JP3119084B2 - Air electrode and air electrode side current collector for solid oxide fuel cell - Google Patents

Air electrode and air electrode side current collector for solid oxide fuel cell

Info

Publication number
JP3119084B2
JP3119084B2 JP06201935A JP20193594A JP3119084B2 JP 3119084 B2 JP3119084 B2 JP 3119084B2 JP 06201935 A JP06201935 A JP 06201935A JP 20193594 A JP20193594 A JP 20193594A JP 3119084 B2 JP3119084 B2 JP 3119084B2
Authority
JP
Japan
Prior art keywords
air electrode
current collector
thermal expansion
side current
linear thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06201935A
Other languages
Japanese (ja)
Other versions
JPH0864222A (en
Inventor
和俊 村田
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to JP06201935A priority Critical patent/JP3119084B2/en
Publication of JPH0864222A publication Critical patent/JPH0864222A/en
Application granted granted Critical
Publication of JP3119084B2 publication Critical patent/JP3119084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池
(SOFC)用空気極及び空気極側集電板に係り、特
に、電解質との熱膨張係数の差が小さく、しかも電気伝
導性、電極活性に優れたSOFC用空気極及び空気極側
集電板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air electrode for a solid oxide fuel cell (SOFC) and an air electrode side current collector, and more particularly to a small difference in thermal expansion coefficient between the electrolyte and the electrolyte, and furthermore, to an electric conductivity and an electrode. The present invention relates to an air electrode for an SOFC and an air electrode side current collector having excellent activity.

【0002】[0002]

【従来の技術】SOFCは、イットリア安定化ジルコニ
ア(YSZ)よりなる電解質膜に燃料極(アノード)及
び空気極(カソード)の電極膜を積層した構成とされて
いる。従来、空気極電極材料及び空気極側集電板材料と
しては、SrをドープしたLaMnO3 、即ち、La
1-y Sry MnO3 (y=0.1〜0.4)が広く用い
られている。即ち、LaMnO3 にSrをドープするこ
とにより、作動条件下での電気伝導性、電極活性が向上
し、良好な空気極及び空気極側集電板が提供される。こ
の電気伝導性、電極活性の向上効果は、LaMnO3
のSrのドープ量に比例し、Srのドープ量が多い程、
電気伝導性、電極活性に優れた空気極及び空気極側集電
板が提供される。
2. Description of the Related Art An SOFC has a structure in which electrode films of a fuel electrode (anode) and an air electrode (cathode) are laminated on an electrolyte membrane made of yttria-stabilized zirconia (YSZ). Conventionally, Sr-doped LaMnO 3 , that is, La, has been used as an air electrode material and an air electrode side current collector plate material.
1-y Sr y MnO 3 ( y = 0.1~0.4) is widely used. That is, by doping LaMnO 3 with Sr, electric conductivity and electrode activity under operating conditions are improved, and a good air electrode and an air electrode side current collector are provided. The effect of improving the electrical conductivity and the electrode activity is proportional to the doping amount of Sr into LaMnO 3 .
An air electrode and an air electrode side current collector excellent in electric conductivity and electrode activity are provided.

【0003】[0003]

【発明が解決しようとする課題】しかし、LaMnO3
にSrをドープすることにより、この材料の線熱膨張係
数は大きくなり、電解質を構成するジルコニア質材料
(具体的にはイットリア安定化ジルコニア(YSZ))
の線熱膨張係数(10×10-6/K程度)との整合性は
大きく崩れる。この電解質の線熱膨張係数との整合性
は、LaMnO3 へのSrのドープ量が多い程悪化す
る。このような空気極及び空気極側集電板の線熱膨張係
数と電解質の線熱膨張係数との不整合は、電池内部に熱
応力を発生させ、著しい場合には電池を破壊に至らせ
る。
However, LaMnO 3
Is doped with Sr, the coefficient of linear thermal expansion of this material is increased, and the zirconia material constituting the electrolyte (specifically, yttria-stabilized zirconia (YSZ))
Of the thermal expansion coefficient (about 10.times.10.sup.-6 / K) is greatly lost. The consistency with the coefficient of linear thermal expansion of this electrolyte becomes worse as the doping amount of Sr into LaMnO 3 increases. Such a mismatch between the linear thermal expansion coefficient of the air electrode and the linear thermal expansion coefficient of the air electrode-side current collector plate and the linear thermal expansion coefficient of the electrolyte generates thermal stress inside the battery.

【0004】本発明は上記従来の問題点を解決し、電解
質との線熱膨張係数の整合性に優れ、しかも電気伝導
性、電極活性に優れたSOFC用空気極及び空気極側集
電板を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides an air electrode and an air electrode side current collector for an SOFC which have excellent linear thermal expansion coefficient matching with an electrolyte, and have excellent electric conductivity and electrode activity. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明のSOFC用空気
極及び空気極側集電板は、{(La1−x1−y
Sr}MnO(ただし、0.2≦x≦0.4,0.
1≦y≦0.4)で表される導電性セラミックス材料で
構成されることを特徴とする。
According to the present invention, an air electrode and an air electrode side current collector for an SOFC according to the present invention are formed as follows: {(La 1−x Y x ) 1−y
Sr y} MnO 3 (however, 0.2 ≦ x 0.4,0.
(1 ≦ y ≦ 0.4).

【0006】即ち、本発明者らは、従来の空気極及び空
気極側集電板材料であるLa1-y Sry MnO3 はSr
のドープ量を大きくする程電気伝導度は向上するが、電
解質との線熱膨張係数の整合性は失われるのに対し、Y
MnO3 系の材料は線熱膨張係数が小さいことに着目
し、LaMnO3 に電気伝導度を向上させる目的でSr
をドープしつつ、線熱膨張係数の整合性を保つ目的でY
をドープすることを見出し、本発明を完成させた。
Namely, the present inventors have, La 1-y Sr y MnO 3 is a conventional air electrode and an air electrode side current collector plate material Sr
Although the electrical conductivity improves as the doping amount of Y increases, the consistency of the linear thermal expansion coefficient with the electrolyte is lost.
Focusing on the fact that the MnO 3 -based material has a small coefficient of linear thermal expansion, LaMnO 3 is made of Sr for the purpose of improving electrical conductivity.
To maintain the consistency of the linear thermal expansion coefficient while doping
And completed the present invention.

【0007】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0008】本発明において、空気極及び空気極側集電
板の構成材料として用いる導電性セラミックスは、
{(La1−x1−ySr}MnO(ただ
し、0.2≦x≦0.4,0.1≦y≦0.4)で表さ
れるものである。
In the present invention, the conductive ceramic used as the constituent material of the air electrode and the air electrode side current collector is as follows:
{(La 1-x Y x ) 1-y Sr y} MnO 3 ( however, 0.2 ≦ x ≦ 0.4,0.1 ≦ y ≦ 0.4) is represented by.

【0009】ここで、Srドープによるyが0.1未満
では、電気伝導性及び電極活性の改善効果が十分でな
く、yが0.4を超えるとYの効果を打消すほどに線熱
膨張係数が大きくなる。
Here, if y due to Sr doping is less than 0.1, the effect of improving electric conductivity and electrode activity is not sufficient, and if y exceeds 0.4, the linear thermal expansion is so large that the effect of Y is negated. The coefficient increases.

【0010】また、xが0.4を超えるとペロブスカイ
トの単相構造ではなく、他の相が表出し、また、電気伝
導度が低下してくるため、xは0.4以下とする。xは
0.4以下の範囲で大きい程線熱膨張係数を電解質であ
るYSZの線熱膨張係数に近づけることができ、線熱膨
張係数の整合性の面から好ましい。xは少な過ぎるとY
ドープによる線熱膨張係数及び電気伝導度の改善効果が
十分に得られないことから、xは0.2〜0.4とす
On the other hand, if x exceeds 0.4, the perovskite does not have a single-phase structure, but other phases are exposed, and the electric conductivity decreases. Therefore, x is set to 0.4 or less. The larger the value of x in the range of 0.4 or less, the closer the coefficient of linear thermal expansion can be to the coefficient of linear thermal expansion of the electrolyte YSZ, which is preferable from the viewpoint of consistency of the coefficient of linear thermal expansion. x is too small Y
Since the effect of improving the linear thermal expansion coefficient and the electrical conductivity by the doping cannot be sufficiently obtained, x is set to 0 . It is a 2 to 0.4
You .

【0011】このような導電性セラミックス材料で構成
される本発明のSOFC用空気極又は空気極側集電板
は、常法に従って、La,Y,Sr,Mnの各成分の酸
化物や酢酸塩等の出発原料を所定の組成となるように混
合した後、1000〜1200℃で固相反応させ、その
後、成形、焼成することにより容易に製造することがで
きる。
The air electrode or air electrode side current collector for SOFC of the present invention composed of such a conductive ceramic material can be prepared according to a conventional method using oxides or acetates of La, Y, Sr, and Mn components. After the starting materials such as described above are mixed so as to have a predetermined composition, a solid-phase reaction is performed at 1000 to 1200 ° C., and then, molding and firing can be easily performed.

【0012】[0012]

【作用】Yイオンはペロブスカイト構造の中で、Laイ
オンと同じ3価の状態にある上に、そのサイトもLaと
同じAサイトを占有すると考えられる。このようなこと
から、YMnO3 系材料はLaMnO3 系材料と全率固
溶する。
It is considered that the Y ion is in the same trivalent state as the La ion in the perovskite structure, and its site occupies the same A site as La. For this reason, the YMnO 3 -based material is completely dissolved with the LaMnO 3 -based material.

【0013】ところで、YMnO3 系材料は電解質材料
であるYSZよりも線熱膨張係数が小さく、一方、La
MnO3 系材料はYSZよりも線熱膨張係数が大きい。
Incidentally, the YMnO 3 -based material has a smaller linear thermal expansion coefficient than YSZ which is an electrolyte material, while
MnO 3 -based materials have a higher linear thermal expansion coefficient than YSZ.

【0014】そこで、従来の空気極及び空気極側集電板
材料であるLa1-y Sry MnOにおいて、Laサイ
トの一部をYで置換したところ、線熱膨張係数を小さく
することができ、これにより、Srドープによる効果で
電気伝導度及び電極活性に優れ、しかも、Yドープによ
る効果で電解質との線熱膨張係数の整合性に優れた材料
が得られる。なお、このYドープによれば、電気伝導度
についても良好な向上効果が得られる。
[0014] Therefore, in La 1-y Sr y MnO 3 is a conventional air electrode and an air electrode side current collector plate material, where a portion of the La site was replaced by Y, is possible to reduce the coefficient of linear thermal expansion As a result, a material having excellent electrical conductivity and electrode activity due to the effect of Sr doping, and having excellent linear thermal expansion coefficient matching with the electrolyte due to the effect of Y doping can be obtained. In addition, according to this Y doping, a favorable effect of improving electric conductivity can be obtained.

【0015】[0015]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0016】実施例1 下記方法により、(La1−xx0.7 Sr0.3
nO3 (ただし、x=0.0,0.2,0.4,0.
6,0.8又は1.0)系導電性セラミックス材料を調
製した。
Example 1 (La 1−x Y x ) 0.7 Sr 0.3 M
nO 3 (where x = 0.0, 0.2, 0.4, 0.
6, 0.8 or 1.0) based conductive ceramic material was prepared.

【0017】即ち、まず、出発原料として酢酸ランタ
ン、酢酸ストロンチウム、酢酸マンガン、酸化イットリ
ウムを用い、これらを各々所定の組成となるように秤量
した後混合し、400℃で熱分解した。これを粉砕、混
合した後、一軸プレス成形し、1000℃で固相反応を
行った。
That is, first, lanthanum acetate, strontium acetate, manganese acetate, and yttrium oxide were used as starting materials, each of which was weighed so as to have a predetermined composition, mixed, and thermally decomposed at 400 ° C. This was pulverized and mixed, then subjected to uniaxial press molding, and subjected to a solid phase reaction at 1000 ° C.

【0018】この固相反応後の各試料の粉末X線回折結
果を図1〜6に示す。
The results of powder X-ray diffraction of each sample after the solid phase reaction are shown in FIGS.

【0019】図1〜6より明らかなように、x=0.
0,0.2,0.4ではペロブスカイト一相であるが、
x=0.4を超えるYのドープ量では、ピークがブロー
ドになり、また、ペロブスカイト以外の小さな第2相の
ピークが認められる。
As apparent from FIGS. 1 to 6, x = 0.
At 0, 0.2, and 0.4, the perovskite phase is one,
When the doping amount of Y exceeds x = 0.4, the peak becomes broad and a small peak of the second phase other than the perovskite is observed.

【0020】固相反応後の各試料を各々遊星型ボールミ
ルで粉砕し、一軸プレス成形を行った。これを1500
℃で5時間、大気中で焼成した。得られた焼結体から、
3mm×4mm×17mmの線熱膨張係数測定用試料
と、2mm×2mm×20mmの電気伝導度測定用試料
を切り出し、各々測定を行った。なお、線熱膨張係数の
測定は、大気中で室温から1400℃まで行った。ま
た、電気伝導度は1000℃、大気中で直流4端子法に
より測定した。これらの測定結果を表1に示す。
Each sample after the solid phase reaction was pulverized by a planetary ball mill, and subjected to uniaxial press molding. This is 1500
Calcination was performed in air at 5 ° C. for 5 hours. From the obtained sintered body,
A sample for measuring the linear thermal expansion coefficient of 3 mm × 4 mm × 17 mm and a sample for measuring the electric conductivity of 2 mm × 2 mm × 20 mm were cut out and measured. The linear thermal expansion coefficient was measured from room temperature to 1400 ° C. in the atmosphere. The electric conductivity was measured at 1000 ° C. in the air by a DC four-terminal method. Table 1 shows the measurement results.

【0021】[0021]

【表1】 [Table 1]

【0022】表1より、(La1−x0.7Sr
0.3MnO0.2≦x≦0.4)であれば、電解
質の線熱膨張係数の整合性に優れ、しかも電気伝導度も
高い導電性セラミックス材料が提供されることが明らか
である。
From Table 1, (La 1−x Y x ) 0.7 Sr
It is clear that 0.3 MnO 3 ( 0.2 ≦ x ≦ 0.4) provides a conductive ceramic material that is excellent in the consistency of the linear thermal expansion coefficient of the electrolyte and has high electric conductivity. is there.

【0023】即ち、x=0.2の割合でYをドープした
No. 2では、YをドープしていないNo. 1のものに比べ
て線熱膨張係数は11.5×10−6/Kと大きく低下
し、電解質材料であるYSZの線熱膨張係数10×10
−6/Kに近づく。しかも、電気伝導度についてもYド
ープにより向上効果が認められる。これにより、0.2
x≦0.4のYドープにより、線熱膨張係数及び電気
伝導度が共に改善されることが明らかである。
That is, Y was doped at a rate of x = 0.2.
In the case of No. 2, the linear thermal expansion coefficient was greatly reduced to 11.5 × 10 −6 / K as compared with that of No. 1 in which Y was not doped, and the linear thermal expansion coefficient of the electrolyte material YSZ was 10 ×. 10
Approach -6 / K. In addition, the effect of improving the electric conductivity by Y-doping is recognized. This gives 0.2
It is evident that the Y-doping with x ≦ 0.4 improves both the coefficient of linear thermal expansion and the electrical conductivity.

【0024】[0024]

【発明の効果】以上詳述した通り、本発明の固体電解質
型燃料電池によれば、電解質との線熱膨張係数差が小さ
く、従って、電池破壊の問題がなく、しかも、電気伝導
度、電極活性も高いSOFC用空気極及び空気極側集電
板が提供される。
As described above in detail, according to the solid oxide fuel cell of the present invention, the difference in linear thermal expansion coefficient between the electrolyte and the electrolyte is small, and therefore, there is no problem of cell destruction. An air electrode and an air electrode side current collector for an SOFC having high activity are provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.0)の粉末X線回折線図であ
る。
FIG. 1 (La 1-x Y x ) 0.7 Sr manufactured in Example 1
FIG. 3 is a powder X-ray diffraction diagram of 0.3 MnO 3 (x = 0.0).

【図2】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.2)の粉末X線回折線図であ
る。
FIG. 2 (La 1-x Y x ) 0.7 Sr manufactured in Example 1
FIG. 3 is a powder X-ray diffraction diagram of 0.3 MnO 3 (x = 0.2).

【図3】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.4)の粉末X線回折線図であ
る。
FIG. 3 (La 1-x Y x ) 0.7 Sr manufactured in Example 1
FIG. 3 is a powder X-ray diffraction diagram of 0.3 MnO 3 (x = 0.4).

【図4】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.6)の粉末X線回折線図であ
る。
FIG. 4 (La 1-x Y x ) 0.7 Sr produced in Example 1
FIG. 2 is a powder X-ray diffraction diagram of 0.3 MnO 3 (x = 0.6).

【図5】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=0.8)の粉末X線回折線図であ
る。
FIG. 5: (La 1-x Y x ) 0.7 Sr manufactured in Example 1
FIG. 2 is a powder X-ray diffraction diagram of 0.3 MnO 3 (x = 0.8).

【図6】実施例1で製造した(La1-xx0.7 Sr
0.3 MnO3 (x=1.0)の粉末X線回折線図であ
る。
FIG. 6: (La 1-x Y x ) 0.7 Sr manufactured in Example 1
FIG. 3 is a powder X-ray diffraction diagram of 0.3 MnO 3 (x = 1.0).

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/98 H01M 8/00 - 8/24 C04B 35/42 - 35/51 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/86-4/98 H01M 8/00-8/24 C04B 35/42-35/51

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記組成式で表される導電性セラミック
ス材料で構成されることを特徴とする固体電解質型燃料
電池用空気極。 {(La1−x1−ySr}MnO (ただし、0.2≦x≦0.4,0.1≦y≦0.4)
1. A conductive ceramic represented by the following composition formula:
Solid electrolyte fuel characterized by being composed of a gaseous material
Air electrode for battery. {(La1-xYx)1-ySry} MnO3  (However,0.2 ≦x ≦ 0.4, 0.1 ≦ y ≦ 0.4)
【請求項2】 下記組成式で表される導電性セラミック
ス材料で構成されることを特徴とする固体電解質型燃料
電池用空気極側集電板。 {(La1−x1−ySr}MnO (ただし、0.2≦x≦0.4,0.1≦y≦0.4)
2. A conductive ceramic represented by the following composition formula:
Solid electrolyte fuel characterized by being composed of a gaseous material
Air electrode current collector for batteries. {(La1-xYx)1-ySry} MnO3  (However,0.2 ≦x ≦ 0.4, 0.1 ≦ y ≦ 0.4)
JP06201935A 1994-08-26 1994-08-26 Air electrode and air electrode side current collector for solid oxide fuel cell Expired - Fee Related JP3119084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06201935A JP3119084B2 (en) 1994-08-26 1994-08-26 Air electrode and air electrode side current collector for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06201935A JP3119084B2 (en) 1994-08-26 1994-08-26 Air electrode and air electrode side current collector for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0864222A JPH0864222A (en) 1996-03-08
JP3119084B2 true JP3119084B2 (en) 2000-12-18

Family

ID=16449231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06201935A Expired - Fee Related JP3119084B2 (en) 1994-08-26 1994-08-26 Air electrode and air electrode side current collector for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3119084B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053374A (en) * 2000-08-04 2002-02-19 Anan Kasei Kk Multiple oxide for air pole of solid electrolytic fuel cell and for electric collector raw material, its manufacturing method and solid electrolytic fuel cell
JP5313726B2 (en) * 2009-03-10 2013-10-09 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and interconnector for the cell
KR101104117B1 (en) * 2010-05-11 2012-01-13 한국에너지기술연구원 Mesh type cathode current collector of tubular solid oxide fuel cell

Also Published As

Publication number Publication date
JPH0864222A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
JP4608047B2 (en) Mixed ionic conductor and device using the same
JP3460727B2 (en) Oxygen ion conductor and solid fuel cell
US6872331B2 (en) Oxide ion conductor, manufacturing method therefor, and fuel cell using the same
Solovyev et al. Effect of sintering temperature on the performance of composite La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2 cathode for solid oxide fuel cells
KR20130075529A (en) Solid oxide electrode, solid oxide fuel cell containing solid oxide electrode, and preparation method thereof
JP3218555B2 (en) Ceria based solid electrolyte with protective layer
JP3456436B2 (en) Solid oxide fuel cell
JP2511095B2 (en) Electrode material
JP4024164B2 (en) Operation method of solid oxide fuel cell
JP3119084B2 (en) Air electrode and air electrode side current collector for solid oxide fuel cell
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
JP3256919B2 (en) Solid electrolyte fuel cell
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JP4119511B2 (en) Oxide ion conductive material
JP3160993B2 (en) Solid oxide fuel cell
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
JP2592067B2 (en) Oxygen electrode of solid oxide fuel cell
JPH0773886A (en) Solid electrolyte type fuel cell
JP3403055B2 (en) Oxygen side electrode
JP3141911B2 (en) Air electrode material for solid fuel cell and solid fuel cell
JPH10114520A (en) High oxide ion conductor
KR20240124117A (en) A solid oxide fuel cell and electrolyte including a highly flexible ceramic ion conductor and a manufacturing method thereof
KR20240078290A (en) Solid oxide cell and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees