JP2003288919A - Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same - Google Patents

Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same

Info

Publication number
JP2003288919A
JP2003288919A JP2002090465A JP2002090465A JP2003288919A JP 2003288919 A JP2003288919 A JP 2003288919A JP 2002090465 A JP2002090465 A JP 2002090465A JP 2002090465 A JP2002090465 A JP 2002090465A JP 2003288919 A JP2003288919 A JP 2003288919A
Authority
JP
Japan
Prior art keywords
electrically conductive
fuel cell
solid oxide
oxide fuel
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002090465A
Other languages
Japanese (ja)
Inventor
Satoshi Sugita
敏 杉田
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002090465A priority Critical patent/JP2003288919A/en
Publication of JP2003288919A publication Critical patent/JP2003288919A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material with higher electric conductivity than a lanthanum chromite based ceramic material and its manufacturing method, and to provide an inter connector using this material. <P>SOLUTION: The electric conductive ceramics are comprised of (La<SB>1-x</SB>M<SB>x</SB>) TiO<SB>3</SB>±<SB>δ</SB>(in the formula, M is at least one element selected from Sr, Ba, and Ca; 0≤x≤1.0), and Sc<SB>m</SB>Mg<SB>n</SB>Ti<SB>(2-m-n)</SB>O<SB>3</SB>±<SB>δ</SB>(in the formula, 0≤m≤1.0, 0≤n≤1.0; m+n=1.0), and a method for manufacturing the ceramic in a reducing atmosphere is provided, and the inter connector 12 is manufactured with the ceramic. Therefore, by using the inter connector manufactured with the electric conductive ceramics, a solid oxide fuel cell with less loss and high performance is realized. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、電気伝導性セラミックスおよび
その製造方法、ならびにそれを用いた固体酸化物形燃料
電池用インターコネクタ、特にインターコネクタの形成
材料の改良に関するものである。
TECHNICAL FIELD The present invention relates to an electrically conductive ceramic, a method for producing the same, and an interconnector for a solid oxide fuel cell using the same, and more particularly to improvement of a material for forming the interconnector.

【0002】[0002]

【従来技術】燃料電極と酸化剤電極がセラミックスの電
解質を介して配置され、燃料として最終的に水素を、酸
化剤として酸素や空気を供給することで、水の電気分解
の逆の反応を利用して発電する固体酸化物形燃料電池で
は、燃料電池の実用上十分な発電量を得るためには、上
述の固体酸化物形燃料電池の単位構成要素(単セル)を
複数個、直列および並列に電気的に接続すること(スタ
ック化)が必要となる。
2. Description of the Related Art A fuel electrode and an oxidizer electrode are arranged via a ceramic electrolyte, and hydrogen is finally supplied as a fuel, and oxygen and air are supplied as an oxidizer, thereby utilizing the reverse reaction of electrolysis of water. In order to obtain a sufficient amount of power generation for a fuel cell, a solid oxide fuel cell that generates electric power by using a plurality of unit components (single cells) of the solid oxide fuel cell described above in series and in parallel. Need to be electrically connected to (stacking).

【0003】燃料電池動作の際には、電池の負極側(燃
料電極側)では還元雰囲気に、正極側(酸化剤電極側)
では酸化雰囲気に晒され、かつ、十分な発電効率を得る
ためには、電解質のイオン伝導性を確保し容易に酸化還
元がおこる600℃以上の高温に燃料電池本体を保つ必
要がある。
During fuel cell operation, the negative electrode side (fuel electrode side) of the cell is in a reducing atmosphere and the positive electrode side (oxidizer electrode side).
Then, in order to be exposed to an oxidizing atmosphere and to obtain sufficient power generation efficiency, it is necessary to maintain the ionic conductivity of the electrolyte and to keep the fuel cell main body at a high temperature of 600 ° C. or higher at which redox easily occurs.

【0004】従って、固体酸化物形燃料電池におけるセ
ル間接続では正極もしくは負極の一方をガス不透過でか
つ電気伝導性のあるセラミックス材料(インターコネク
タ)で被覆しこのインターコネクタとインターコネクタ
で被覆しなかった電極を高温酸化雰囲気下もしくは高温
還元雰囲気下において電気的に接続しなければならな
い。
Therefore, in the inter-cell connection in the solid oxide fuel cell, one of the positive electrode and the negative electrode is covered with a gas-impermeable and electrically conductive ceramic material (interconnector) and covered with this interconnector and the interconnector. The missing electrodes must be electrically connected in a high temperature oxidizing atmosphere or a high temperature reducing atmosphere.

【0005】[0005]

【発明が解決しようとする課題】従来、インターコネク
タ用の材料には酸化還元両方の雰囲気における安定性と
イオン伝導性の小さいことが要求されることから、Ca
OあるいはSrOを固溶したランタンクロマイト系の電
気伝導性セラミックスが用いられている。
Conventionally, since materials for interconnectors are required to have low stability in both redox atmosphere and low ionic conductivity, Ca
Lanthanum chromite type electrically conductive ceramics in which O or SrO is dissolved is used.

【0006】しかしながら、このランタンクロマイト系
セラミックスは、還元雰囲気において電気伝導度が低下
するため、セル間の電気抵抗が十分に小さいものとはな
りきれず、燃料電池自身の内部抵抗の増加となる。この
ことが燃料電池の性能向上を阻んでいる。
However, this lanthanum chromite-based ceramic has a low electric conductivity in a reducing atmosphere, so that the electric resistance between the cells cannot be sufficiently small, and the internal resistance of the fuel cell itself increases. This hinders the performance improvement of the fuel cell.

【0007】本発明は、還元雰囲気においてランタンク
ロマイト系セラミックス材料よりも電気伝導性の高い材
料及びその製造方法を提供し、その材料を用いたインタ
ーコネクタによって固体酸化物形燃料電池を構成するこ
とにより当該燃料電池の高性能化を図ることを目的とす
る。
The present invention provides a material having higher electrical conductivity than a lanthanum chromite ceramic material in a reducing atmosphere and a method for producing the same, and a solid oxide fuel cell is constructed by an interconnector using the material. The purpose is to improve the performance of the fuel cell.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明による電気伝導性セラミックスは、組成が下
記化学式で表されることを特徴とする。
In order to solve the above problems, the electrically conductive ceramics according to the present invention are characterized in that the composition is represented by the following chemical formula.

【0009】(La1-xx)TiO3±δ (ただし式中、MはSr,Ba,Caから選ばれる少な
くとも1種類の元素からなり、xは0≦x≦1.0を示
す)
(La 1-x M x ) TiO 3 ± δ (where M is at least one element selected from Sr, Ba and Ca, and x is 0 ≦ x ≦ 1.0)

【0010】さらに 本発明による電気伝導性セラミッ
クスは、組成が下記化学式で表されることを特徴とす
る。
Further, the electrically conductive ceramics according to the present invention is characterized in that the composition is represented by the following chemical formula.

【0011】ScmMgnTi(2-m-n)3±δ (ただし、式中、n,mは0≦m≦1.0、0≦n≦
1.0、m+n=1.0を示す)
Sc m Mg n Ti (2-mn) O 3 ± δ (where n and m are 0 ≦ m ≦ 1.0 and 0 ≦ n ≦
1.0, m + n = 1.0 is shown)

【0012】本発明は上述のような電気伝導性セラミッ
クスを製造する方法を提供するものであり、 (La1-xx)TiO3±δ (ただし式中、MはSr,Ba,Caから選ばれる少な
くとも1種類の元素からなり、xは0≦x≦1.0を示
す)で示される電気伝導性セラミックスを製造する電気
伝導性セラミックスの製造方法において、前記構成金属
の酸化物をxが上記範囲になるように混合し、還元雰囲
気中で焼成することを特徴とする。
The present invention provides a method for producing the electrically conductive ceramics as described above, wherein (La 1-x M x ) TiO 3 ± δ (where M is Sr, Ba or Ca) In the method for producing an electrically conductive ceramic, which comprises at least one selected element, and x represents 0 ≦ x ≦ 1.0), the oxide of the constituent metal is It is characterized in that they are mixed so as to be in the above range and are fired in a reducing atmosphere.

【0013】さらに本発明による電気伝導性セラミック
スの製造方法は、 ScmMgnTi(2-m-n)3±δ (ただし、式中、n,mは0≦m≦1.0、0≦n≦
1.0、m+n=1.0を示す)で示される電気伝導性
セラミックスを製造する電気伝導性セラミックスの製造
方法において、前記構成金属の酸化物をnおよびmが上
記範囲になるように混合し、還元雰囲気中で焼成するこ
とを特徴とする。
Further, the method for producing the electrically conductive ceramics according to the present invention is as follows: Sc m Mg n Ti (2-mn) O 3 ± δ (where n and m are 0 ≦ m ≦ 1.0 and 0 ≦ n ≦
1.0, m + n = 1.0), in the method for producing an electrically conductive ceramic, wherein the oxides of the constituent metals are mixed so that n and m are in the above ranges. , Firing in a reducing atmosphere.

【0014】本発明はまた、上述の電気伝導性セラミッ
クスを使用した固体酸化物形燃料電池用インターコネク
タに関するものであり、本発明による固体酸化物形燃料
電池用インターコネクタは、組成が下記化学式で表され
る電気伝導性セラミックスからなることを特徴とする。
The present invention also relates to a solid oxide fuel cell interconnector using the above-mentioned electrically conductive ceramics. The solid oxide fuel cell interconnector according to the present invention has a composition represented by the following chemical formula. It is characterized by being made of the electrically conductive ceramics represented.

【0015】(La1-xx)TiO3±δ (ただし式中、MはSr,Ba,Caから選ばれる少な
くとも1種類の元素からなり、xは0≦x≦1.0を示
す) また本発明による第2の固体酸化物形燃料電池用インタ
ーコネクタは、組成が下記化学式で表される電気伝導性
セラミックスからなることを特徴とする。
(La 1-x M x ) TiO 3 ± δ (where M is at least one element selected from Sr, Ba and Ca, and x is 0 ≦ x ≦ 1.0) Further, the second interconnector for a solid oxide fuel cell according to the present invention is characterized in that the composition is composed of an electrically conductive ceramic represented by the following chemical formula.

【0016】ScmMgnTi(2-m-n)3±δ (ただし、式中、n,mは0≦m≦1.0、0≦n≦
1.0、m+n=1.0を示す)
Sc m Mg n Ti (2-mn) O 3 ± δ (where, n and m are 0 ≦ m ≦ 1.0 and 0 ≦ n ≦
1.0, m + n = 1.0 is shown)

【0017】さらに上述の、固体酸化物形燃料電池用イ
ンターコネクタは、前記電気伝導性セラミックスを還元
雰囲気側に、ランタンクロマイト系材料を酸化雰囲気側
に用いることを特徴とする。
Further, the above-mentioned interconnector for a solid oxide fuel cell is characterized in that the electrically conductive ceramics are used in the reducing atmosphere side and the lanthanum chromite material is used in the oxidizing atmosphere side.

【0018】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0019】本発明における、還元雰囲気においてラン
タンクロマイト系セラミックスよりも高い電気伝導度を
有する材料は、(La1-xx)TiO3±δで表される
組成において、式中、MはSr,Ba,Caから選ばれ
る少なくとも1種類の元素からなり、xは0≦x≦1.
0を満足するように合成され、還元雰囲気で焼成するこ
とを特徴とする電気伝導性セラミックスである。なお、
式中、δはこの種のセラミックスがその環境などによっ
て酸素イオンが若干多すぎたり、少なすぎて、非化学量
論的になることを示している(この明細書中、δは同様
の意味を示している)。
In the present invention, the material having a higher electric conductivity than the lanthanum chromite type ceramics in the reducing atmosphere has a composition represented by (La 1-x M x ) TiO 3 ± δ , where M is Sr. , Ba, and Ca, and x is 0 ≦ x ≦ 1.
It is an electrically conductive ceramic which is synthesized so as to satisfy 0 and is fired in a reducing atmosphere. In addition,
In the formula, δ indicates that this type of ceramic becomes non-stoichiometric due to slightly too much or too little oxygen ions depending on its environment (in this specification, δ has the same meaning). Shown).

【0020】また、本発明における、還元雰囲気におい
てランタンクロマイト系セラミックスよりも高い電気伝
導度を有する材料は、ScmMgnTi(2-m-n)3±δ
表される組成において、式中、n,mは0≦m≦1.
0、0≦n≦1.0、0≦m+n=1.0を満足するよ
うに合成され、還元雰囲気で焼成することを特徴とする
電気伝導性セラミックスである。
In the present invention, the material having a higher electric conductivity than the lanthanum chromite ceramics in the reducing atmosphere has a composition represented by Sc m Mg n Ti (2-mn) O 3 ± δ , N and m are 0 ≦ m ≦ 1.
It is an electrically conductive ceramic which is synthesized so as to satisfy 0, 0 ≦ n ≦ 1.0 and 0 ≦ m + n = 1.0 and is fired in a reducing atmosphere.

【0021】これらの材料は還元雰囲気下においてラン
タンクロマイト系材料よりも高い電気伝導性を有してお
り、図1に示した平板型固体酸化物形燃料電池セルのイ
ンターコネクタ12や図2に示した中心対称平板型固体
酸化物形燃料電池セルのインターコネクタ22用の材料
として利用できる。すなわち、図1及び図2は、それぞ
れ平板型固体酸化物形燃料電池セルの断面図、中心対称
平板型固体酸化物形燃料電池セルの断面図であり、1
1、および21は単セルを示している。
These materials have higher electrical conductivity than the lanthanum chromite materials in a reducing atmosphere, and are shown in the interconnector 12 of the flat plate type solid oxide fuel cell shown in FIG. 1 and in FIG. Further, it can be used as a material for the interconnector 22 of a centrosymmetric flat plate type solid oxide fuel cell. That is, FIG. 1 and FIG. 2 are a cross-sectional view of a flat plate type solid oxide fuel cell and a center symmetric flat plate solid oxide fuel cell, respectively.
Reference numerals 1 and 21 indicate single cells.

【0022】また、上記平板型固体酸化物形燃料電池だ
けでなく、例えば(特開昭57−130381号)に示
されるような円筒型固体酸化物形燃料電池や(特開平0
6−168729号)に示される中空平板型固体酸化物
形燃料電池においてインターコネクタ材料として利用で
きる。
Further, not only the flat plate type solid oxide fuel cell but also the cylindrical type solid oxide fuel cell as shown in, for example, Japanese Patent Application Laid-Open No. 57-130381 and Japanese Patent Application Laid-Open No.
No. 6-168729), it can be used as an interconnector material in the hollow flat plate type solid oxide fuel cell.

【0023】しかしながら、本発明で示した材料は酸化
雰囲気において電気伝導度が低下するため、インターコ
ネクタを形成する際、インターコネクタのうち燃料側に
位置する部分に本発明の材料を用いて、空気側に位置す
る部分には従来材料であるランタンクロマイト系セラミ
ックスを用いることでもっとも効果が得られる。
However, since the electric conductivity of the materials shown in the present invention is lowered in an oxidizing atmosphere, when the interconnector is formed, the material of the present invention is used in the portion of the interconnector located on the fuel side to remove air. The most effective effect can be obtained by using lanthanum chromite ceramics, which is a conventional material, in the portion located on the side.

【0024】[0024]

【実施例】以下本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0025】上記の(La1-xx)TiO3±δ合成に
あたってはMがCa,Ba,Srいずれの場合にあって
も、xが0.5以下の場合は空気中での合成は困難とな
る。
In the above-mentioned (La 1-x M x ) TiO 3 ± δ synthesis, when M is Ca, Ba or Sr, when x is 0.5 or less, synthesis in air is not possible. It will be difficult.

【0026】この場合でも還元雰囲気中、たとえば水素
雰囲気中で焼成することにより電気伝導性のセラミック
ス粉末が得られる。図3にx=0.2とx=0.8の場
合を例として還元雰囲気における電気伝導度を示す。
Even in this case, an electrically conductive ceramic powder can be obtained by firing in a reducing atmosphere, for example, a hydrogen atmosphere. FIG. 3 shows the electric conductivity in a reducing atmosphere by taking x = 0.2 and x = 0.8 as an example.

【0027】各試料は所望の組成になるように、SrC
3、La23、TiO2粉末を混合し、窒素雰囲気中で
900℃仮焼きした後、微量の水素を流した窒素雰囲気
中において1400℃で焼成して得た。図3の比較から
明らかなように、還元雰囲気における電気伝導度がラン
タンクロマイトと比較して大きくなっている。X線回折
で確認した結晶構造はペロブスカイト型であった。
Each sample is made of SrC so as to have a desired composition.
O 3 , La 2 O 3 , and TiO 2 powders were mixed, calcined at 900 ° C. in a nitrogen atmosphere, and then calcined at 1400 ° C. in a nitrogen atmosphere containing a slight amount of hydrogen. As is clear from the comparison of FIG. 3, the electric conductivity in the reducing atmosphere is higher than that of the lanthanum chromite. The crystal structure confirmed by X-ray diffraction was a perovskite type.

【0028】実施にあたって、xの値は他の材料との熱
膨張係数や焼結特性を考慮して決めることが望まれる。
いずれの値でも還元雰囲気中での電気伝導度はランタン
クロマイト系材料よりも高いものが得られる。
In practice, it is desirable that the value of x be determined in consideration of the coefficient of thermal expansion with other materials and the sintering characteristics.
At any value, the electric conductivity in the reducing atmosphere is higher than that of the lanthanum chromite material.

【0029】またScmMgnTi(2-m-n)3±δ合成に
あっても同様に、Sc23、MgO、TiO2を所望の
組成になるように混合して窒素中で仮焼きした後、微量
の水素を流した窒素雰囲気中において1200℃にて焼
成することにより、電気伝導性セラミックス粉末が得ら
れる。
Also in the Sc m Mg n Ti (2-mn) O 3 ± δ synthesis, similarly, Sc 2 O 3 , MgO, and TiO 2 are mixed so as to have a desired composition, and temporarily mixed in nitrogen. After firing, firing is performed at 1200 ° C. in a nitrogen atmosphere in which a slight amount of hydrogen is flowed to obtain an electrically conductive ceramic powder.

【0030】このとき、m+nは1に近いことが好まし
い。図4にm=0.1、n=0.9の場合の還元雰囲気
における電気伝導度を示す。図4より、このセラミック
スにおいてもランタンクロマイト系材料に比べて還元雰
囲気における電気伝導度が高いものであることが判る。
At this time, m + n is preferably close to 1. FIG. 4 shows the electric conductivity in a reducing atmosphere when m = 0.1 and n = 0.9. From FIG. 4, it can be seen that this ceramic also has higher electric conductivity in the reducing atmosphere than the lanthanum chromite material.

【0031】したがってこれらの材料を用いてインター
コネクタを作製することにより、より高性能な固体酸化
物形燃料電池を構成できる。
Therefore, by producing an interconnector using these materials, a higher performance solid oxide fuel cell can be constructed.

【0032】しかしながらこれらの材料は過度の酸化雰
囲気に晒すと、電気伝導性が失われてしまう。それを防
ぐためには、インターコネクタの還元雰囲気に接する部
分に本発明による電気伝導性セラミックスを用い、酸化
雰囲気に接する部分に従来型のランタンクロマイト系の
材料を用いることによって達成することができる。この
ためには、2つの材料を共焼結によって焼成する方法
や、本発明の電気伝導性セラミックスで作られたインタ
ーコネクタ51の酸化雰囲気側に、図5に平板型インタ
ーコネクタ51の例を示すように、ランタンクロマイト
の被覆膜52を溶射法を用いて形成する方法などが考え
られる。
However, if these materials are exposed to an excessive oxidizing atmosphere, their electrical conductivity will be lost. In order to prevent this, the electrically conductive ceramics according to the present invention is used in the portion of the interconnector which is in contact with the reducing atmosphere, and the conventional lanthanum chromite material is used in the portion of the interconnector which is in contact with the oxidizing atmosphere. To this end, a method of firing two materials by co-sintering, or an example of a flat plate type interconnector 51 on the oxidizing atmosphere side of the interconnector 51 made of the electrically conductive ceramics of the present invention is shown in FIG. As described above, a method of forming the coating film 52 of lanthanum chromite by using the thermal spraying method can be considered.

【0033】電気伝導度の測定は、作製した粉末をプレ
ス成型にて5×5×30mmの角柱状に成型し、その後
1450℃で焼成して測定用試料とし、この試料に白金
と白金ぺーストにて4端子をとりつけた後、管状の電気
炉中(直径10cm)にて昇温し、還元雰囲気の下で各
温度にて四端子法で電気伝導度の測定を行った。還元雰
囲気としては、窒素95%水素5%の混合ガスを毎分1
リットルで流した雰囲気とした。
The electric conductivity is measured by pressing the produced powder into a column of 5 × 5 × 30 mm by press molding, and then firing at 1450 ° C. to obtain a sample for measurement. Platinum and a platinum paste are added to this sample. After mounting the four terminals in, the temperature was raised in a tubular electric furnace (diameter: 10 cm), and the electrical conductivity was measured by the four-terminal method at each temperature in a reducing atmosphere. As a reducing atmosphere, a mixed gas of 95% nitrogen and 5% hydrogen was used every minute.
The atmosphere was set to flow in liters.

【0034】[0034]

【発明の効果】以上の説明から明らかなように本発明の
電気伝導性セラミックスは還元雰囲気でランタンクロマ
イト系材料を超える電気伝導性を有する。この特徴を生
かすように本発明の電気伝導性セラミックスを用いて固
体酸化物形燃料電池のインターコネクタを作製すること
で、従来より損失の少ない高性能な固体酸化物形燃料電
池を実現できる。
As is apparent from the above description, the electrically conductive ceramics of the present invention have an electrical conductivity that exceeds that of the lanthanum chromite material in the reducing atmosphere. By producing an interconnector for a solid oxide fuel cell using the electrically conductive ceramics of the present invention so as to make full use of this characteristic, a high-performance solid oxide fuel cell with less loss than before can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】平板型固体酸化物形燃料電池におけるインター
コネクタを説明する断面図。
FIG. 1 is a cross-sectional view illustrating an interconnector in a flat plate solid oxide fuel cell.

【図2】中心対称平板型固体酸化物形燃料電池における
インターコネクタを説明する断面図。
FIG. 2 is a cross-sectional view illustrating an interconnector in a centrally symmetric flat plate type solid oxide fuel cell.

【図3】還元雰囲気における電気伝導度を示す図。FIG. 3 is a diagram showing electric conductivity in a reducing atmosphere.

【図4】m=1.0、n=0.9の場合の還元雰囲気に
おける電気伝導度を示す図。
FIG. 4 is a diagram showing electric conductivity in a reducing atmosphere when m = 1.0 and n = 0.9.

【図5】平板型インターコネクタの一例の断面図。FIG. 5 is a cross-sectional view of an example of a flat plate type interconnector.

【符号の説明】[Explanation of symbols]

11 単セル 12 インターコネクタ 21 単セル 22 インターコネクタ 51 平板型セルのインターコネクタ 52 被覆膜 11 single cells 12 Interconnector 21 single cell 22 Interconnector 51 Flat cell interconnector 52 coating

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 組成が下記化学式で表されることを特徴
とする電気伝導性セラミックス。 (La1-xx)TiO3±δ (ただし式中、MはSr,Ba,Caから選ばれる少な
くとも1種類の元素からなり、xは0≦x≦1.0を示
す)
1. An electrically conductive ceramics having a composition represented by the following chemical formula. (La 1-x M x ) TiO 3 ± δ (wherein M is at least one element selected from Sr, Ba, and Ca, and x represents 0 ≦ x ≦ 1.0)
【請求項2】 組成が下記化学式で表されることを特徴
とする電気伝導性セラミックス。 ScmMgnTi(2-m-n)3±δ (ただし、式中、n,mは0≦m≦1.0、0≦n≦
1.0、m+n=1.0を示す)
2. An electrically conductive ceramic having a composition represented by the following chemical formula. Sc m Mg n Ti (2-mn) O 3 ± δ (where n and m are 0 ≦ m ≦ 1.0 and 0 ≦ n ≦
1.0, m + n = 1.0 is shown)
【請求項3】 (La1-xx)TiO3±δ (ただし式中、MはSr,Ba,Caから選ばれる少な
くとも1種類の元素からなり、xは0≦x≦1.0を示
す)で示される電気伝導性セラミックスを製造する電気
伝導性セラミックスの製造方法において、前記構成金属
の酸化物をxが上記範囲になるように混合し、還元雰囲
気中で焼成することを特徴とする電気伝導性セラミック
スの製造方法。
3. (La 1-x M x ) TiO 3 ± δ (wherein M is at least one element selected from Sr, Ba and Ca, and x is 0 ≦ x ≦ 1.0. In the method for producing an electrically conductive ceramic for producing an electrically conductive ceramic as shown in (1), the oxides of the constituent metals are mixed so that x is in the above range, and the mixture is fired in a reducing atmosphere. Manufacturing method of electrically conductive ceramics.
【請求項4】 ScmMgnTi(2-m-n)3±δ (ただし、式中、n,mは0≦m≦1.0、0≦n≦
1.0、m+n=1.0を示す)で示される電気伝導性
セラミックスを製造する電気伝導性セラミックスの製造
方法において、前記構成金属の酸化物をnおよびmが上
記範囲になるように混合し、還元雰囲気中で焼成するこ
とを特徴とする電気伝導性セラミックスの製造方法。
4. Sc m Mg n Ti (2-mn) O 3 ± δ (wherein n and m are 0 ≦ m ≦ 1.0 and 0 ≦ n ≦
1.0, m + n = 1.0), in the method for producing an electrically conductive ceramic, wherein the oxides of the constituent metals are mixed so that n and m are in the above ranges. A method for producing electrically conductive ceramics, which comprises firing in a reducing atmosphere.
【請求項5】 組成が下記化学式で表される電気伝導性
セラミックスからなることを特徴とする固体酸化物形燃
料電池用インターコネクタ。 (La1-xx)TiO3±δ (ただし式中、MはSr,Ba,Caから選ばれる少な
くとも1種類の元素からなり、xは0≦x≦1.0を示
す)
5. An interconnector for a solid oxide fuel cell, characterized in that the composition is composed of electrically conductive ceramics represented by the following chemical formula. (La 1-x M x ) TiO 3 ± δ (wherein M is at least one element selected from Sr, Ba, and Ca, and x represents 0 ≦ x ≦ 1.0)
【請求項6】 組成が下記化学式で表される電気伝導性
セラミックスからなることを特徴とする固体酸化物形燃
料電池用インターコネクタ。 ScmMgnTi(2-m-n)3±δ (ただし、式中、n,mは0≦m≦1.0、0≦n≦
1.0、m+n=1.0を示す)
6. An interconnector for a solid oxide fuel cell, the composition of which is composed of an electrically conductive ceramic represented by the following chemical formula. Sc m Mg n Ti (2-mn) O 3 ± δ (where n and m are 0 ≦ m ≦ 1.0 and 0 ≦ n ≦
1.0, m + n = 1.0 is shown)
【請求項7】 前記電気伝導性セラミックスを還元雰囲
気側に、ランタンクロマイト系材料を酸化雰囲気側に用
いることを特徴とする請求項5または6記載の固体酸化
物形燃料電池用インターコネクタ。
7. The interconnector for a solid oxide fuel cell according to claim 5, wherein the electrically conductive ceramic is used on the reducing atmosphere side and the lanthanum chromite material is used on the oxidizing atmosphere side.
JP2002090465A 2002-03-28 2002-03-28 Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same Pending JP2003288919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002090465A JP2003288919A (en) 2002-03-28 2002-03-28 Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090465A JP2003288919A (en) 2002-03-28 2002-03-28 Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2003288919A true JP2003288919A (en) 2003-10-10

Family

ID=29235774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090465A Pending JP2003288919A (en) 2002-03-28 2002-03-28 Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2003288919A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016627A1 (en) * 2004-08-10 2006-02-16 Central Research Institute Of Electric Power Industry Film-formed article and method for producing same
JP2008270203A (en) * 2007-03-28 2008-11-06 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell and water electrolysis cell
WO2009085143A1 (en) * 2007-12-21 2009-07-09 Saint-Gobain Ceramics & Plastics, Inc. Ceramic interconnect for fuel cell stacks
EP2108205A1 (en) * 2006-12-28 2009-10-14 Saint-Gobain Ceramics and Plastics, Inc. Titanate and metal interconnects for solid oxide fuel cells
US20100183947A1 (en) * 2008-12-18 2010-07-22 Saint-Gobain Ceramics & Plastics, Inc. Highly Sinterable Lanthanum Strontium Titanate Interconnects Through Doping
JP2013069666A (en) * 2011-09-08 2013-04-18 Ngk Insulators Ltd Solid oxide type fuel cell
JP2013077543A (en) * 2011-09-12 2013-04-25 Ngk Insulators Ltd Solid oxide fuel cell
US9406963B2 (en) 2011-12-22 2016-08-02 Saint-Gobain Ceramics & Plastics, Inc. Solid oxide fuel cell interconnects including a ceramic interconnect material and partially stabilized zirconia

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128988B2 (en) 2004-08-10 2012-03-06 Central Research Institute Of Electric Power Industry Film-formed article and method for producing same
JPWO2006016627A1 (en) * 2004-08-10 2008-05-01 財団法人電力中央研究所 Film formation and method for producing the same
JP5108305B2 (en) * 2004-08-10 2012-12-26 一般財団法人電力中央研究所 Film formation and method for producing the same
WO2006016627A1 (en) * 2004-08-10 2006-02-16 Central Research Institute Of Electric Power Industry Film-formed article and method for producing same
KR100960582B1 (en) 2004-08-10 2010-06-03 자이단호징 덴료쿠추오켄큐쇼 Film-formed article and method for producing same
EP2108205A1 (en) * 2006-12-28 2009-10-14 Saint-Gobain Ceramics and Plastics, Inc. Titanate and metal interconnects for solid oxide fuel cells
JP2010515225A (en) * 2006-12-28 2010-05-06 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Interconnecting member for solid oxide fuel cell comprising metal and titanate
US8846270B2 (en) 2006-12-28 2014-09-30 Saint-Gobain Ceramics & Plastics, Inc. Titanate and metal interconnects for solid oxide fuel cells
JP2008270203A (en) * 2007-03-28 2008-11-06 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell and water electrolysis cell
US10008727B2 (en) 2007-12-21 2018-06-26 Saint-Gobain Ceramics & Plastics, Inc. Ceramic interconnect for fuel cell stacks
WO2009085143A1 (en) * 2007-12-21 2009-07-09 Saint-Gobain Ceramics & Plastics, Inc. Ceramic interconnect for fuel cell stacks
US20140099567A1 (en) * 2007-12-21 2014-04-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic interconnect for fuel cell stacks
JP2011519114A (en) * 2007-12-21 2011-06-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceramic interconnects for fuel cell stacks
KR101196658B1 (en) 2007-12-21 2012-11-05 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Ceramic interconnect for fuel cell stacks
JP2012512810A (en) * 2008-12-18 2012-06-07 サンゴバン・セラミックス・アンド・プラスティックス・インコーポレイティッド Highly sintered lanthanum strontium titanate interconnects by doping
US9225024B2 (en) * 2008-12-18 2015-12-29 Saint-Gobain Ceramics & Plastics, Inc. Highly sinterable lanthanum strontium titanate interconnects through doping
US20100183947A1 (en) * 2008-12-18 2010-07-22 Saint-Gobain Ceramics & Plastics, Inc. Highly Sinterable Lanthanum Strontium Titanate Interconnects Through Doping
US20130266889A1 (en) * 2011-09-08 2013-10-10 Ngk Insulators, Ltd. Solid oxide fuel cell
JP2013069666A (en) * 2011-09-08 2013-04-18 Ngk Insulators Ltd Solid oxide type fuel cell
US10511033B2 (en) * 2011-09-08 2019-12-17 Ngk Insulators, Ltd. Solid oxide fuel cell
JP2013077543A (en) * 2011-09-12 2013-04-25 Ngk Insulators Ltd Solid oxide fuel cell
US9406963B2 (en) 2011-12-22 2016-08-02 Saint-Gobain Ceramics & Plastics, Inc. Solid oxide fuel cell interconnects including a ceramic interconnect material and partially stabilized zirconia

Similar Documents

Publication Publication Date Title
JPH11335164A (en) Oxide ionic conductor and use thereof
JP3553378B2 (en) Cylindrical solid oxide fuel cell
JPH04341765A (en) Manufacture of lanthanum chromite film and interconnector for solid electrolyte fuel cell
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
JP5368139B2 (en) Solid oxide fuel cell
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
JP3456436B2 (en) Solid oxide fuel cell
JP4374631B2 (en) Oxide ion mixed conductor and its application
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JPH09180731A (en) Solid electrolyte fuel cell
JP2001052725A (en) Material for peripheral member of cylindrical solid electrolyte fuel cell and cell making use of the same
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
JP3256919B2 (en) Solid electrolyte fuel cell
JP2002053374A (en) Multiple oxide for air pole of solid electrolytic fuel cell and for electric collector raw material, its manufacturing method and solid electrolytic fuel cell
JP3755545B2 (en) Composite ceramics, separator containing the same, and solid oxide fuel cell using the separator
JP3446649B2 (en) Method for producing oxide ion conductor
JPH0436962A (en) Fuel cell with solid electrolyte
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell
JP4450179B2 (en) NiO-cerium-containing oxide mixed material and solid oxide fuel cell having the same
JP6819638B2 (en) Oxide ion conductors and electrochemical devices
JP3346668B2 (en) Solid oxide fuel cell
JP4018797B2 (en) Electron conductive ceramics