JPH10144337A - Fuel electrode of solid electrolytic fuel cell and manufacture thereof - Google Patents

Fuel electrode of solid electrolytic fuel cell and manufacture thereof

Info

Publication number
JPH10144337A
JPH10144337A JP8320756A JP32075696A JPH10144337A JP H10144337 A JPH10144337 A JP H10144337A JP 8320756 A JP8320756 A JP 8320756A JP 32075696 A JP32075696 A JP 32075696A JP H10144337 A JPH10144337 A JP H10144337A
Authority
JP
Japan
Prior art keywords
metal
electrode
oxide
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8320756A
Other languages
Japanese (ja)
Inventor
Naoki Kato
直樹 加藤
Toshio Matsushima
敏雄 松島
Himeko Oorui
姫子 大類
Masayasu Arakawa
正泰 荒川
Daisuke Ikeda
大助 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8320756A priority Critical patent/JPH10144337A/en
Publication of JPH10144337A publication Critical patent/JPH10144337A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel electrode having an electrode structure in which a large quantity of three-phase interface is present and a metal is hardly sintered and high electrode catalytic activity can be obtained even in the case a small amount of the metal is used, and provide a method to produce such a fuel electrode. SOLUTION: In a fuel electrode of a solid electrolytic fuel cell constituted of an oxide 3 having oxygen ion conductivity and a metal 4 having an electrode activity, the metal 4 is made to be adsorbed on the surface of the oxide 3. Consequently, the three-phase interface where the metal 4, the oxide 3, and a fuel gas are brought into contact is extremely increased and an electrode with low voltage decrease following an electrode reaction and having excellent output performance can be obtained. Moreover, since fine particles of the metals are strongly restricted by the oxide powder, sintering of the fine particles of the metal hardly occurs and as a result, an electrode having stability for a long time and scarcely deteriorated with the lapse of time can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池の
燃料電極およびその製造方法に関し、特に、固体電解質
型燃料電池(Solid Oxide Fuel、Ce
ll、以下SOFCと略す)の燃料極材料およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode for a solid oxide fuel cell and a method for producing the same, and more particularly, to a solid oxide fuel cell (Solid Oxide Fuel, Ce).
11 (hereinafter abbreviated as SOFC) and a method for producing the same.

【0002】[0002]

【従来の技術】SOFCは、酸化剤と燃料の2種類のガ
スを酸化剤電極と燃料電極に供給して発電を行う燃料電
池のうち、構成材料のすべてに固体物質を用いるものの
総称である。SOFCでは、以下のようなセラミックス
が多用されており、通常、1000℃付近の温度で運転
される。
2. Description of the Related Art SOFC is a general term for a fuel cell which generates electricity by supplying two kinds of gases, an oxidant and a fuel, to an oxidant electrode and a fuel electrode, and uses a solid substance for all constituent materials. In the SOFC, the following ceramics are frequently used, and the SOFC is usually operated at a temperature around 1000 ° C.

【0003】 電解質 :イットリア安定化ジルコニア(YSZ) 燃料電極 :ニッケルジルコニアサーメット(Ni−Y
SZ) 酸化剤電極:ランタンマンガナイト(LSM)
Electrolyte: Yttria stabilized zirconia (YSZ) Fuel electrode: Nickel zirconia cermet (Ni-Y)
SZ) Oxidizing agent electrode: Lanthanum manganite (LSM)

【0004】ここで、燃料電極の金属としてNiが多用
されるのは、NiがYSZに対する安定性に優れ、また
燃料として石炭ガスを用いた場合の耐硫黄性に優れてい
ることなどの理由による。燃料電極を低コストで作製す
る手法としては通常、原料であるYSZ粉末やNiO粉
末をボールミル等で混合し、これをペーストとして電解
質に塗布して焼結するという手法が用いられている。
Here, Ni is frequently used as the metal of the fuel electrode because Ni is excellent in stability against YSZ and is excellent in sulfur resistance when coal gas is used as fuel. . As a technique for producing a fuel electrode at low cost, a technique of mixing YSZ powder or NiO powder, which is a raw material, with a ball mill or the like, applying the paste to an electrolyte as a paste, and sintering is used.

【0005】燃料電極は、燃料ガスと酸化剤とを反応さ
せるための触媒としての役割を持ち、この電極反応場と
なっているのは、Ni、YSZ、および燃料ガスが接す
る三相界面である。従って、この三相界面を増大させる
ことはSOFCの出力特性の向上につながる。さらに、
電極自身の導電性を増大させることは、SOFCの出力
特性の向上につながる。このため、NiO粉末とYSZ
粉末の粒径や粒径比を調整することよってNi粒子およ
びYSZ粒子を高分散させ、三相界面を増大させる検
討、あるいはNiO粉末とYSZ粉末の混合比の調整等
によって導電性を増大させる検討が従来より行われてい
る。
[0005] The fuel electrode has a role as a catalyst for reacting the fuel gas and the oxidizing agent, and the electrode reaction field is a three-phase interface where Ni, YSZ and the fuel gas are in contact. . Therefore, increasing the three-phase interface leads to improvement in the output characteristics of the SOFC. further,
Increasing the conductivity of the electrode itself leads to an improvement in the output characteristics of the SOFC. Therefore, NiO powder and YSZ
Consider increasing the three-phase interface by adjusting the particle size and particle size ratio of the powder to highly disperse the Ni and YSZ particles, or increasing the conductivity by adjusting the mixing ratio of the NiO powder and the YSZ powder. Has been performed conventionally.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記のよう
に作製した燃料電極でSOFCを構成し、これを100
0℃付近の温度で運転した場合、燃料電極では運転時間
の経過とともにNi粒子の焼結による電極の凝集が進行
し、これが三相界面の減少と電極抵抗の増大を引き起こ
すため、出力特性がしだいに低下していくという問題点
がある。
However, an SOFC is composed of the fuel electrode manufactured as described above,
When the fuel electrode is operated at a temperature around 0 ° C., as the operating time of the fuel electrode elapses, the agglomeration of the electrode proceeds due to sintering of Ni particles, which causes a decrease in the three-phase interface and an increase in the electrode resistance. There is a problem that it decreases.

【0007】この問題点を解決する方法として、触媒能
がNiと同等でかつ1000℃付近の温度では焼結が起
こりにくい他の金属の採用が検討されている。例えば、
電極金属としてRuを用いたルテニウムジルコニアサー
メット(Ru−YSZ)では、焼結による経時劣化のな
い電極が得られている。しかしながら、触媒能が優れ、
かつ1000℃付近の温度でも焼結が起こりにくい金属
は高価な貴金属に限られる。従って、従来のように粉末
を混合する手法によって粉末を調整すると貴金属の使用
量の増加のためにコストが増大し、実用性に乏しいとい
う問題点がある。
As a method for solving this problem, the use of another metal which has the same catalytic activity as Ni and does not easily undergo sintering at a temperature near 1000 ° C. has been studied. For example,
In ruthenium zirconia cermet (Ru-YSZ) using Ru as an electrode metal, an electrode having no deterioration over time due to sintering is obtained. However, the catalytic ability is excellent,
In addition, metals that are unlikely to be sintered even at a temperature around 1000 ° C. are limited to expensive noble metals. Therefore, if the powder is adjusted by a conventional method of mixing the powder, there is a problem that the cost is increased due to an increase in the amount of the noble metal used, and the practicability is poor.

【0008】本発明は、三相界面が多くかつ金属が焼結
しにくい電極構造を有し、更にその金属の少量使用でも
電極触媒活性が得られる燃料電極の構造と製造方法を提
供し、従来の燃料極における不具合点を克服しようとす
るものである。
The present invention provides a structure and a method for producing a fuel electrode which has an electrode structure having a large number of three-phase interfaces and in which metal is difficult to be sintered, and which can obtain an electrocatalytic activity even when a small amount of the metal is used. To overcome the disadvantages of the fuel electrode.

【0009】[0009]

【課題を解決するための手段】 (第1の手段)本発明は、固体電解質型燃料電池の電極
構造において、イットリア安定化ジルコニア(YS
Z)、部分安定化ジルコニア(PSZ)、サマリアドー
プセリア(SDC)等の酸化物表面に、Ni、Ru、C
o等の金属を担持させ、これを焼結体としたことを特徴
とする。
(First Means) The present invention relates to an electrode structure for a solid oxide fuel cell, which comprises a yttria-stabilized zirconia (YS)
Z), partially stabilized zirconia (PSZ), samarium-doped ceria (SDC), etc. on the oxide surface, Ni, Ru, C
It is characterized by carrying a metal such as o and making it a sintered body.

【0010】(第2の手段)本発明は、固体電解質型燃
料電池の電極構造において、Ni、Ru、Co等の金属
を担持したイットリア安定化ジルコニア(YSZ)、部
分安定化ジルコニア(PSZ)、サマリアドーブセリア
(SDC)等の酸化物粉末と、燃料電池の運転温度でも
焼結しないMo、W、Pt等の金属粉末が焼結体中に分
散していることを特徴とする。
(Second Means) According to the present invention, there is provided an electrode structure of a solid oxide fuel cell, wherein yttria-stabilized zirconia (YSZ) supporting a metal such as Ni, Ru, Co, etc., partially stabilized zirconia (PSZ), An oxide powder such as Samaria dove ceria (SDC) and a metal powder such as Mo, W and Pt which do not sinter even at the operating temperature of the fuel cell are dispersed in the sintered body.

【0011】(第3の手段)本発明は、固体電解質型燃
料電池の、前記第1および第2の手段に記載した、金属
を担持した酸化物粉末が焼結体となっていることを特徴
とする電極を作製する方法において、イットリア安定化
ジルコニア(YSZ)、部分安定化ジルコニア(PS
Z)、サマリアドープセリア(SDC)等の酸化物粉末
を、Ni、Ru、Co等の金属イオンを含む水溶液中に
浸し、これを乾燥して該酸化物粉末の表面にNi(NO
32、RuCl2、CoSO4等の金属化合物の状態で担
持させ、更に加熱処理によってNi、Ru、Co等の金
属の状態で担持させこれを原料として電極とすることを
特徴とする。
(Third Means) The present invention is characterized in that the oxide powder supporting a metal described in the first and second means of the solid oxide fuel cell is a sintered body. In the method for producing an electrode, yttria-stabilized zirconia (YSZ) and partially stabilized zirconia (PS
Z), an oxide powder such as Samaria-doped ceria (SDC) is immersed in an aqueous solution containing metal ions such as Ni, Ru, Co, etc., and dried to form Ni (NO) on the surface of the oxide powder.
3) 2, RuCl 2, is supported in a state of CoSO metal compound such as 4, further Ni by heat treatment, Ru, it is supported in a metal state such as Co, characterized in that the electrode as a raw material.

【0012】(第4の手段)本発明は、固体電解質型燃
料電池の、前記第2の手段に記載した、金属を担持した
酸化物粉末が焼結体となっており、燃料電池の運転温度
でも焼結しない金属粉末が焼結体中に分散していること
を特徴とする電極を作製する方法において、第3の手段
に示すプロセスで、表面に金属を担持した酸化物粉末を
作製し、次いで該酸化物粉末に燃料電池の運転温度でも
焼結しないMo、W、Pt等の金属粉末を混合し、この
混合物を原料として電極とすることを特徴とする。
(Fourth Means) According to the present invention, there is provided a solid oxide fuel cell wherein the oxide powder supporting a metal described in the second means is a sintered body, and the operating temperature of the fuel cell is However, in a method for producing an electrode, wherein a metal powder that is not sintered is dispersed in a sintered body, an oxide powder having a metal supported on a surface is produced by the process shown in the third means, Next, a metal powder such as Mo, W, or Pt that does not sinter even at the operating temperature of the fuel cell is mixed with the oxide powder, and this mixture is used as a raw material to form an electrode.

【0013】(第5の手段)本発明は、固体電解質型燃
料電池の、前記第2の手段に記載した、金属を担持した
酸化物粉末が焼結体となっており、燃料電池の運転温度
でも焼結しない金属粉末が焼結体中に分散していること
を特徴とする電極を作製する方法において、イットリア
安定化ジルコニア(YSZ)、部分安定化ジルコニア
(PSZ)、サマリアドープセリア(SDC)等の酸化
物粉末と、Mo、W、Pt等の燃料電池の運転温度でも
焼結しない金属を、Ni、Ru、Co等の金属イオンを
含む水溶液中に浸し、これを乾燥して該酸化物粉末の表
面にNi(NO32、RuCl2、CoSO4等の金属化
合物の状態で担持させ、更に加熱処理によってNi、R
u、Co等の金属の状態で担持させ、このような粉末を
原料として電極とすることを特徴とする。
(Fifth Means) According to the present invention, there is provided a solid oxide fuel cell wherein the oxide powder supporting a metal described in the second means is a sintered body, and the operating temperature of the fuel cell is A method for producing an electrode, characterized in that non-sintered metal powder is dispersed in a sintered body, wherein the yttria-stabilized zirconia (YSZ), the partially stabilized zirconia (PSZ), and the samarium-doped ceria (SDC) And a metal that does not sinter even at the operating temperature of the fuel cell, such as Mo, W, and Pt, is immersed in an aqueous solution containing metal ions such as Ni, Ru, and Co, and dried to dry the oxide. A metal compound such as Ni (NO 3 ) 2 , RuCl 2 , CoSO 4 is supported on the surface of the powder, and Ni, R
It is characterized by being supported in the state of a metal such as u, Co, etc., and using such a powder as a raw material to form an electrode.

【0014】[0014]

【作用】本発明の固体電解質型燃料電池の電極構造にあ
っては、以下の作用を有する。
The electrode structure of the solid oxide fuel cell according to the present invention has the following functions.

【0015】図1に、本発明の固体電解質型燃料電池の
電極構造の実施例を模式的に示す。この燃料極1は、基
板2上のYSZ、PSZ、SDC等の酸化物粉末3の表
面にNi、Ru、Co等の金属粒子4を担持させた構造
をとるため、金属、酸化物、および燃料ガスが接する三
相界面が非常に大きくなり、電極反応に伴う電圧降下が
小さく出力特性に優れた電極となる。
FIG. 1 schematically shows an embodiment of an electrode structure of a solid oxide fuel cell according to the present invention. Since the fuel electrode 1 has a structure in which metal particles 4 such as Ni, Ru, and Co are supported on a surface of an oxide powder 3 such as YSZ, PSZ, or SDC on a substrate 2, a metal, an oxide, and a fuel The three-phase interface with which the gas comes into contact becomes very large, and a voltage drop due to the electrode reaction is small, resulting in an electrode having excellent output characteristics.

【0016】また、金属は酸化物粉末に吸着しており強
く束縛されるため、金属の焼結が起こりにくくなり、経
時劣化が少なく長期安定性に優れた電極となる。
In addition, since the metal is adsorbed on the oxide powder and strongly bound, the metal is less likely to be sintered, resulting in an electrode having little deterioration over time and excellent long-term stability.

【0017】更に、酸化物粉末に担持させる金属は微少
量で済むため、RuやPtのような高価な貴金属を使用
してもコスト高とはならず、実用性がある。
Furthermore, since only a small amount of metal is required to be supported on the oxide powder, even if an expensive noble metal such as Ru or Pt is used, the cost does not increase, and there is practicality.

【0018】金属種によっては酸化物粉末3表面への吸
着力が弱く、吸着する金属粒子4量が少ないために電極
が十分な電子伝導性を示さない場合もある。しかしこの
場合には、本発明の他の実施例(図2)のように、M
o、W等の燃料電池の運転温度では焼結が起こりにくい
金属粉末5を加えることで、導電パスが形成され、電子
伝導性が確保される。
Depending on the type of metal, the electrode may not show sufficient electron conductivity because the adsorbing power to the surface of the oxide powder 3 is weak and the amount of adsorbed metal particles 4 is small. However, in this case, as in another embodiment of the present invention (FIG. 2), M
By adding the metal powder 5 that does not easily sinter at the operating temperature of the fuel cell such as o or W, a conductive path is formed, and electron conductivity is secured.

【0019】[0019]

【実施例1】本実施例では、Ni−YSZから構成され
る燃料電極で、酸化物粉末を金属イオンを含む水溶液に
浸して金属を担持させる方法による図1の燃料電極の作
製方法について述べる。まず、平均粒径0.3μmのY
SZ粉末10gをNi(NO32の飽和水溶液100m
lに浸し、攪拌しながら90℃で2時間保持した。続い
て、これを室温まで冷却させた後、ろ紙を用いてろ過
し、ろ紙上に残ったYSZ粉末を乾燥させた。乾燥した
YSZの粉末は緑色を呈しており、Ni(NO32がY
SZ粉末の表面を覆っていることが確認できる。このY
SZ粉末を電気炉に入れて700℃で2時間保ち、Ni
(NO32を熱分解した。熱分解後によってNi(NO
32は全てNiOとなっていることをX線回折により確
認した。また、YSZ粉末の表面をEPMAで元素分析
した結果、Ni元素がYSZ粉末の表面に高密度で分散
していることを確認した。
Embodiment 1 In this embodiment, a method of manufacturing the fuel electrode shown in FIG. 1 by a method of immersing an oxide powder in an aqueous solution containing metal ions to support a metal in a fuel electrode composed of Ni-YSZ will be described. First, Y having an average particle size of 0.3 μm
10 g of SZ powder was added to a 100 m saturated aqueous solution of Ni (NO 3 ) 2
and kept at 90 ° C. for 2 hours with stirring. Subsequently, this was cooled to room temperature, and then filtered using a filter paper, and the YSZ powder remaining on the filter paper was dried. The dried YSZ powder is green and Ni (NO 3 ) 2 is Y
It can be confirmed that the surface of the SZ powder is covered. This Y
The SZ powder was placed in an electric furnace and kept at 700 ° C. for 2 hours.
(NO 3 ) 2 was pyrolyzed. Ni (NO
3 ) It was confirmed by X-ray diffraction that all of 2 were NiO. In addition, as a result of elemental analysis of the surface of the YSZ powder by EPMA, it was confirmed that the Ni element was dispersed at a high density on the surface of the YSZ powder.

【0020】次に、上記のようにNiOを担持させたY
SZの粉末に、結着剤としてポリビニルブチラール、溶
剤としてテレピネオールを加え、スラリーとしたものを
固体電解質である直径3.5cmの円板状のYSZ基板
に2cm×2cmの正方形の形で塗布し、1250℃で
2時間焼結して多孔性電極とした。このプロセスでYS
Z粉末の表面に担持したNi金属量は約15wt%であ
った。焼結後の燃料電極の厚さは約0.1mmであっ
た。ここでYSZ基板は、燃料電極の材料として用いた
ものと同じ平均粒径0.3μmのYSZ粉末でペースト
を作製し、1400℃で2時間焼結した厚さ約0.3m
mの緻密体である。
Next, as described above, the NiO-supported Y
To a powder of SZ, polyvinyl butyral as a binder and terpineol as a solvent were added, and a slurry was applied to a disc-shaped YSZ substrate having a diameter of 3.5 cm as a solid electrolyte in the form of a 2 cm × 2 cm square, It was sintered at 1250 ° C. for 2 hours to obtain a porous electrode. YS in this process
The amount of Ni metal supported on the surface of the Z powder was about 15% by weight. The thickness of the fuel electrode after sintering was about 0.1 mm. Here, the YSZ substrate is made of a paste of YSZ powder having the same average particle diameter of 0.3 μm as that used as the material of the fuel electrode, and sintered at 1400 ° C. for 2 hours to have a thickness of about 0.3 m.
m is a dense body.

【0021】このようにして作製した燃料電極を、10
00℃の水素ガス雰囲気下でNiOを還元してNi金属
にするとともに1000時間保った。1000℃の水素
ガス雰囲気下においてから1時間後および1000時間
後の燃料電極を取り出し、断面をSEMで観察した。そ
の結果、両者の間にはほとんど違いが見られず、経時変
化が起こっていないことが確認された。更に、EPMA
で電極断面の元素分析を行った結果、1時間後および1
000時間後のどちらの試料にもNi元素の高密度での
幅広い分布が観察された。これより、電極には多くの三
層界面が存在していることが確認でき、また、Niの凝
集が起こらず経時劣化の非常に少ない燃料電極が得られ
た。なおここでは、Ni金属の担持量は約15wt%だ
ったが、浸漬時間や使用する化合物の水溶液の種類、更
にはYSZ粉末の粒径を変えることで担持量を30wt
%程度にまで高めることもできる。
The fuel electrode thus manufactured was
NiO was reduced to Ni metal in a hydrogen gas atmosphere at 00 ° C. and kept for 1000 hours. The fuel electrode was taken out after 1 hour and 1000 hours from under a hydrogen gas atmosphere at 1000 ° C., and the cross section was observed by SEM. As a result, there was hardly any difference between the two, and it was confirmed that there was no change with time. Furthermore, EPMA
As a result of elemental analysis of the electrode cross section at
After 000 hours, a high-density and wide distribution of the Ni element was observed in both samples. From this, it was confirmed that many three-layer interfaces existed in the electrode, and a fuel electrode was obtained in which the aggregation of Ni did not occur and the deterioration with time was extremely small. Here, the loading amount of Ni metal was about 15 wt%, but the loading amount was changed to 30 wt% by changing the immersion time, the type of the aqueous solution of the compound to be used, and the particle size of the YSZ powder.
%.

【0022】以上、実施例1では、燃料電極を作製する
ための材料として、YSZおよびNi(NO32を用い
ているが、YSZ以外にも、1000℃付近の温度で酸
素イオン導電性を持つ、PSZ、SDC、(Bi23
x(Y231-x、(Ta25x(Sc231-x、(Z
rO2x(CaO)1-x(0≦x≦1)等も使用するこ
とができた。またNi(NO32の水溶液以外にも、N
iCl2、NiBr2、NiSO4、Ni(ClO32
Ni(ClO42等の水溶液も使用でき、Niがイオン
として存在するのであれば有機溶媒系でもかまわなかっ
た。更に、酸化物粉末に担持させる金属としてはNi以
外に、その融点がSOFCの運転温度である1000℃
付近よりも高い、Sc、Ti、V、Cr、Mn、Fe、
Co、Cu、Y、Zr、Nb、Mo、Tc、Ru、R
h、Pd、Hf、Ta、W、Pt、Au等も使用でき
た。
As described above, in the first embodiment, YSZ and Ni (NO 3 ) 2 are used as materials for manufacturing the fuel electrode. Has PSZ, SDC, (Bi 2 O 3 )
x (Y 2 O 3 ) 1-x , (Ta 2 O 5 ) x (Sc 2 O 3 ) 1-x , (Z
rO 2 ) x (CaO) 1 -x (0 ≦ x ≦ 1) and the like could also be used. In addition to the aqueous solution of Ni (NO 3 ) 2 , N
iCl 2 , NiBr 2 , NiSO 4 , Ni (ClO 3 ) 2 ,
An aqueous solution such as Ni (ClO 4 ) 2 can also be used, and an organic solvent system may be used as long as Ni exists as an ion. Further, in addition to Ni as the metal to be supported on the oxide powder, the melting point is 1000 ° C., which is the operating temperature of the SOFC.
Higher than near, Sc, Ti, V, Cr, Mn, Fe,
Co, Cu, Y, Zr, Nb, Mo, Tc, Ru, R
h, Pd, Hf, Ta, W, Pt, Au, etc. could also be used.

【0023】[0023]

【実施例2】本実施例では、Ni−YSZとMoから構
成される燃料電極で、金属を担持させた酸化物粉末と燃
料電池の運転温度でも焼結しない金属粉末を混合して図
2の構造が得られる燃料電極の作製方法について述べ
る。まず、容積500mlのポリビンに、平均粒径3μ
mのYSZ粉末100g、平均粒径0.7μmのMo粉
末20g、直径1cmのジルコニアボールを20個、お
よびNi(NO32の飽和水溶液150mlを入れ、高
温槽の中で70℃の温度で2時間回転させYSZ粉末と
Mo粉末を混合した。引き続き、ろ紙を用いてYSZ粉
末とMo粉末をNi(NO32の水溶液と分離し、乾燥
した。乾燥後のYSZとMoの混合粉末の表面はNi
(NO32で覆われており、緑色を呈している。この混
合粉末を電気炉に入れて700℃で2時間保ち、Ni
(NO32を熱分解した。Ni(NO32は全てNiO
となっていることをX線回折により確認した。また、混
合粉末の表面をEPMAで元素分析した結果、Ni元素
がYSZ粉末とMo粉末の表面に高密度で分散している
ことを確認した。
Embodiment 2 In this embodiment, an oxide powder carrying a metal and a metal powder which does not sinter even at the operating temperature of a fuel cell are mixed in a fuel electrode composed of Ni-YSZ and Mo. A method for manufacturing a fuel electrode having a structure will be described. First, an average particle size of 3 μm
100 g of YSZ powder, 20 g of Mo powder having an average particle size of 0.7 μm, 20 zirconia balls having a diameter of 1 cm, and 150 ml of a saturated aqueous solution of Ni (NO 3 ) 2 were placed in a high-temperature bath at a temperature of 70 ° C. After rotating for 2 hours, the YSZ powder and the Mo powder were mixed. Subsequently, the YSZ powder and the Mo powder were separated from the aqueous solution of Ni (NO 3 ) 2 using a filter paper and dried. The surface of the mixed powder of YSZ and Mo after drying is Ni
It is covered with (NO 3 ) 2 and has a green color. This mixed powder was placed in an electric furnace and maintained at 700 ° C. for 2 hours.
(NO 3 ) 2 was pyrolyzed. Ni (NO 3 ) 2 is all NiO
Was confirmed by X-ray diffraction. In addition, as a result of elemental analysis of the surface of the mixed powder by EPMA, it was confirmed that the Ni element was dispersed at a high density on the surfaces of the YSZ powder and the Mo powder.

【0024】次に、実施例1に示したのと同じ手法で混
合粉末のスラリーを作製し、同じ電解質基板に塗布し
た。このようにして作製した燃料電極を、1000℃の
水素ガス雰囲気下で1000時間保った。1000℃の
水素ガス雰囲気下においてから1時間後および1000
時間後の燃料電極を取り出し、断面をSEMで観察し
た。その結果、両者の間にはほとんど違いが見られず、
経時変化が起こっていないことが確認された。更に、E
PMAで電極断面の元素分析を行った結果、1時間後お
よび1000時間後のどちらの試料にもNi元素の高密
度での幅広い分布が観察された。これより、電極には多
くの三層界面が存在していることが確認でき、また、N
iの凝集が起こらず経時劣化の非常に少ない燃料電極が
得られた。また固体電解質であるYSZ基板のもう片面
にPtペーストを直径3cmの円形に塗布し、燃料電極
上にはPtメッシュを張り付け、1000℃での両Pt
間の1kHzでの交流インピーダンス(絶対値)を測定
した。交流インピーダンス値は約0.1Ωと、本構造の
電極は、実施例1の手法で作製した図1の構造の電極と
比べて交流インピーダンスが約1/5に減少し、燃料電
極の電子伝導性の向上が図られた。
Next, a slurry of the mixed powder was prepared in the same manner as in Example 1, and applied to the same electrolyte substrate. The fuel electrode thus manufactured was kept in a hydrogen gas atmosphere at 1000 ° C. for 1000 hours. One hour after in a hydrogen gas atmosphere at 1000 ° C. and 1000 hours
After a lapse of time, the fuel electrode was taken out, and the cross section was observed by SEM. As a result, there is little difference between the two,
It was confirmed that there was no change with time. Further, E
As a result of elemental analysis of the electrode cross section by PMA, a high-density and wide distribution of the Ni element was observed in both the samples after 1 hour and after 1000 hours. From this, it can be confirmed that the electrode has many three-layer interfaces.
Thus, a fuel electrode was obtained in which the aggregation of i did not occur and the deterioration with time was very small. Also, a Pt paste was applied in a circular shape having a diameter of 3 cm on the other surface of the YSZ substrate, which is a solid electrolyte, and a Pt mesh was attached on the fuel electrode.
The AC impedance (absolute value) at 1 kHz was measured. The AC impedance value is about 0.1Ω, and the electrode of the present structure has an AC impedance of about 1/5 that of the electrode of the structure of FIG. Was improved.

【0025】以上、実施例2では、燃料電極を作製する
ための材料として、YSZおよびNi(NO32を用い
ているが、実施例1に示した他の材料も使用できた。ま
た、燃料電極中に導電パスを作製するための材料粉末と
しては、Mo以外にも、1000℃付近の温度で焼結が
起こりにくい、W、Ti、V、Cr、Zr、Nb、M
o、Tc、Ru、Rh、Hf、Ta、W等の金属や、合
金も使用できた。更に、燃料電池の動作温度で還元する
のであれば、これら金属の酸化物でも構わなかった。
As described above, in Example 2, YSZ and Ni (NO 3 ) 2 were used as materials for manufacturing the fuel electrode, but other materials shown in Example 1 could be used. In addition, as material powder for forming the conductive path in the fuel electrode, in addition to Mo, W, Ti, V, Cr, Zr, Nb, M
Metals such as o, Tc, Ru, Rh, Hf, Ta, and W, and alloys could also be used. Further, oxides of these metals may be used as long as they are reduced at the operating temperature of the fuel cell.

【0026】[0026]

【発明の効果】本発明の電極構造では、次に記載するよ
うな効果を奏する。
The electrode structure of the present invention has the following effects.

【0027】(1)金属、酸化物、および燃料ガスが接
する三相界面が非常に大きくなり、電極反応に伴う電圧
降下が小さく出力特性に優れた電極が得られる。
(1) The three-phase interface where the metal, oxide, and fuel gas come into contact with each other becomes very large, and an electrode having a small voltage drop due to the electrode reaction and having excellent output characteristics can be obtained.

【0028】(2)金属微粒子は酸化物粉末に強く束縛
されるため、金属微粒子間の焼結が起こりにくくなり、
長期安定性に優れた経時劣化の少ない電極が得られる。
(2) Since the metal fine particles are strongly bound by the oxide powder, sintering between the metal fine particles hardly occurs.
An electrode with excellent long-term stability and little deterioration over time can be obtained.

【0029】(3)酸化物粉末に担持させる金属は微少
量で済むため、高価な貴金属を使用しても高コストとは
ならない実用性のある電極が得られる。
(3) Since only a small amount of metal is required to be supported on the oxide powder, a practical electrode can be obtained which does not increase the cost even if an expensive noble metal is used.

【0030】(4)酸化物粉末に金属を担持させて焼結
しただけでは十分な電子伝導性を示さない電極につい
て、燃料電池の運転温度では難焼結性の金属粉末も加え
て導電パスを新たに構築することにより電極の電子伝導
性が改善される。
(4) For an electrode which does not exhibit sufficient electron conductivity only by supporting a metal on an oxide powder and sintering, a conductive path is formed by adding a metal powder which is hardly sinterable at the operating temperature of the fuel cell. The new construction improves the electron conductivity of the electrodes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によって得られる燃料電極の第1の実施
例を示す断面図。
FIG. 1 is a sectional view showing a first embodiment of a fuel electrode obtained by the present invention.

【図2】本発明によって得られる燃料電極の第2の実施
例を示す断面図。
FIG. 2 is a sectional view showing a second embodiment of the fuel electrode obtained by the present invention.

【符号の説明】 1 燃料極 2 YSZ基板 3 酸化物粉末 4 金属粒子 5 金属粉末[Description of Signs] 1 Fuel electrode 2 YSZ substrate 3 Oxide powder 4 Metal particle 5 Metal powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒川 正泰 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 池田 大助 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayasu Arakawa 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Japan Telegraph and Telephone Corporation (72) Inventor Daisuke Ikeda 3-192-1, Nishishinjuku, Shinjuku-ku, Tokyo No. Japan Telegraph and Telephone Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン導電性を有する酸化物と電極
活性を有する金属とからなる固体電解質型燃料電池の燃
料電極において、前記酸化物の表面に前記金属が吸着し
ていることを特徴とする固体電解質型燃料電池の燃料電
極。
1. A fuel electrode for a solid oxide fuel cell comprising an oxide having oxygen ion conductivity and a metal having electrode activity, wherein the metal is adsorbed on the surface of the oxide. Fuel electrode for solid oxide fuel cells.
【請求項2】 燃料電池の運転温度においても凝集しな
い金属が添加されていることを特徴とする請求項1記載
の固体電解質型燃料電池の燃料電極。
2. The fuel electrode for a solid oxide fuel cell according to claim 1, wherein a metal that does not aggregate even at the operating temperature of the fuel cell is added.
【請求項3】 前記酸化物が、イットリア安定化ジルコ
ニア、部分安定化ジルコニア、サマリアドープセリアか
ら選ばれた一種以上であり、前記電極活性を有する金属
が、ニッケル、ルテニウム、コバルトから選ばれた一種
以上であり、前記燃料電池の運転温度においても凝集し
ない金属がモリブデン、タングステン、白金から選ばれ
た一種以上であることを特徴とする請求項1および2記
載の固体電解質型燃料電池の燃料電極。
3. The oxide is at least one selected from yttria-stabilized zirconia, partially stabilized zirconia, and samarium-doped ceria, and the metal having electrode activity is one selected from nickel, ruthenium, and cobalt. 3. The fuel electrode according to claim 1, wherein the metal that does not aggregate even at the operating temperature of the fuel cell is at least one selected from molybdenum, tungsten, and platinum.
【請求項4】 電極活性を有する金属のイオンを含有す
る溶液中に、酸素イオン導電性を有する酸化物の粉体を
浸し、その後乾燥して該酸化物表面に該金属の化合物を
担持させ、その後加熱処理して該酸化物表面に該金属を
担持させ、その後成型、焼結することを特徴とする固体
電解質型燃料電池の燃料電極の製造方法。
4. An oxide powder having oxygen ion conductivity is immersed in a solution containing ions of a metal having electrode activity, and then dried to allow the metal compound to be supported on the surface of the oxide. A method for producing a fuel electrode for a solid oxide fuel cell, comprising: performing a heat treatment so that the metal is supported on the oxide surface; and then molding and sintering the metal.
【請求項5】 前記酸化物表面に金属を担持させる工程
に引き続き、燃料電池の運転温度においても凝集しない
金属粉体を混合した後、成型、焼結することを特徴とす
る請求項4記載の固体電解質型燃料電池の燃料電極の製
造方法。
5. The method according to claim 4, wherein, after the step of supporting the metal on the oxide surface, a metal powder that does not aggregate even at the operating temperature of the fuel cell is mixed, and then molded and sintered. A method for manufacturing a fuel electrode of a solid oxide fuel cell.
【請求項6】 電極活性を有する金属のイオンを含有す
る溶液中に、酸素イオン導電性を有する酸化物粉体と燃
料電池の運転温度においても凝集しない金属粉体を浸
し、その後乾燥して該酸化物表面に該電極活性を有する
金属の化合物を担持させ、その後加熱処理して該酸化物
表面に該電極活性を有する金属を担持させ、その後成
型、焼結することを特徴とする請求項4記載の固体電解
質型燃料電池の燃料電極の製造方法。
6. An oxide powder having oxygen ion conductivity and a metal powder which does not agglomerate even at the operating temperature of a fuel cell are immersed in a solution containing ions of a metal having an electrode activity, and then dried and dried. 5. The method according to claim 4, wherein the metal compound having electrode activity is supported on the surface of the oxide, and then heat treatment is performed to support the metal having electrode activity on the oxide surface, followed by molding and sintering. A method for producing a fuel electrode for a solid oxide fuel cell as described above.
JP8320756A 1996-11-15 1996-11-15 Fuel electrode of solid electrolytic fuel cell and manufacture thereof Pending JPH10144337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8320756A JPH10144337A (en) 1996-11-15 1996-11-15 Fuel electrode of solid electrolytic fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8320756A JPH10144337A (en) 1996-11-15 1996-11-15 Fuel electrode of solid electrolytic fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10144337A true JPH10144337A (en) 1998-05-29

Family

ID=18124925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8320756A Pending JPH10144337A (en) 1996-11-15 1996-11-15 Fuel electrode of solid electrolytic fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10144337A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028009A (en) * 2004-07-13 2006-02-02 Hyundai Motor Co Ltd NiO-CERAMIC COMPOSITE POWDER, FUEL ELECTRODE FOR SOLID OXIDE FUEL CELL MANUFACTURED THEREFROM, AND METHOD FOR MANUFACTURING THE SAME
JP2006040612A (en) * 2004-07-23 2006-02-09 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fuel electrode raw material powder of solid electrolyte fuel cell, its manufacturing method, fuel electrode, and solid electrolyte fuel cell
JP2006351224A (en) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd Nickel powder for electrode of solid oxide fuel cell and its manufacturing method
JP2009211830A (en) * 2008-02-29 2009-09-17 Toshiba Corp Solid oxide electrochemical cell and processes for producing the same
JP2010164576A (en) * 2002-07-19 2010-07-29 Furuya Kinzoku:Kk Electrode for solid electrolytes, method of manufacturing same, solid electrolyte type oxygen sensor, and exhaust gas sensor
JP2010282772A (en) * 2009-06-03 2010-12-16 Tokyo Electric Power Co Inc:The Electrode material for solid oxide fuel cell, and electrode for solid oxide fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164576A (en) * 2002-07-19 2010-07-29 Furuya Kinzoku:Kk Electrode for solid electrolytes, method of manufacturing same, solid electrolyte type oxygen sensor, and exhaust gas sensor
JP2006028009A (en) * 2004-07-13 2006-02-02 Hyundai Motor Co Ltd NiO-CERAMIC COMPOSITE POWDER, FUEL ELECTRODE FOR SOLID OXIDE FUEL CELL MANUFACTURED THEREFROM, AND METHOD FOR MANUFACTURING THE SAME
JP2013079190A (en) * 2004-07-13 2013-05-02 Hyundai Motor Co Ltd Method for producing nio-ceramic composite powder and nio-ceramic composite fuel electrode
JP2006040612A (en) * 2004-07-23 2006-02-09 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fuel electrode raw material powder of solid electrolyte fuel cell, its manufacturing method, fuel electrode, and solid electrolyte fuel cell
JP2006351224A (en) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd Nickel powder for electrode of solid oxide fuel cell and its manufacturing method
JP4517949B2 (en) * 2005-06-13 2010-08-04 住友金属鉱山株式会社 Nickel oxide powder for electrode of solid oxide fuel cell and method for producing the same
JP2009211830A (en) * 2008-02-29 2009-09-17 Toshiba Corp Solid oxide electrochemical cell and processes for producing the same
JP2010282772A (en) * 2009-06-03 2010-12-16 Tokyo Electric Power Co Inc:The Electrode material for solid oxide fuel cell, and electrode for solid oxide fuel cell

Similar Documents

Publication Publication Date Title
JP5469795B2 (en) Anode-supported solid oxide fuel cell using cermet electrolyte
Zhang et al. Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte
Duan et al. Fabrication of High-Performance Ni/Y 2 O 3 ZrO2 Cermet Anodes of Solid Oxide Fuel Cells by Ion Impregnation
US7838141B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
JP5336685B2 (en) Composite electrodes for solid state electrochemical devices
CN101485018B (en) Ceramic material combination for an anode of a high-temperature fuel cell
JP2007529852A5 (en)
US20060083970A1 (en) Solid oxide fuel cell and method for producing same
CN101521282B (en) Metal electrode catalyst and preparation method thereof
CN111910201A (en) Hydrogen electrode of solid oxide electrolytic cell, preparation method of hydrogen electrode and solid oxide electrolytic cell
KR20220106080A (en) Wet sprayed coatings for interconnects for soec and sofc
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
KR20200015060A (en) Solid oxide fuel cell and method of preparing the same
JP2008546161A (en) Deposition of electrodes for solid oxide fuel cells
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
WO2005064732A1 (en) Solid oxide fuel cell
US20060257714A1 (en) Electrode material and fuel cell
US7468218B2 (en) Composite solid oxide fuel cell anode based on ceria and strontium titanate
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
JPH0381959A (en) Solid electrolyte fuel cell
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
US10923733B2 (en) Nanocatalyst suitable for an anode of a solid oxide fuel cell
JP7395171B2 (en) Anode for solid oxide fuel cells and solid oxide fuel cells
US20190334190A1 (en) Sofc including redox-tolerant anode electrode and method of making the same