JP3565696B2 - Method for manufacturing electrode of solid oxide fuel cell - Google Patents

Method for manufacturing electrode of solid oxide fuel cell Download PDF

Info

Publication number
JP3565696B2
JP3565696B2 JP03550298A JP3550298A JP3565696B2 JP 3565696 B2 JP3565696 B2 JP 3565696B2 JP 03550298 A JP03550298 A JP 03550298A JP 3550298 A JP3550298 A JP 3550298A JP 3565696 B2 JP3565696 B2 JP 3565696B2
Authority
JP
Japan
Prior art keywords
powder
oxide
electrode
cobalt
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03550298A
Other languages
Japanese (ja)
Other versions
JPH11219710A (en
Inventor
直樹 加藤
敏雄 松島
姫子 大類
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03550298A priority Critical patent/JP3565696B2/en
Publication of JPH11219710A publication Critical patent/JPH11219710A/en
Application granted granted Critical
Publication of JP3565696B2 publication Critical patent/JP3565696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
本発明は固体電解質型燃料電池の電極の製造方法、さらに詳細には特に、固体電解質型燃料電池(Solid Oxide Fuel Cell、以下SOFCと略す)の燃料極の製造方法に関する。
【0002】
【従来の技術】
SOFCは、酸化剤と燃料の2種類のガスを酸化剤電極と燃料電極に供給して発電を行う燃料電池のうち、構成材料のすべてに固体物質を用いるものの総称である。SOFCでは、以下のようなセラミックスが多用されており、通常、1000℃付近の温度で運転される。
【0003】
電解質:イットリア安定化ジルコニア(YSZ)
燃料電極:ニッケルジルコニアサーメット(Ni−YSZ)
酸化剤電極:ストロンチウムドープランタンマンガナイト(LSM)
【0004】
ここで、燃料電極の金属としてNiが多用されるのは、NiがYSZに対する安定性に優れ、また燃料として石炭ガスを用いた場合の耐硫黄性にも優れていることなどの理由による。なお、Ni以外の金属として、Coも使用することができる。このような材料構成よりなるSOFCの燃料電極を低コストで作製する手法として、通常、原料であるYSZ粉未やNiO粉未をボールミル等で混合し、この混合粉未をペーストとして電解質に塗布して焼結するという手法が用いられている。
【0005】
燃料電極は、燃料ガスと酸化剤とを反応させるための触媒としての役割を持ち、このとき電極反応場となるのは三相界面であるとされている。上記のNi−YSZ(燃料電極)/YSZ(電解質)材料系では、Ni、YSZ、および燃料ガスが全て接する部分が三相界面に相当する。三相界面では次の電極反応によって電子が発生し、これがエネルギーとして利用される。
【0006】
+O2−→HO+2e
【0007】
従って、SOFCの出力特性の向上には、燃料電極の三相界面の増大による電子の発生量の増加と、発生した電子の外部回路への効率的な供給が必要である。そこで従来より、原料粉末であるNiO粉末やYSZ粉末の粒径や粒径比を調整することによってNi粒子やYSZ粒子を高分散させ、三相界面を増大させる検討や、NiO粉末とYSZ粉末の混合比の調整によって電極の電子伝導性を向上させる検討が行われている。
【0008】
【発明が解決しようとする課題】
ところが、このようなNiO粉末やYSZ粉末の粒径や粒径比の最適化等によって、初期の発電特性には優れたセルが得られるものの、発電を長時間継続すると、焼結によって電極中のNi粒子の凝集が進行し、これが三相界面の減少と電子伝導性の低下につながり、出力特性が次第に低下していくという問題点がある。これは、電極材料にCoを用いた場合も同様である。
【0009】
そこで、このような金属粒子の焼結の問題点を解決する方法として、触媒能がNiやCoと同等でかつ1000℃付近の温度での焼結が起こりにくい別種の金属の使用例がある。例えば、電極金属としてRuを用いたルテニウムジルコニアサーメット(Ru−YSZ)では、焼結による経時劣化の少ない電極が得られている。このようにRuは触媒能が優れ、かつ1000℃付近の温度でも焼結が起こりにくいが、高価である。従って、従来のように粉末を混合する手法によって粉末材料を調製するとRuの使用量が多く、電極材料のコストが増大し、実用性に乏しいという問題点がある。
【0010】
本発明は、このような高価な貴金属を用いることなく、三相界面が多く、電子伝導性にも優れ、かつ電極活性な金属の焼結も起こりにくい燃料電極粉末を使用した電極の製造方法を提供し、従来の燃料電極における問題点の解決を図ったものである。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明による固体電解質型燃料電池の電極の製造方法は、酸素イオン導電性を有する酸化物粉末をニッケルイオンまたはコバルトイオンを含む溶液中に浸す工程と、
該酸化物粉末を乾燥する工程と、
乾燥した該酸化物粉末を加熱処理によって該酸化物粉末表面にニッケルまたはコバルトを酸化物の状態で保持させる工程と、
以上の工程によって得られた表面にニッケル酸化物またはコバルト酸化物の微粒子を保持した酸素イオン導電性を有する酸化物粉末に、ニッケルまたはコバルトの酸化物粉末を混合して固体電解質型燃料電池の電極の原料粉末を作製する工程と、
前記原料粉末を成形する工程と、
成形した前記原料粉末を焼結する工程と、
から成り、前記酸素イオン導電性を有する酸化物粉末がイットリア安定化ジルコニアまたはサマリアドープセリアであることを特徴とする。
0012
【作用】
本発明の製造方法による燃料電極原料粉末を適用した固体電解質型燃料電池の電極構造にあっては、以下の作用を有する
0013
本発明によって製造される固体電解質型燃料電池の電極は、図1に示すように酸素イオン導電性を有する酸化物粉末2と、電極活性を有する金属または前記金属の酸化物とから基本的に構成されている。そして、該金属または前記金属の酸化物は該酸化物粉末2の表面に保持されている金属微粒子(または該金属の酸化物微粒子)1と、該酸化物粉末2に保持されていない金属粉末(または該金属の酸化物粉末)3を有している。そして金属粉末(または該金属の酸化物粉末)3は酸化物粉末2とほぼ同程度の粒径を有しており、前記金属微粒子(または該金属の酸化物微粒子)1よりも大きな粒径である。
0014
図1を参照して、本発明の固体電解質型燃料電池の電極構造の具体例を、Ni−YSZ(燃料電極)/YSZ(電解質)材料系について模式的に示す。ここに記載した実施の態様においては、この電極は、Ni微粒子(金属微粒子)1を保持したYSZ粉末(酸化物粉末)2と、Ni粉末(金属粉末)3が混在した構造をとる。
0015
周知のように、燃料電池運転時には燃料電極は水素で還元される。そのため、運転前はNiO微粒子を保持したYSZ粉末とNiO粉末が混在した構造であるが、運転することによってNiO微粒子とNiO粉末が、それぞれNi微粒子とNi粉末に変化する。
0016
YSZ粉末2上に保持されたNi微粒子1は、数nm〜数十nmのオーダーの粒径でYSZ粉未の表面に高分散しているため、非常に大きな三相界面を得ることができる。また、Ni微粒子1はYSZ粉末2に束縛されるため、Ni微粒子1同士の焼結が起こりにくくなり、長期安定牲に優れた電極となる。更に、電極中にはYSZ粉未2に保持されたNi微粒子1と同種のNi粉末3が存在するため、三相界面で発生した電子を接触電位差が発現することなく捕集することができ、電子伝導性にも優れた電極となる。
0017
前記酸素イオン導電性を有する酸化物粉末の粒径は、好ましくは0.2〜1μmである。後述の実施例より明らかなようにこの範囲を逸脱すると、三相界面が多く、電子伝導性にも優れ、かつ電極活性な金属の焼結も起こりにくい電極材料とならない恐れがある。このようなイオン導電性を有する酸化物粉末としては、上述のYSZの他、サーマリアドープセリアを有効に使用することができる。
0018
前述のように該酸素イオン導電性を有する酸化物粉末に保持された金属微粒子または金属の酸化物微粒子としては、ニッケルのほかコバルトも使用することができる。このような金属微粒子または金属の酸化物微粒子の粒径は、前述のように数nm〜数十nmのオーダーである。
0019
また、前記酸化物粉末に混合される金属粉末または金属の酸化物粉末の粒径は0.1〜3μmであるのが好ましい。後述の実施例より明らかなようにこの範囲を逸脱すると、三相界面が多く、電子伝導性にも優れ、かつ電極活性な金属の焼結も起こりにくい電極材料とならない恐れがある。
0020
本発明による固体電解質型燃料電池の電極の製造方法によれば、まず酸素イオン導電性を有する酸化物粉末をニッケルイオンまたはコバルトイオンを含む溶液中に浸したのち、該酸化物粉末を乾燥し、乾燥した該酸化物粉末を加熱処理によって該酸化物粉末表面にニッケルまたはコバルトを酸化物の状態で保持させる。このように酸化物粉末表面に付着したニッケルまたはコバルト化合物を加熱して熱分解させることにより、該酸化物粉末表面にニッケルまたはコバルト酸化物を形成させる。このときの加熱温度は前記ニッケルまたはコバルト化合物が熱分解してニッケルまたはコバルト酸化物になる温度以上である。
0021
次いで、以上の工程によって得られた表面にニッケル酸化物またはコバルト酸化物微粒子を保持した酸素イオン導電性を有する酸化物粉末に、ニッケルまたはコバルトの酸化物粉末を混合して固体電解質型燃料電池の電極の原料粉末を作製し、前記原料粉末を成形し、成形した前記原料粉末を焼結する。前記原料粉末の全重量に占める酸素イオン導電性を有する酸化物粉未の重量は、40%から60%であるのが好ましい。後述の実施例より明らかなようにこの範囲を逸脱すると、三相界面が多く、電子伝導性にも優れ、かつ電極活性な金属の焼結も起こりにくい電極材料とならない恐れがあるからである。また、焼成温度は、1200℃から1600℃の範囲の温度で行うことが可能である。
0022
【実施例】
本実施例では、Ni−YSZ材料系を用いた燃料電極によるセル発電試験結果を例に説明する。原料粉末の調製は、まず平均粒径が0.4μmの8mol%安定化ジルコニア粉末(以下、「8YSZ粉末」と記す)を飽和硝酸ニッケル水溶液に室温で1時間浸した。次にこれをろ過し、ろ紙上に残った8YSZ粉末を乾燥させた。乾燥後の8YSZ粉末は緑色を呈しており、硝酸ニッケルが8YSZ粉末の表面を覆っていることを確認した。
0023
次に、この硝酸ニッケルが吸着している8YSZ粉末を、450℃で2時間保ち、硝酸ニッケルを熱分解した。熱分解によって硝酸ニッケルは全てNiOとなっていることをX線回折分析により確認した。また、8YSZ粉未の表面をEPMAで元素分析した結果、Ni元素が8YSZ粉末の表面に高密度で分散していることを確認した。ここで、電極の作製行程とは別に、8YSZ粉末が保持しているNiOの量をICP分析により求めたところ、15wt%であった。燃料電池運転時には燃料電極は水素で還元されるため、NiO粒子は還元されてNi粒子になる。そこで、8YSZ粉末が保持しているNiOに対して還元処理を行った後の状態をTEM観察したところ、8YSZ粉末が保持しているNi粒子の粒径は数nm〜数十nmの大きさであった(図2)。
0024
次に、このNiOを保持している8YSZ粉末に、更に平均粒径が2μmのNiO粉未を混合した。混合する割合は、全NiOの重量(8YSZ粉末に保持されているNiOとNiO粉末の総重量)とYSZ粉末の重量比が、50:50wt%となるようにした。粉末混合の手法は、ポリ容器に、NiOを保持した8YSZ粉末、NiO粉末、エタノール、およびジルコニアボールを入れ、ボールミルにより24時間回転させた。ボールミル終了後、混合粉末を乾燥させ、これに結着剤としてポリビニルブチラール、溶剤としてテレビネオールを加え、スラリーとした。
0025
このスラリーを、固体電解質となる円板状の8YSZ基板(直径3.5cm、厚さ0.5mm)の片面に、厚さが0.1mmで正方形(1.5cm×1.5cm)となるように塗布した。8YSZ基板のもう一方の面には、平均粒径が0.2μmの、ストロンチウムドープランタンマンガナイト粉末に、ポリビニルブチラールとテレピネオールを加えてスラリーとしたものを、厚さが0.1mmで正方形(2cm×2cm)となるように塗布し酸化剤電極とした。このようにして、両面にスラリーを塗布した8YSZ基板を1250℃で2時間焼成処理を行うことによって燃料電極および酸化剤電極を焼結させ、発電試験用のセルとした。この焼結のための焼成温度は、1200℃から1600℃の範囲の温度で行うことが可能である。
0026
また、比較試料として、8YSZ粉末(平均粒径0.4μm)とNiO粉末(平均粒径2μm)を50:50wt%の割合でボールミル混合した従来法による原料粉末も調製し、これを用いた燃料電極も作製した。従来法における8YSZ基板への電極形成条件は、8YSZ粉未にNiOを保持させた本発明法による試料を用いた場合と同一である。
0027
次に、本発明法(実施例)および従来法による燃料電極(比較例)を用いたセルで発電試験を行った。試験セルをアルミナ管で挟み、酸化剤電極には酸化剤として空気を、燃料電極には燃料ガスとして水素を供給した。酸化剤電極の集電体にはPtメッシュ、燃料電極の集電体にはNiメッシュを使用した。試験温度は1000℃とした。図3に、各セルの1000時間連続発電試験における電池電圧の経時変化を示す。ここで、電流値は0.3A/cmと一定にした。図中、Aは本発明の実施例による燃料電極、Bは比較例による燃料電極の経時変化を示す。
0028
従来法による燃料電極を用いた場合の発電初期電圧は0.74Vであり、時間とともに電圧の低下が観察され、1000時間経過後の電圧は0.37Vにまで低下した。一方、本発明法による燃料電極を用いた場合では、発電初期電圧は0.87Vであり、1000時間経過後も0.82Vと初期の性能をほぼ維持していた。
0029
本発明法および従来法によるそれぞれの燃料電極を用いたセルについて、発電試験を1時間で終了させたものも作製し、この発電試験1時間後のセルの燃料電極と、発電試験1000時間後のセルの燃料電極の断面SEM像を比較した。その結果、従来法によるものでは、発電試験1000時間後の燃料電極は発電試験1時間後の燃料電極に比べて、Ni粒子間の焼結によるNi粒子の粗大化が観察されたのに対し、本発明の製造方法を用いた燃料電極においては、発電試験1000時間後においても発電試験1時間後の燃料電極の状態がほぼそのまま保たれていた。このように、本発明の製造方法を用いた燃料電極ではNi粒子の焼結抑制効果があり、従来法と比べ燃料電極の寿命特性を改善することができる。
0030
また、電極の電子伝導性を評価する目的で、本発明法および従来法による製造方法で作製した燃料電極原料粉末のそれぞれを用いて成形焼結体を作製し、この焼結体の導電率を測定した。試料とした焼結体の作製は、まず各原料粉末のそれぞれ4gを、φ25mmの円板状となるように2t/cmの圧縮強度でプレス成形し、次にこのプレス成形体を1250℃で焼成処理した。焼結後の試料から幅3mm、長さ約15mmの導電率測定用の試料を切りだし、1000℃の水素還元雰囲気下で直流四端子法により導電率を測定した。
0031
図4に、本発明法および従来法による原料粉末を用いた成形焼結体の導電率の経時間変化を示した。図中、Aは本発明による実施例、Bは比較例の導電率の経時間変化である。このような特性からも、本発明による製造方法を用いた燃料電極では、導電率の経時的な低下が小さく、Ni粒子間の焼結が抑制されていることがわかる。また導電率の値についても、本発明によるものでは従来法によるものに比べ2桁以上も大きく、高い電子伝導性を示すことから、三相界面で発生する電子を効率良く捕集することができる。
0032
本実施例では酸素イオン導電性を有する酸化物8YSZの、粉末の平均粒径が0.4μmの場合を示したが、粒径が0.2μmから1μmの範囲において、同様の良好な結果が得られた。また、NiO粉末については平均粒径が2μmの場合を示したが、粒径が0.1μmから3μmの範囲において、同様の良好な結果が得られた。さらに、本実施例では全NiOの重量(8YSZ粉末に保持されているNiOとNiO粉末の総重量)と8YSZ粉末の重量比が50:50wt%の場合を示したが、両者を合計した全重量に対する8YSZの重量比が40wt%から60wt%の範囲の混合比で、同様の良好な結果が得られた。
0033
【発明の効果】
本発明で製造された電極構造では、次の効果を奏する。まず、金属微粒子が酸化物粉末表面に高分散されるため、三相界面が非常に大きくなり、電極反応に伴う電圧降下が小さく出力特性に優れた電極が得られる。また、金属微粒子は酸化物粉末に保持されるため、金属粒子間の焼結が起こりにくくなり、長期安定性に優れた経時劣化の少ない電極が得られる。更に、酸化物粉末が保持しない金属粉末の存在により、高い電子伝導性が発現する。
【図面の簡単な説明】
【図1】本発明の製造方法による原料粉末を用いた燃料電極の模式図である。
【図2】本発明の製造方法で作製したNi微粒子を保持したYSZ粉末のTEM像写真である。
【図3】本発明の製造方法による原料粉末で作製した燃料電極を用いたセルの、発電試験における電圧の経時変化を示す図である。
【図4】本発明の製造方法による原料粉末で作製した燃料電極の導電率の経時変化を示す図である。
【符号の説明】
1 金属微粒子
2 酸化物粉末
3 金属酸化物粉末
[0001]
[Industrial applications]
The present invention is a manufacturing method of an electrode of a solid oxide fuel cell, especially in further detail, the solid electrolyte type fuel cell (Solid Oxide Fuel Cell, hereinafter abbreviated as SOFC) relates to a method for manufacturing a fuel electrode.
[0002]
[Prior art]
SOFC is a general term for a fuel cell that generates electricity by supplying two kinds of gases, an oxidant and a fuel, to an oxidant electrode and a fuel electrode, and that uses a solid substance for all constituent materials. In the SOFC, the following ceramics are frequently used, and the SOFC is usually operated at a temperature around 1000 ° C.
[0003]
Electrolyte: Yttria stabilized zirconia (YSZ)
Fuel electrode: Nickel zirconia cermet (Ni-YSZ)
Oxidant electrode: strontium dopplantan manganite (LSM)
[0004]
Here, Ni is frequently used as the metal of the fuel electrode because Ni is excellent in stability against YSZ and also excellent in sulfur resistance when coal gas is used as fuel. Note that Co can be used as a metal other than Ni. As a method of manufacturing a fuel electrode of an SOFC having such a material configuration at low cost, usually, a raw material such as YSZ powder or NiO powder is mixed by a ball mill or the like, and the mixed powder is applied to the electrolyte as a paste. The method of sintering is used.
[0005]
The fuel electrode has a role as a catalyst for reacting the fuel gas with the oxidizing agent. At this time, it is said that the three-phase interface serves as an electrode reaction field. In the above-described Ni-YSZ (fuel electrode) / YSZ (electrolyte) material system, a portion where Ni, YSZ, and fuel gas are all in contact corresponds to a three-phase interface. At the three-phase interface, electrons are generated by the next electrode reaction, which is used as energy.
[0006]
H 2 + O 2− → H 2 O + 2e
[0007]
Therefore, in order to improve the output characteristics of the SOFC, it is necessary to increase the amount of generated electrons due to an increase in the three-phase interface of the fuel electrode and to efficiently supply the generated electrons to an external circuit. Therefore, conventionally, by adjusting the particle size and the particle size ratio of the raw material powders NiO powder and YSZ powder, Ni particles and YSZ particles are highly dispersed to increase the three-phase interface. Studies have been made to improve the electron conductivity of the electrode by adjusting the mixing ratio.
[0008]
[Problems to be solved by the invention]
However, by optimizing the particle size and the particle size ratio of the NiO powder and the YSZ powder, a cell having excellent initial power generation characteristics can be obtained. The agglomeration of the Ni particles progresses, which leads to a decrease in the three-phase interface and a decrease in electron conductivity, and there is a problem that the output characteristics gradually decrease. This is the same when Co is used as the electrode material.
[0009]
Therefore, as a method of solving such a problem of sintering of metal particles, there is an example of using another kind of metal which has the same catalytic activity as Ni or Co and does not easily undergo sintering at a temperature around 1000 ° C. For example, in ruthenium zirconia cermet (Ru-YSZ) using Ru as an electrode metal, an electrode with little deterioration over time due to sintering is obtained. As described above, Ru has excellent catalytic ability and does not easily undergo sintering even at a temperature near 1000 ° C., but is expensive. Therefore, if a powder material is prepared by a conventional method of mixing powder, there is a problem that a large amount of Ru is used, the cost of the electrode material is increased, and practicality is poor.
[0010]
The present invention provides a method for producing an electrode using a fuel electrode powder that does not use such expensive noble metals, has many three-phase interfaces, has excellent electron conductivity, and does not easily cause sintering of the electrode active metal. It is intended to solve the problems of the conventional fuel electrode.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, a method for manufacturing an electrode of a solid oxide fuel cell according to the present invention includes a step of immersing an oxide powder having oxygen ion conductivity in a solution containing nickel ions or cobalt ions,
Drying the oxide powder;
A step of holding nickel or cobalt in an oxide state on the surface of the dried oxide powder by heat treatment,
An electrode of a solid oxide fuel cell is prepared by mixing nickel or cobalt oxide powder with oxygen ion conductive oxide powder having nickel oxide or cobalt oxide particles retained on the surface obtained by the above steps. Producing a raw material powder of
Forming the raw material powder,
Sintering the formed raw material powder,
And the oxide powder having oxygen ion conductivity is yttria-stabilized zirconia or samarium-doped ceria.
[ 0012 ]
[Action]
The electrode structure of the solid oxide fuel cell using the fuel electrode raw material powder according to the production method of the present invention has the following effects .
[ 0013 ]
The electrode of the solid oxide fuel cell manufactured according to the present invention is basically composed of an oxide powder 2 having oxygen ion conductivity and a metal having electrode activity or an oxide of the metal as shown in FIG. Have been. The metal or the oxide of the metal is composed of metal fine particles (or oxide fine particles of the metal) 1 held on the surface of the oxide powder 2 and metal fine particles not held by the oxide powder 2 ( Or an oxide powder of the metal) 3. The metal powder (or the metal oxide powder) 3 has a particle size that is substantially the same as the oxide powder 2, and has a larger particle size than the metal fine particles (or the metal oxide fine particles) 1. is there.
[ 0014 ]
Referring to FIG. 1, a specific example of an electrode structure of a solid oxide fuel cell according to the present invention is schematically shown for a Ni-YSZ (fuel electrode) / YSZ (electrolyte) material system. In the embodiment described herein, this electrode has a structure in which YSZ powder (oxide powder) 2 holding Ni fine particles (metal fine particles) 1 and Ni powder (metal powder) 3 are mixed.
[ 0015 ]
As is well known, the fuel electrode is reduced with hydrogen during fuel cell operation. Therefore, before the operation, the YSZ powder and the NiO powder holding the NiO fine particles are mixed, but the operation changes the NiO fine particles and the NiO powder into the Ni fine particles and the Ni powder, respectively.
[ 0016 ]
Since the Ni fine particles 1 held on the YSZ powder 2 are highly dispersed on the surface of the YSZ powder not having a particle size on the order of several nm to several tens nm, a very large three-phase interface can be obtained. In addition, since the Ni fine particles 1 are bound by the YSZ powder 2, sintering of the Ni fine particles 1 hardly occurs, and the electrode has excellent long-term stability. Furthermore, since the same type of Ni powder 3 as the Ni fine particles 1 held in the YSZ powder 2 exists in the electrode, electrons generated at the three-phase interface can be collected without developing a contact potential difference, It becomes an electrode having excellent electron conductivity.
[ 0017 ]
The particle diameter of the oxide powder having oxygen ion conductivity is preferably 0.2 to 1 μm. As will be apparent from the examples described later, if the ratio deviates from this range, there is a possibility that an electrode material having many three-phase interfaces, having excellent electron conductivity, and hardly causing sintering of an electrode active metal may not be obtained. As such an oxide powder having ionic conductivity, thermalia- doped ceria can be effectively used in addition to the above-mentioned YSZ.
[ 0018 ]
As described above, cobalt as well as nickel can be used as the metal fine particles or metal oxide fine particles held by the oxide powder having oxygen ion conductivity. The particle diameter of such metal fine particles or metal oxide fine particles is on the order of several nm to several tens nm as described above.
[ 0019 ]
The particle diameter of the metal powder or the metal oxide powder mixed with the oxide powder is preferably 0.1 to 3 μm. As will be apparent from the examples described later, if the ratio deviates from this range, there is a possibility that an electrode material having many three-phase interfaces, having excellent electron conductivity, and hardly causing sintering of an electrode active metal may not be obtained.
[ 0020 ]
According to the method for producing an electrode of a solid oxide fuel cell according to the present invention, first, an oxide powder having oxygen ion conductivity is immersed in a solution containing nickel ions or cobalt ions, and then the oxide powder is dried. By heating the dried oxide powder, nickel or cobalt is held in an oxide state on the surface of the oxide powder. By heating and thermally decomposing the nickel or cobalt compound attached to the surface of the oxide powder, nickel or cobalt oxide is formed on the surface of the oxide powder. The heating temperature at this time is equal to or higher than the temperature at which the nickel or cobalt compound is thermally decomposed into nickel or cobalt oxide.
[ 0021 ]
Next, an oxide powder having oxygen ion conductivity holding nickel oxide or cobalt oxide fine particles on the surface obtained by the above steps is mixed with nickel or cobalt oxide powder to obtain a solid oxide fuel cell. A raw material powder for an electrode is produced, the raw material powder is formed, and the formed raw material powder is sintered. It is preferable that the weight of the oxide powder having oxygen ion conductivity relative to the total weight of the raw material powder is 40% to 60%. This is because, as is clear from the examples described later, if the ratio deviates from this range, there is a possibility that an electrode material having many three-phase interfaces, excellent electron conductivity, and hardly causing sintering of the electrode active metal will not be obtained. The firing can be performed at a temperature in the range of 1200 ° C. to 1600 ° C.
[ 0022 ]
【Example】
In the present embodiment, a description will be given of an example of a cell power generation test result using a fuel electrode using a Ni-YSZ material system. First, 8 mol% stabilized zirconia powder having an average particle size of 0.4 μm (hereinafter referred to as “8YSZ powder”) was immersed in a saturated nickel nitrate aqueous solution at room temperature for 1 hour. Next, this was filtered, and the 8YSZ powder remaining on the filter paper was dried. The dried 8YSZ powder was green, and it was confirmed that nickel nitrate covered the surface of the 8YSZ powder.
[ 0023 ]
Next, the 8YSZ powder on which the nickel nitrate was adsorbed was kept at 450 ° C. for 2 hours to thermally decompose the nickel nitrate. X-ray diffraction analysis confirmed that all of the nickel nitrate was converted to NiO by thermal decomposition. Further, as a result of elementary analysis of the surface of the 8YSZ powder that was not yet subjected to EPMA, it was confirmed that the Ni element was dispersed at a high density on the surface of the 8YSZ powder. Here, the amount of NiO held by the 8YSZ powder was determined by ICP analysis separately from the production process of the electrode to be 15 wt%. During operation of the fuel cell, the fuel electrode is reduced by hydrogen, so that the NiO particles are reduced to Ni particles. Then, when the state after performing the reduction treatment on the NiO held by the 8YSZ powder was observed by TEM, the particle diameter of the Ni particles held by the 8YSZ powder was several nm to several tens nm. (FIG. 2).
[ 0024 ]
Next, the 8YSZ powder holding NiO was further mixed with NiO powder having an average particle size of 2 μm. The mixing ratio was such that the weight ratio of the total NiO (the total weight of NiO and NiO powder held in the 8YSZ powder) to the YSZ powder was 50:50 wt%. In the method of powder mixing, 8YSZ powder holding NiO, NiO powder, ethanol, and zirconia balls were placed in a poly container, and rotated by a ball mill for 24 hours. After completion of the ball mill, the mixed powder was dried, and polyvinyl butyral as a binder and tvneol as a solvent were added thereto to form a slurry.
[ 0025 ]
This slurry is formed into a square (1.5 cm × 1.5 cm) having a thickness of 0.1 mm on one surface of a disk-shaped 8YSZ substrate (3.5 cm in diameter, 0.5 mm in thickness) serving as a solid electrolyte. Was applied. On the other side of the 8YSZ substrate, a slurry obtained by adding polyvinyl butyral and terpineol to a strontium do plantan manganite powder having an average particle diameter of 0.2 μm, and having a thickness of 0.1 mm and a square (2 cm) × 2 cm) to form an oxidant electrode. In this way, the fuel electrode and the oxidizing electrode were sintered by subjecting the 8YSZ substrate coated with the slurry on both surfaces to a baking treatment at 1250 ° C. for 2 hours to obtain a cell for a power generation test. The sintering temperature for this sintering can be performed at a temperature in the range of 1200 ° C to 1600 ° C.
[ 0026 ]
Further, as a comparative sample, a raw material powder prepared by a conventional method in which 8YSZ powder (average particle diameter 0.4 μm) and NiO powder (average particle diameter 2 μm) were mixed in a ball mill at a ratio of 50:50 wt% was prepared. Electrodes were also made. The conditions for forming the electrodes on the 8YSZ substrate in the conventional method are the same as those in the case of using the sample according to the present invention in which NiO is held in the 8YSZ powder.
[ 0027 ]
Next, a power generation test was performed on cells using the fuel electrode according to the present invention (Example) and the fuel electrode according to the conventional method (Comparative Example). The test cell was sandwiched between alumina tubes, air was supplied to the oxidant electrode as an oxidant, and hydrogen was supplied to the fuel electrode as a fuel gas. A Pt mesh was used for the current collector of the oxidant electrode, and a Ni mesh was used for the current collector of the fuel electrode. The test temperature was 1000 ° C. FIG. 3 shows the change over time of the battery voltage in the continuous power generation test for 1000 hours for each cell. Here, the current value was kept constant at 0.3 A / cm 2 . In the figure, A shows the fuel electrode according to the embodiment of the present invention, and B shows the change over time of the fuel electrode according to the comparative example.
[ 0028 ]
When the fuel electrode according to the conventional method was used, the initial voltage of the power generation was 0.74 V, and the voltage was observed to decrease with time, and the voltage after 1000 hours had decreased to 0.37 V. On the other hand, when the fuel electrode according to the method of the present invention was used, the initial voltage of the power generation was 0.87 V, and the initial performance was almost maintained at 0.82 V even after 1000 hours.
[ 0029 ]
With respect to the cells using the fuel electrodes according to the present invention method and the conventional method, those in which the power generation test was completed in 1 hour were also prepared. Cross-sectional SEM images of the fuel electrodes of the cells were compared. As a result, in the case of the conventional method, the fuel electrode after 1000 hours of the power generation test showed coarser Ni particles due to sintering between the Ni particles compared to the fuel electrode after 1 hour of the power generation test, In the fuel electrode using the manufacturing method of the present invention, even after 1000 hours of the power generation test, the state of the fuel electrode 1 hour after the power generation test was almost maintained. As described above, the fuel electrode using the manufacturing method of the present invention has an effect of suppressing sintering of Ni particles, and can improve the life characteristics of the fuel electrode as compared with the conventional method.
[ 0030 ]
For the purpose of evaluating the electron conductivity of the electrode, a molded sintered body was produced using each of the fuel electrode raw material powders produced by the method of the present invention and the conventional production method, and the conductivity of the sintered body was measured. It was measured. First, 4 g of each raw material powder was press-formed at a compression strength of 2 t / cm 2 so as to form a disk having a diameter of 25 mm, and then the pressed body was formed at 1250 ° C. It was fired. A sample for measuring conductivity having a width of 3 mm and a length of about 15 mm was cut out from the sintered sample, and the conductivity was measured by a DC four-terminal method in a hydrogen reducing atmosphere at 1000 ° C.
[ 0031 ]
FIG. 4 shows the change over time of the electrical conductivity of the molded sintered body using the raw material powder according to the method of the present invention and the conventional method. In the figure, A is the change over time in the conductivity of the example according to the present invention and B is the change over time in the conductivity of the comparative example. From such characteristics, it can be seen that in the fuel electrode using the manufacturing method according to the present invention, the decrease in conductivity with time is small, and sintering between Ni particles is suppressed. Also, the value of the conductivity according to the present invention is more than two orders of magnitude higher than that according to the conventional method, and exhibits high electron conductivity, so that electrons generated at the three-phase interface can be efficiently collected. .
[ 0032 ]
In this embodiment, the case where the average particle size of the powder of the oxide 8YSZ having oxygen ion conductivity is 0.4 μm is shown. However, similar good results are obtained when the particle size is in the range of 0.2 μm to 1 μm. Was done. The case where the average particle size of the NiO powder was 2 μm was shown, but similar good results were obtained when the particle size was in the range of 0.1 μm to 3 μm. Further, in the present embodiment, the case where the weight ratio of the total NiO (total weight of NiO and NiO powder held in the 8YSZ powder) and the 8YSZ powder is 50:50 wt% is shown, but the total weight of both is added. Similar good results were obtained when the weight ratio of 8YSZ to the mixture was in the range of 40 wt% to 60 wt%.
[ 0033 ]
【The invention's effect】
The electrode structure manufactured by the present invention has the following effects. First, since the metal fine particles are highly dispersed on the surface of the oxide powder, the three-phase interface becomes very large, and an electrode having a small voltage drop due to the electrode reaction and excellent output characteristics can be obtained. In addition, since the metal fine particles are held by the oxide powder, sintering between the metal particles hardly occurs, and an electrode having excellent long-term stability and little deterioration over time can be obtained. Furthermore, high electron conductivity is exhibited by the presence of the metal powder which is not retained by the oxide powder.
[Brief description of the drawings]
FIG. 1 is a schematic view of a fuel electrode using a raw material powder according to a production method of the present invention.
FIG. 2 is a TEM image photograph of a YSZ powder holding Ni fine particles produced by the production method of the present invention.
FIG. 3 is a diagram showing a change over time of a voltage in a power generation test of a cell using a fuel electrode manufactured from a raw material powder according to the manufacturing method of the present invention.
FIG. 4 is a diagram showing a change over time in the electrical conductivity of a fuel electrode produced from a raw material powder according to the production method of the present invention.
[Explanation of symbols]
1 Metal fine particles 2 Oxide powder 3 Metal oxide powder

Claims (4)

酸素イオン導電性を有する酸化物粉末をニッケルイオンまたはコバルトイオンを含む溶液中に浸す工程と、
該酸化物粉末を乾燥する工程と、
乾燥した該酸化物粉末を加熱処理によって該酸化物粉末表面にニッケルまたはコバルトを酸化物の状態で保持させる工程と、
以上の工程によって得られた表面にニッケル酸化物またはコバルト酸化物の微粒子を保持した酸素イオン導電性を有する酸化物粉末に、ニッケルまたはコバルトの酸化物粉末を混合して固体電解質型燃料電池の電極の原料粉末を作製する工程と、
前記原料粉末を成形する工程と、
成形した前記原料粉末を焼結する工程と、
から成り、前記酸素イオン導電性を有する酸化物粉末がイットリア安定化ジルコニアまたはサマリアドープセリアであることを特徴とする固体電解質型燃料電池の電極の製造方法。
Immersing the oxide powder having oxygen ion conductivity in a solution containing nickel ions or cobalt ions,
Drying the oxide powder;
A step of holding nickel or cobalt in an oxide state on the surface of the dried oxide powder by heat treatment,
An electrode of a solid oxide fuel cell is prepared by mixing nickel or cobalt oxide powder with oxygen ion conductive oxide powder having nickel oxide or cobalt oxide particles retained on the surface obtained by the above steps. Producing a raw material powder of
Forming the raw material powder,
Sintering the formed raw material powder,
And wherein the oxide powder having oxygen ion conductivity is yttria-stabilized zirconia or samarium-doped ceria .
前記原料粉末の全重量に占める酸素イオン導電性を有する酸化物粉未の重量が、40%から60%であることを特徴とする請求項7記載の固体電解質型燃料電池の電極の製造方法。The method for producing an electrode for a solid oxide fuel cell according to claim 7, wherein the weight of the oxide powder having oxygen ion conductivity in the total weight of the raw material powder is 40% to 60%. 前記加熱処理の温度が、ニッケルイオンまたはコバルトイオンを含む溶液中に浸すことで前記酸化物粉末の粒子表面に付着したニッケル化合物またはコバルト化合物が、熱分解によりニッケル酸化物またはコバルト酸化物になる温度以上の温度であることを特徴とする請求項1または2に記載の固体電解質型燃料電池の電極の製造方法。The temperature of the heat treatment is a temperature at which a nickel compound or a cobalt compound attached to the particle surface of the oxide powder by being immersed in a solution containing nickel ions or cobalt ions becomes nickel oxide or cobalt oxide by thermal decomposition. method for producing a solid electrolyte fuel cell electrode according to claim 1 or 2, characterized in that the above temperature. 前記焼結の温度が、1200℃から1600℃の範囲であることを特徴とする請求項1から3に記載の固体電解質型燃料電池の電極の製造方法。The method for producing an electrode of a solid oxide fuel cell according to any one of claims 1 to 3 , wherein the sintering temperature is in a range of 1200C to 1600C.
JP03550298A 1998-02-02 1998-02-02 Method for manufacturing electrode of solid oxide fuel cell Expired - Fee Related JP3565696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03550298A JP3565696B2 (en) 1998-02-02 1998-02-02 Method for manufacturing electrode of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03550298A JP3565696B2 (en) 1998-02-02 1998-02-02 Method for manufacturing electrode of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH11219710A JPH11219710A (en) 1999-08-10
JP3565696B2 true JP3565696B2 (en) 2004-09-15

Family

ID=12443542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03550298A Expired - Fee Related JP3565696B2 (en) 1998-02-02 1998-02-02 Method for manufacturing electrode of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3565696B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841512B1 (en) * 1999-04-12 2005-01-11 Ovonic Battery Company, Inc. Finely divided metal catalyst and method for making same
DE10031102C2 (en) * 2000-06-30 2003-03-06 Forschungszentrum Juelich Gmbh Process for producing a composite body, in particular an electrode with temperature-resistant conductivity
WO2003071624A2 (en) 2002-02-20 2003-08-28 Acumentrics Corporation Fuel cell stacking and sealing
WO2004049491A1 (en) 2002-10-25 2004-06-10 Antonino Salvatore Arico SOLID OXIDE FUEL CELL WITH CERMET Cu/Ni ALLOY ANODE
KR100622711B1 (en) * 2004-07-13 2006-09-14 현대자동차주식회사 The anode of solid oxide fuel cell with networking structure and the preparing method of it
JP2006040612A (en) * 2004-07-23 2006-02-09 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fuel electrode raw material powder of solid electrolyte fuel cell, its manufacturing method, fuel electrode, and solid electrolyte fuel cell
US8828618B2 (en) * 2007-12-07 2014-09-09 Nextech Materials, Ltd. High performance multilayer electrodes for use in reducing gases
JP5248177B2 (en) * 2008-04-11 2013-07-31 東京瓦斯株式会社 Horizontally-striped solid oxide fuel cell stack and manufacturing method thereof
JP2014067564A (en) * 2012-09-25 2014-04-17 Nippon Shokubai Co Ltd Solid oxide fuel battery, and power generation method by use thereof
JP7349846B2 (en) * 2019-08-26 2023-09-25 日本特殊陶業株式会社 Electrochemical cell, electrochemical reaction cell stack
JP7349847B2 (en) * 2019-08-26 2023-09-25 日本特殊陶業株式会社 Electrochemical cell, electrochemical reaction cell stack
JP7190602B1 (en) * 2022-03-31 2022-12-15 株式会社ノリタケカンパニーリミテド Electrochemical cell and its use
WO2024122787A1 (en) * 2022-12-05 2024-06-13 Samsung Electro-Mechanics Co., Ltd. Solid oxide cell

Also Published As

Publication number Publication date
JPH11219710A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP4663125B2 (en) Method for producing anode for solid oxide fuel cell
US7838141B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
US6017647A (en) Electrode structure for solid state electrochemical devices
CN101485018A (en) Ceramic material combination for an anode of a high-temperature fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
CN111910201B (en) Hydrogen electrode of solid oxide electrolytic cell, preparation method of hydrogen electrode and solid oxide electrolytic cell
JP3981418B2 (en) Electrode structure for solid state electrochemical devices
Sun et al. Study on Sm1. 8Ce0. 2CuO4–Ce0. 9Gd0. 1O1. 95 composite cathode materials for intermediate temperature solid oxide fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
KR102332235B1 (en) Cathode containing palladium/ceria nanoparticles for solid oxide electrolysis cell and preparation method thereof
JP6889900B2 (en) Anode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
JP2008546161A (en) Deposition of electrodes for solid oxide fuel cells
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
JP2003308846A (en) Perovskite oxide and air electrode for fuel cell
JP3448242B2 (en) Solid electrolyte fuel cell
JP4428946B2 (en) Fuel electrode for solid oxide fuel cell
JP2004335131A (en) Fuel electrode for solid oxide fuel cell and its manufacturing method
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JPH0381959A (en) Solid electrolyte fuel cell
US20050074664A1 (en) Solid oxide fuel cell electrode and method of manufacturing the same
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
KR101218602B1 (en) The Manufacturing method of Low Temperature Operating Solid Oxide Fuel Cell composed Silver Nano Particles and Solid Oxide Fuel Cell manufactured thereby
JP5112711B2 (en) Method for producing electrode for solid oxide fuel cell and solid oxide fuel cell
JP2005174664A (en) Solid electrolyte fuel cell
JP2019160794A (en) Anode for solid oxide fuel cell and solid oxide fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees