60 wt%.

【0034】[0034]

【発明の効果】本発明の電極構造では、次の効果を奏す
る。まず、金属微粒子が酸化物粉末表面に高分散される
ため、三相界面が非常に大きくなり、電極反応に伴う電
圧降下が小さく出力特性に優れた電極が得られる。ま
た、金属微粒子は酸化物粉末に保持されるため、金属粒
子間の焼結が起こりにくくなり、長期安定性に優れた経
時劣化の少ない電極が得られる。更に、酸化物粉末が保
持しない金属粉末の存在により、高い電子伝導性が発現
する。
According to the electrode structure of the present invention, the following effects can be obtained. First, since the metal fine particles are highly dispersed on the surface of the oxide powder, the three-phase interface becomes very large, and an electrode having a small voltage drop due to the electrode reaction and having excellent output characteristics can be obtained. In addition, since the metal fine particles are held by the oxide powder, sintering between the metal particles hardly occurs, and an electrode with excellent long-term stability and little deterioration over time can be obtained. Furthermore, high electron conductivity is exhibited by the presence of the metal powder that the oxide powder does not hold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法による原料粉末を用いた燃料
電極の模式図である。
FIG. 1 is a schematic view of a fuel electrode using a raw material powder according to a production method of the present invention.

【図2】本発明の製造方法で作製したNi微粒子を保持
したYSZ粉末のTEM像写真である。
FIG. 2 is a TEM image photograph of a YSZ powder holding Ni fine particles produced by the production method of the present invention.

【図3】本発明の製造方法による原料粉末で作製した燃
料電極を用いたセルの、発電試験における電圧の経時変
化を示す図である。
FIG. 3 is a diagram showing a change over time of a voltage in a power generation test of a cell using a fuel electrode manufactured from a raw material powder according to the manufacturing method of the present invention.

【図4】本発明の製造方法による原料粉末で作製した燃
料電極の導電率の経時変化を示す図である。
FIG. 4 is a diagram showing a change over time in the electrical conductivity of a fuel electrode produced from a raw material powder according to the production method of the present invention.

【符号の説明】[Explanation of symbols]

1 金属微粒子 2 酸化物粉末 3 金属酸化物粉末 1 metal fine particles 2 oxide powder 3 metal oxide powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒川 正泰 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masayasu Arakawa 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン導電牲を有する酸化物粉末
と、電極活性を有する金属または該金属の酸化物とから
成る固体電解質型燃料電池の電極において、 前記酸化物粉末は表面に該酸化物粉未よりも粒径の小さ
い前記金属の微粒子または前記金属の酸化物の微粒子を
保持し、 表面に前記金属微粒子または前記金属の酸化物微粒子を
保持した前記酸化物粉末と、該酸化物粉末と同程度の粒
径を有する前記金属粒子または前記金属の酸化物粒子と
が、混合して分散した構造を有することを特徴とする固
体電解質型燃料電池の電極。
1. An electrode of a solid oxide fuel cell comprising an oxide powder having oxygen ion conductivity and a metal having an electrode activity or an oxide of said metal, wherein said oxide powder is formed on the surface of said oxide powder. Said oxide powder holding fine particles of said metal or fine particles of said metal oxide having a smaller particle diameter than that of said oxide powder; An electrode of a solid oxide fuel cell, wherein the metal particles or the oxide particles of the metal having a particle size of about a degree are mixed and dispersed.
【請求項2】 前記酸素イオン導電性を有する酸化物粉
末の粒径が、0.2μmから1μmであることを特徴と
する請求項1記載の固体電解質型燃料電池の電極。
2. The electrode for a solid oxide fuel cell according to claim 1, wherein the particle diameter of the oxide powder having oxygen ion conductivity is from 0.2 μm to 1 μm.
【請求項3】 前記酸素イオン導電性を有する酸化物粉
末の表面に保持された電極活性を有する金属微粒子また
は該金属の酸化物微粒子の粒径が、数nmから数十nm
であることを特徴とする請求項1または2に記載の固体
電解質型燃料電池の電極。
3. A metal fine particle having electrode activity or a metal oxide fine particle held on the surface of the oxide powder having oxygen ion conductivity, having a particle size of several nm to several tens nm.
The electrode for a solid oxide fuel cell according to claim 1, wherein:
【請求項4】 前記酸素イオン導電性を有する酸化物粉
末と同程度の粒径の電極活性を有する金属粉末または該
金属の酸化物粉末の粒径が、0.1μmから3μmであ
ることを特徴とする請求項1から3に記載の固体電解質
型燃料電池の電極。
4. A metal powder having electrode activity similar to that of the oxide powder having oxygen ion conductivity, or a metal oxide powder having a particle diameter of 0.1 μm to 3 μm. The electrode of the solid oxide fuel cell according to claim 1, wherein:
【請求項5】 前記酸素イオン導電性を有する酸化物粉
末がイットリア安定化ジルコニアまたはサマリアドープ
セリアであることを特徴とする請求項1から4に記載の
固体電解質型燃料電池の電極。
5. The electrode for a solid oxide fuel cell according to claim 1, wherein the oxide powder having oxygen ion conductivity is yttria-stabilized zirconia or samarium-doped ceria.
【請求項6】 前記電極活性を有する金属がニッケルま
たはコバルトであることを特徴とする請求項1から5に
記載の固体電解質型燃料電池の電極。
6. The electrode for a solid oxide fuel cell according to claim 1, wherein the metal having the electrode activity is nickel or cobalt.
【請求項7】 酸素イオン導電性を有する酸化物粉末を
ニッケルイオンまたはコバルトイオンを含む溶液中に浸
す工程と、 該酸化物粉末を乾燥する工程と、 乾燥した該酸化物粉末を加熱処理によって該酸化物粉末
表面にニッケルまたはコバルトを酸化物の状態で保持さ
せる工程と、 以上の工程によって得られた表面にニッケル酸化物また
はコバルト酸化物の微粒子を保持した酸素イオン導電性
を有する酸化物粉末に、ニッケルまたはコバルトの酸化
物粉末を混合して固体電解質型燃料電池の電極の原料粉
末を作製する工程と、 前記原料粉末を成形する工程と、 成形した前記原料粉末を焼結する工程と、 から成ることを特徴とする固体電解質型燃料電池の電極
の製造方法。
7. A step of immersing an oxide powder having oxygen ion conductivity in a solution containing nickel ions or cobalt ions, a step of drying the oxide powder, and a step of subjecting the dried oxide powder to a heat treatment. A step of holding nickel or cobalt in an oxide state on the surface of the oxide powder, and an oxide powder having oxygen ion conductivity holding fine particles of nickel oxide or cobalt oxide on the surface obtained by the above steps. Preparing a raw material powder for an electrode of a solid oxide fuel cell by mixing nickel or cobalt oxide powder, forming the raw material powder, and sintering the formed raw material powder. A method for producing an electrode of a solid oxide fuel cell, comprising:
【請求項8】 前記原料粉末の全重量に占める酸素イオ
ン導電性を有する酸化物粉未の重量が、40%から60
%であることを特徴とする請求項7記載の固体電解質型
燃料電池の電極の製造方法。
8. The weight of the oxide powder having oxygen ion conductivity in the total weight of the raw material powder is from 40% to 60%.
The method for producing an electrode of a solid oxide fuel cell according to claim 7, wherein
【請求項9】 前記酸素イオン導電性を有する酸化物粉
末がイットリア安定化ジルコニアまたはサマリアドープ
セリアであることを特徴とする請求項7または8に記載
の固体電解質型燃料電池の電極の製造方法。
9. The method for producing an electrode for a solid oxide fuel cell according to claim 7, wherein said oxide powder having oxygen ion conductivity is yttria-stabilized zirconia or samarium-doped ceria.
【請求項10】 前記加熱処理の温度が、ニッケルイオ
ンまたはコバルトイオンを含む溶液中に浸すことで前記
酸化物粉末の粒子表面に付着したニッケル化合物または
コバルト化合物が、熱分解によりニッケル酸化物または
コバルト酸化物になる温度以上の温度であることを特徴
とする請求項7から9に記載の固体電解質型燃料電池の
電極の製造方法。
10. The nickel compound or the cobalt compound attached to the particle surface of the oxide powder by being immersed in a solution containing nickel ions or cobalt ions by the heat treatment, the nickel compound or the cobalt compound is thermally decomposed. 10. The method for producing an electrode for a solid oxide fuel cell according to claim 7, wherein the temperature is equal to or higher than the temperature at which the oxide is formed.
【請求項11】 前記焼結の温度が、1200℃から1
600℃の範囲であることを特徴とする請求項7から1
0に記載の固体電解質型燃料電池の電極の製造方法。
11. The sintering temperature is from 1200 ° C. to 1
3. The temperature range of 600 [deg.] C.
0. The method for producing an electrode of a solid oxide fuel cell according to item 0.
JP03550298A 1998-02-02 1998-02-02 Method for manufacturing electrode of solid oxide fuel cell Expired - Fee Related JP3565696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03550298A JP3565696B2 (en) 1998-02-02 1998-02-02 Method for manufacturing electrode of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03550298A JP3565696B2 (en) 1998-02-02 1998-02-02 Method for manufacturing electrode of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH11219710A true JPH11219710A (en) 1999-08-10
JP3565696B2 JP3565696B2 (en) 2004-09-15

Family

ID=12443542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03550298A Expired - Fee Related JP3565696B2 (en) 1998-02-02 1998-02-02 Method for manufacturing electrode of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3565696B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526508A (en) * 2000-03-13 2003-09-09 オヴォニック バッテリー カンパニー インコーポレイテッド Finely divided metal catalyst and method for producing the same
JP2004503054A (en) * 2000-06-30 2004-01-29 フオルシュングスツェントルム ユーリッヒ ゲーエムベーハー Method for producing electrode having temperature stable conductivity
JP2005518645A (en) * 2002-02-20 2005-06-23 アキュメントリクス・コーポレーション Fuel cell stacking and sealing
JP2006028009A (en) * 2004-07-13 2006-02-02 Hyundai Motor Co Ltd NiO-CERAMIC COMPOSITE POWDER, FUEL ELECTRODE FOR SOLID OXIDE FUEL CELL MANUFACTURED THEREFROM, AND METHOD FOR MANUFACTURING THE SAME
JP2006040612A (en) * 2004-07-23 2006-02-09 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fuel electrode raw material powder of solid electrolyte fuel cell, its manufacturing method, fuel electrode, and solid electrolyte fuel cell
JP2009252711A (en) * 2008-04-11 2009-10-29 Tokyo Gas Co Ltd Lateral-striped solid oxide fuel cell stack and method of manufacturing the same
US7855003B2 (en) 2002-10-25 2010-12-21 Pirelli & C. S.P.A. Ceramic and alloy anode solid oxide fuel cell
JP2011507160A (en) * 2007-12-07 2011-03-03 ネクステック、マテリアルズ、リミテッド High performance multilayer electrode for use in reducing gases
JP2014067564A (en) * 2012-09-25 2014-04-17 Nippon Shokubai Co Ltd Solid oxide fuel battery, and power generation method by use thereof
JP2021034249A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack
JP2021034248A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack
JP2023150559A (en) * 2022-03-31 2023-10-16 株式会社ノリタケカンパニーリミテド Electrochemical cell and use thereof
WO2024122787A1 (en) * 2022-12-05 2024-06-13 Samsung Electro-Mechanics Co., Ltd. Solid oxide cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526508A (en) * 2000-03-13 2003-09-09 オヴォニック バッテリー カンパニー インコーポレイテッド Finely divided metal catalyst and method for producing the same
JP5010791B2 (en) * 2000-03-13 2012-08-29 オヴォニック バッテリー カンパニー インコーポレイテッド Finely divided metal catalyst and method for producing the same
JP2004503054A (en) * 2000-06-30 2004-01-29 フオルシュングスツェントルム ユーリッヒ ゲーエムベーハー Method for producing electrode having temperature stable conductivity
JP2005518645A (en) * 2002-02-20 2005-06-23 アキュメントリクス・コーポレーション Fuel cell stacking and sealing
US8658327B2 (en) 2002-02-20 2014-02-25 Acumentrics Corporation Fuel cell stacking and sealing
JP4777654B2 (en) * 2002-10-25 2011-09-21 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ Ceramic anode solid oxide fuel cell
US7855003B2 (en) 2002-10-25 2010-12-21 Pirelli & C. S.P.A. Ceramic and alloy anode solid oxide fuel cell
JP2006028009A (en) * 2004-07-13 2006-02-02 Hyundai Motor Co Ltd NiO-CERAMIC COMPOSITE POWDER, FUEL ELECTRODE FOR SOLID OXIDE FUEL CELL MANUFACTURED THEREFROM, AND METHOD FOR MANUFACTURING THE SAME
JP2006040612A (en) * 2004-07-23 2006-02-09 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fuel electrode raw material powder of solid electrolyte fuel cell, its manufacturing method, fuel electrode, and solid electrolyte fuel cell
JP2011507160A (en) * 2007-12-07 2011-03-03 ネクステック、マテリアルズ、リミテッド High performance multilayer electrode for use in reducing gases
US8828618B2 (en) 2007-12-07 2014-09-09 Nextech Materials, Ltd. High performance multilayer electrodes for use in reducing gases
JP2009252711A (en) * 2008-04-11 2009-10-29 Tokyo Gas Co Ltd Lateral-striped solid oxide fuel cell stack and method of manufacturing the same
JP2014067564A (en) * 2012-09-25 2014-04-17 Nippon Shokubai Co Ltd Solid oxide fuel battery, and power generation method by use thereof
JP2021034249A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack
JP2021034248A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack
JP2023150559A (en) * 2022-03-31 2023-10-16 株式会社ノリタケカンパニーリミテド Electrochemical cell and use thereof
WO2024122787A1 (en) * 2022-12-05 2024-06-13 Samsung Electro-Mechanics Co., Ltd. Solid oxide cell

Also Published As

Publication number Publication date
JP3565696B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP5469795B2 (en) Anode-supported solid oxide fuel cell using cermet electrolyte
US7838141B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
CN101485018B (en) Ceramic material combination for an anode of a high-temperature fuel cell
JP5591526B2 (en) Solid oxide cell and solid oxide cell stack
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
CN112382774A (en) Preparation method of electrolyte supporting type electrolytic cell barrier layer
Sun et al. Study on Sm1. 8Ce0. 2CuO4–Ce0. 9Gd0. 1O1. 95 composite cathode materials for intermediate temperature solid oxide fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
Solovyev et al. Effect of sintering temperature on the performance of composite La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2 cathode for solid oxide fuel cells
JP2000133280A (en) Anode for high performance solid oxide fuel cell
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
EP1528615B1 (en) Fuel cell
JPH09274921A (en) Fuel electrode for solid electrolyte fuel cell
JP5470559B2 (en) Solid oxide fuel cell and method for producing the same
JP5118827B2 (en) Proton conduction fuel cell and method for producing the same, hydrogen sensor and method for producing the same
JP2003308846A (en) Perovskite oxide and air electrode for fuel cell
JP2004265746A (en) Solid oxide fuel cell
JP4428946B2 (en) Fuel electrode for solid oxide fuel cell
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
KR101218602B1 (en) The Manufacturing method of Low Temperature Operating Solid Oxide Fuel Cell composed Silver Nano Particles and Solid Oxide Fuel Cell manufactured thereby
US20060240314A1 (en) Electrode for fuel cell and solid oxide fuel cell using the same
JP5112711B2 (en) Method for producing electrode for solid oxide fuel cell and solid oxide fuel cell
JP2004259642A (en) Fuel electrode for solid oxide fuel cell, and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees