JP3403055B2 - Oxygen side electrode - Google Patents

Oxygen side electrode

Info

Publication number
JP3403055B2
JP3403055B2 JP05930398A JP5930398A JP3403055B2 JP 3403055 B2 JP3403055 B2 JP 3403055B2 JP 05930398 A JP05930398 A JP 05930398A JP 5930398 A JP5930398 A JP 5930398A JP 3403055 B2 JP3403055 B2 JP 3403055B2
Authority
JP
Japan
Prior art keywords
side electrode
oxygen
solid electrolyte
fuel cell
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05930398A
Other languages
Japanese (ja)
Other versions
JPH11260376A (en
Inventor
一剛 森
均 宮本
恒昭 松平
弘一 武信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05930398A priority Critical patent/JP3403055B2/en
Publication of JPH11260376A publication Critical patent/JPH11260376A/en
Application granted granted Critical
Publication of JP3403055B2 publication Critical patent/JP3403055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、固体電解質燃料電
池や水蒸気電解セルの酸素側電極に関する。 【0002】 【従来の技術】酸素や空気などの酸化ガスと水素などの
燃料ガスとを電気化学的に反応させて電力を得る固体電
解質燃料電池は、図6に示すように、固体電解質1を多
孔質の酸素側電極(空気側電極)2および燃料側電極3
で挟んでセルを構成し、このセルを導電性波板4,5で
挟むことにより酸化ガス101および燃料ガス102の
流路を形成し、さらにインタコネクタ6,7で挟むこと
により、上記各ガス101,102の流通に伴って各電
極2,3から上記波板4,5を介して流れる電気をイン
タコネクタ6,7を介して外部に取り出せる構造となっ
ている。 【0003】このような固体電解質燃料電池において、
前記酸素側電極2は、高い導電性を有し、固体電解
質1の材料であるYSZ(イットリア安定化ジルコニ
ア)との密着性がよく、使用環境である1000℃の
空気雰囲気下でも安定性を維持できることが要求される
ことから、LSM(ランタンストロンチウムマンガン酸
化物:La1-x Srx MnO3 )とYSZとの混合物が
使用されている。すなわち、LSMにより空気雰囲気下
における高導電性能を発現させ、YSZにより酸素イオ
ン導電性を発現させ、LSMとYSZとを混合すること
により固体電解質1との焼き付け性を向上させているの
である。 【0004】 【発明が解決しようとする課題】しかしながら、LSM
とYSZとの混合物を用いた酸素側電極2は、固体電解
質燃料電池の長期運転に伴い、低耐熱性のため、シン
タリングにより粒成長を生じて比表面積が低下してしま
ったり、固体電解質1と反応してLa2 Zr27
どのような絶縁体を形成して導電率が低下してしまい、
固体電解質燃料電池の発電性能の低下を引き起こして安
定した発電が困難となってしまう場合があった。 【0005】このような問題は、固体電解質燃料電池の
酸素側電極(空気側電極)2に限らず、当該燃料電池と
同様な構造をなす水蒸気電解セルの酸素側電極でも上述
と同様に生じていた。 【0006】そこで、本発明は、固体電解質燃料電池や
水蒸気電解セルなどの長期使用に伴う発電性能の低下を
抑制することができる酸素側電極を提供することを目的
とした。 【0007】 【課題を解決するための手段】前述した課題を解決する
ための、本発明による酸素側電極は、固体電解質燃料電
池または水蒸気電解セルに用いられる酸素側電極であっ
て、イットリア安定化ジルコニアと(Pr (1-x)
x y MnO 3 (ただし、0.1≦x≦0.4、1.
0<y≦1.05)からなるペロブスカイト型酸化物と
の混合物を用いてなることを特徴とする。 【0008】 【0009】 【発明の実施の形態】本発明による酸素側電極を固体電
解質燃料電池に適用した場合の実施の形態を図1を用い
て説明する。なお、図1は、その要部の概略構造図であ
る。ただし、前述した従来の技術で説明した部分と同様
な部分については、前述した従来の技術の説明で用いた
符号等と同様な符号等を用いることにより、その説明を
省略する。 【0010】図1において、12は多孔質の酸素側電極
(空気側電極)であり、YSZ(イットリア安定化ジル
コニア)とPSM(プラセオジミウムストロンチウムマ
ンガン酸化物:(Pr (1-x) Sr x y MnO 3 (ただ
し、0.1≦x≦0.4、1.0<y≦1.05))か
らなるペロブスカイト型酸化物との混合物を用いてい
る。 【0011】このような酸素側電極12においては、Y
SZ(70〜90wt%)とペロブスカイト型酸化物(1
0〜30wt%)とを混合し、これら粉体の分散性を向上
させる有機溶媒(例えば、ブチルカルビトール、テレピ
ン油、ブタノール等)を加えてロールミルでペースト状
に混練して固体電解質1にスクリーン印刷法で塗布した
後に焼き付け処理を行うことにより、容易に製造するこ
とができる。 【0012】このような酸素側電極12を用いた固体電
解質燃料電池では、長期運転を行っても、当該酸素側電
極12の比表面積や導電率が低下することはない。 【0013】したがって、上記酸素側電極12を用いた
固体電解質燃料電池によれば、長期運転による発電性能
の低下を抑制することができるので、安定した発電を長
期にわたって行うことができる。 【0014】なお、本実施の形態では、固体電解質燃料
電池に適用した場合について説明したが、当該燃料電池
と同様な構造をなす水蒸気電解セルにも上述と同様に適
用することができる。 【0015】 【実施例】前述した実施の形態の効果を確認するため、
次のような確認実験を行った。 【0016】[確認実験1:出力密度および界面抵抗] <試験体の製作>前述した実施の形態に基づいて、固体
電解質を燃料側電極と酸素側電極とで挟んだセルを下記
の条件でそれぞれ製作して試験体を得た。 【0017】 《試験体条件》 ・固体電解質−材料:YSZ サイズ:23mmφ、厚さ250μm ・燃料側電極−材料:NiO/YSZ=70/30 サイズ:10mmφ ・酸素側電極−材料:(Pr(1-x) Srx y MnO3 /YSZ=80/20 ただし、xは0 , 0.05, 0.1 , 0.2 , 0.3 , 0.4 ,0.45, 0.5 , 0.6 の計9種類、 yは1.02のみ 【0018】<実験方法>上述した条件で製作した各試
験体の出力密度および界面抵抗をそれぞれ測定した。 【0019】<実験結果>結果を図2に示す。図2から
わかるように、xが0.1以上0.4以下の場合には、
出力密度が1.3W/cm2 以上となり、界面抵抗が
0.9Ω・cm2 となった。よって、0.1≦x≦0.
4であると、良好な結果を得られることが確認できた。 【0020】[確認実験2:比表面積] <試験体の製作>(Pr(1-x) Srx y MnO3 (た
だし、xは0.1 , 0.2 , 0.3 , 0.4 の計4種類、yは1.
00 , 1.01 , 1.02 , 1.03 , 1.04 ,1.05 , 1.06 の計7
種類)の原料粉末をアルコキシド法によりそれぞれ合成
して試験体(総計28種類)を得た。 【0021】<実験方法>上記試験体(28種類)をそ
れぞれ熱処理(1200℃×10時間)した後に比表面
積をそれぞれ測定した。 【0022】<実験結果>結果を図3に示す。図3から
わかるように、yが1.00を越えると、比表面積が1
2 /g以上となった。一方、yが1.05を越える
と、ペロブスカイトの定比からのずれが大きくなって不
純物相が認められるようになってしまう。よって、1.
00<y≦1.05であると、良好な結果を得られるこ
とが確認できた。 【0023】[確認実験3:比表面積の比較] <試験体および比較体の製作>(Pr0.6 Sr0.4)1.03
MnO3 の原料粉末をアルコキシド法によりそれぞれ合
成して試験体を得ると共に、(La0.8 Sr0.2)MnO
3 の原料粉末から比較体を得た。 【0024】<実験方法>上記試験体および比較体をそ
れぞれ熱処理(1200℃×10時間)し、比表面積の
経時的な変化をそれぞれ求めた。 【0025】<実験結果>結果を図4に示す。図4から
わかるように、比較体は、時間の経過に伴って、比表面
積が著しく小さくなっててしまうものの、試験体は、時
間が経過しても、比表面積がほとんどかわらず、当初の
大きさを維持できることが確認できた。 【0026】[確認実験4:出力電流の比較] <試験体および比較体の製作>固体電解質を燃料側電極
と酸素側電極とで挟んだセルを下記の条件でそれぞれ製
作して試験体および比較体を得た。 【0027】《試験体条件》 ・固体電解質:8mol%Y2 3 安定化ジルコニア
(厚さ100μm) ・燃料側電極:NiOとYSZとの混合物 ・酸素側電極:(Pr0.6 Sr0.4)1.03MnO3 とYS
Zとの混合物 【0028】《比較体条件》 ・固体電解質:試験体と同一 ・燃料側電極:試験体と同一 ・酸素側電極:(La0.8 Sr0.2)MnO3 とYSZと
の混合物 【0029】<実験方法>1000℃の温度環境下での
0.7Vの出力電圧における上記試験体および比較体の
出力電流の経時的な変化をそれぞれ測定した。 【0030】<実験結果>結果を図5に示す。図5から
わかるように、比較体は、時間の経過に伴って、出力電
流が次第に小さくなっててしまうものの、試験体は、時
間が経過しても、出力電流がほとんどかわらず、当初の
大きさを維持できることが確認できた。 【0031】 【発明の効果】本発明による酸素側電極は、固体電解質
燃料電池または水蒸気電解セルに用いられる酸素側電極
であって、イットリア安定化ジルコニアと(Pr (1-x)
Sr x y MnO 3 (ただし、0.1≦x≦0.4、
1.0<y≦1.05)からなるペロブスカイト型酸化
物との混合物を用いてなるので、例えば、固体電解質燃
料電池に適用した場合に当該燃料電池を長期運転して
も、比表面積や導電率の低下を抑制することができる。
このため、長期運転による発電性能の低下を抑制するこ
とができ、安定した発電を長期にわたって行うことがで
きる。 【0032】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen electrode of a solid oxide fuel cell or a steam electrolysis cell. 2. Description of the Related Art A solid electrolyte fuel cell which obtains electric power by electrochemically reacting an oxidizing gas such as oxygen or air with a fuel gas such as hydrogen as shown in FIG. Porous oxygen-side electrode (air-side electrode) 2 and fuel-side electrode 3
A cell is formed by sandwiching the cells with conductive corrugated plates 4 and 5 to form a flow path for the oxidizing gas 101 and the fuel gas 102. The structure is such that electricity flowing from the electrodes 2 and 3 through the corrugated plates 4 and 5 with the circulation of 101 and 102 can be taken out through the interconnectors 6 and 7 to the outside. In such a solid electrolyte fuel cell,
The oxygen-side electrode 2 has high conductivity, has good adhesion to YSZ (yttria-stabilized zirconia), which is a material of the solid electrolyte 1, and maintains stability even in a use environment of an air atmosphere at 1000 ° C. Since it is required to be able to do so, a mixture of LSM (lanthanum strontium manganese oxide: La 1-x Sr x MnO 3 ) and YSZ is used. That is, the high conductivity performance in an air atmosphere is expressed by LSM, the oxygen ion conductivity is expressed by YSZ, and the baking property with the solid electrolyte 1 is improved by mixing LSM and YSZ. [0004] However, the LSM
Oxygen-side electrode 2 using a mixture of YSZ and YSZ has low heat resistance due to long-term operation of the solid electrolyte fuel cell, causing grain growth due to sintering to decrease the specific surface area, Reacts with to form an insulator such as La 2 Zr 2 O 7 and the electrical conductivity decreases,
In some cases, the power generation performance of the solid electrolyte fuel cell is reduced, and stable power generation becomes difficult. [0005] Such a problem occurs not only in the oxygen-side electrode (air-side electrode) 2 of the solid electrolyte fuel cell but also in the oxygen-side electrode of a steam electrolysis cell having a structure similar to that of the fuel cell. Was. Accordingly, an object of the present invention is to provide an oxygen-side electrode capable of suppressing a decrease in power generation performance due to long-term use of a solid electrolyte fuel cell, a steam electrolysis cell, or the like. The oxygen-side electrode according to the present invention for solving the above-mentioned problems is an oxygen-side electrode used for a solid electrolyte fuel cell or a steam electrolysis cell, and comprises an yttria-stabilized electrode. Zirconia and (Pr (1-x) S
r x ) y MnO 3 (provided that 0.1 ≦ x ≦ 0.4, 1.
0 <y ≦ 1.05), which is characterized by using a mixture with a perovskite oxide. An embodiment in which the oxygen-side electrode according to the present invention is applied to a solid oxide fuel cell will be described with reference to FIG. FIG. 1 is a schematic structural view of the main part. However, the same reference numerals and the like as those used in the description of the above-described related art are used for the same parts as those described in the above-described related art, and the description thereof will be omitted. In FIG. 1, reference numeral 12 denotes a porous oxygen-side electrode (air-side electrode), which comprises YSZ (yttria-stabilized zirconia) and PSM (praseodymium strontium polymer ) .
Manganese oxide: (Pr (1-x) Sr x ) y MnO 3 (only
0.1 ≦ x ≦ 0.4, 1.0 <y ≦ 1.05))
And using a mixture of Ranaru perovskite oxide. In such an oxygen-side electrode 12, Y
SZ (70-90 wt%) and perovskite oxide (1
And an organic solvent (for example, butyl carbitol, turpentine oil, butanol, etc.) for improving the dispersibility of these powders, and kneaded into a paste by a roll mill to screen the solid electrolyte 1. By applying a printing method and then performing a baking process, it can be easily manufactured. In a solid electrolyte fuel cell using such an oxygen-side electrode 12, the specific surface area and the conductivity of the oxygen-side electrode 12 do not decrease even after long-term operation. Therefore, according to the solid electrolyte fuel cell using the oxygen-side electrode 12, a decrease in power generation performance due to long-term operation can be suppressed, and stable power generation can be performed for a long time. Although the present embodiment has been described for a case where the present invention is applied to a solid electrolyte fuel cell, the present invention can also be applied to a steam electrolytic cell having a structure similar to that of the fuel cell. EXAMPLES In order to confirm the effects of the above-described embodiment,
The following confirmation experiment was performed. [Confirmation Experiment 1: Output Density and Interface Resistance] <Production of Specimen> Based on the above-described embodiment, cells in which a solid electrolyte is sandwiched between a fuel-side electrode and an oxygen-side electrode under the following conditions, respectively. It was manufactured and a test specimen was obtained. << Specimen Conditions >> Solid electrolyte material: YSZ Size: 23 mmφ, thickness 250 μm Fuel side electrode material: NiO / YSZ = 70/30 Size: 10 mmφ Oxygen side electrode material: (Pr (1 -x) Sr x ) y MnO 3 / YSZ = 80/20, where x is 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5 and 0.6 in total, and y is only 1.02. <Experimental Method> The output density and the interface resistance of each specimen manufactured under the above-described conditions were measured. <Experimental Results> The results are shown in FIG. As can be seen from FIG. 2, when x is 0.1 or more and 0.4 or less,
The output density was 1.3 W / cm 2 or more, and the interface resistance was 0.9 Ω · cm 2 . Therefore, 0.1 ≦ x ≦ 0.
When it was 4, it was confirmed that good results could be obtained. [Confirmation Experiment 2: Specific Surface Area] <Preparation of Specimen> (Pr (1-x) Sr x ) y MnO 3 (where x is 0.1, 0.2, 0.3 and 0.4, and y is 1) .
00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06 Total 7
) Were synthesized by the alkoxide method to obtain test specimens (total of 28 types). <Experimental method> The specific surface area was measured after each of the above-mentioned test specimens (28 kinds) was heat-treated (1200 ° C. × 10 hours). <Experimental Results> The results are shown in FIG. As can be seen from FIG. 3, when y exceeds 1.00, the specific surface area becomes 1
m 2 / g or more. On the other hand, when y exceeds 1.05, the deviation from the constant ratio of perovskite becomes large, and an impurity phase is recognized. Therefore, 1.
When 00 <y ≦ 1.05, it was confirmed that good results could be obtained. [Confirmation Experiment 3: Comparison of Specific Surface Area] <Production of Specimen and Comparative Object> (Pr 0.6 Sr 0.4 ) 1.03
A raw material powder of MnO 3 was synthesized by an alkoxide method to obtain a specimen, and (La 0.8 Sr 0.2 ) MnO 3
A comparative material was obtained from the raw material powder of No. 3 . <Experimental Method> The test specimen and the comparative specimen were each subjected to a heat treatment (1200 ° C. × 10 hours), and the change over time in the specific surface area was determined. <Experimental Results> The results are shown in FIG. As can be seen from FIG. 4, although the specific surface area of the comparative sample was significantly reduced with the lapse of time, the specific surface area of the test sample was almost unchanged even after the lapse of time, and the initial size was small. It was confirmed that it could be maintained. [Confirmation Experiment 4: Comparison of Output Current] <Production of Specimen and Comparative Body> Cells in which a solid electrolyte was sandwiched between a fuel electrode and an oxygen electrode were produced under the following conditions, respectively. I got a body. << Specimen Conditions >> Solid electrolyte: 8 mol% Y 2 O 3 stabilized zirconia (100 μm thick) ・ Fuel side electrode: mixture of NiO and YSZ ・ Oxygen side electrode: (Pr 0.6 Sr 0.4 ) 1.03 MnO 3 and YS
Mixture with Z << Comparator condition >> Solid electrolyte: same as test specimen ・ Fuel side electrode: same as test specimen ・ Oxygen side electrode: mixture of (La 0.8 Sr 0.2 ) MnO 3 and YSZ <Experimental method> The change with time in the output current of the above-mentioned test specimen and the comparative specimen at an output voltage of 0.7 V under a temperature environment of 1000 ° C. was measured. <Experimental Results> The results are shown in FIG. As can be seen from FIG. 5, although the output current of the comparative body gradually decreases with the passage of time, the output current of the test body hardly changes even after the passage of time. It was confirmed that it could be maintained. The oxygen-side electrode according to the present invention is an oxygen-side electrode used in a solid electrolyte fuel cell or a steam electrolysis cell, and is composed of yttria-stabilized zirconia and (Pr (1-x)
Sr x ) y MnO 3 (provided that 0.1 ≦ x ≦ 0.4,
1.0 <y ≦ 1.05), so that, for example, when applied to a solid electrolyte fuel cell, even if the fuel cell is operated for a long time, the specific surface area and the conductivity are not changed. It is possible to suppress a decrease in the rate.
For this reason, a decrease in power generation performance due to long-term operation can be suppressed, and stable power generation can be performed for a long time. [0032]

【図面の簡単な説明】 【図1】本発明による酸素側電極を固体電解質燃料電池
に適用した場合の実施の形態の要部の概略構造図であ
る。 【図2】確認実験1の結果を表すグラフである。 【図3】確認実験2の結果を表すグラフである。 【図4】確認実験3の結果を表すグラフである。 【図5】確認実験4の結果を表すグラフである。 【図6】固体電解質燃料電池の概略構造を表す要部分解
斜視図である。 【符号の説明】 1 固体電解質 2,12 酸素側電極(空気側電極) 3 燃料側電極 4,5 導電性波板 6,7 インタコネクタ 101 酸化ガス 102 燃料ガス
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a main part of an embodiment when an oxygen-side electrode according to the present invention is applied to a solid oxide fuel cell. FIG. 2 is a graph showing the result of confirmation experiment 1. FIG. 3 is a graph showing the result of confirmation experiment 2. FIG. 4 is a graph showing the result of confirmation experiment 3. FIG. 5 is a graph showing the result of confirmation experiment 4. FIG. 6 is an exploded perspective view of a main part showing a schematic structure of a solid oxide fuel cell. [Description of Signs] 1 Solid electrolyte 2, 12 Oxygen side electrode (air side electrode) 3 Fuel side electrode 4, 5 Conductive corrugated plate 6, 7 Interconnector 101 Oxidizing gas 102 Fuel gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武信 弘一 兵庫県神戸市兵庫区和田崎町一丁目1番 1号 三菱重工業株式会社 神戸造船所 内 (56)参考文献 特開 平9−190832(JP,A) 特開 平8−287925(JP,A) 特開 平8−236137(JP,A) 特開 平7−226209(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/88,8/12 C25B 1/04 C25B 11/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Koichi Takenobu 1-1 1-1 Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) References JP-A-9-190832 (JP) JP-A-8-287925 (JP, A) JP-A-8-236137 (JP, A) JP-A-7-226209 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) H01M 4/86-4 / 88,8 / 12 C25B 1/04 C25B 11/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 固体電解質燃料電池または水蒸気電解セ
ルに用いられる酸素側電極であって、イットリア安定化
ジルコニアと(Pr (1-x) Sr x y MnO 3 (ただ
し、0.1≦x≦0.4、1.0<y≦1.05)から
なるペロブスカイト型酸化物との混合物を用いてなるこ
とを特徴とする酸素側電極。
(1) An oxygen electrode used in a solid electrolyte fuel cell or a steam electrolysis cell, comprising yttria-stabilized zirconia and (Pr (1-x) Sr x ) y MnO 3. (However
And 0.1 ≦ x ≦ 0.4, 1.0 <y ≦ 1.05)
Oxygen-side electrode, characterized by comprising using a mixture of perovskite oxide becomes.
JP05930398A 1998-03-11 1998-03-11 Oxygen side electrode Expired - Fee Related JP3403055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05930398A JP3403055B2 (en) 1998-03-11 1998-03-11 Oxygen side electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05930398A JP3403055B2 (en) 1998-03-11 1998-03-11 Oxygen side electrode

Publications (2)

Publication Number Publication Date
JPH11260376A JPH11260376A (en) 1999-09-24
JP3403055B2 true JP3403055B2 (en) 2003-05-06

Family

ID=13109481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05930398A Expired - Fee Related JP3403055B2 (en) 1998-03-11 1998-03-11 Oxygen side electrode

Country Status (1)

Country Link
JP (1) JP3403055B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595122B2 (en) * 2002-06-11 2009-09-29 General Electric Company Interconnect supported electrolyzer assembly, preform and method of fabrication
WO2007091642A1 (en) * 2006-02-10 2007-08-16 Nippon Shokubai Co., Ltd. Air electrode material for solid oxide fuel cell
EP3176287B1 (en) 2014-07-28 2020-11-18 Nippon Shokubai Co., Ltd. Steam electrolysis cell
JP6367636B2 (en) * 2014-07-28 2018-08-01 株式会社日本触媒 Steam electrolysis cell

Also Published As

Publication number Publication date
JPH11260376A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
Marina et al. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate
JP4981239B2 (en) High performance cathode for solid oxide fuel cells
US7838141B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
KR20130099704A (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer
Li et al. Electrochemical characterization of gradient Sm0. 5Sr0. 5CoO3− δ cathodes on Ce0. 8Sm0. 2O1. 9 electrolytes for solid oxide fuel cells
KR20140057080A (en) Cathode for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same
JP2011119178A (en) Solid oxide fuel cell
JP5144236B2 (en) Solid oxide fuel cell
Solovyev et al. Effect of sintering temperature on the performance of composite La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2 cathode for solid oxide fuel cells
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
Ishihara et al. Novel fast oxide ion conductor and application for the electrolyte of solid oxide fuel cell
JP3403055B2 (en) Oxygen side electrode
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
KR101220744B1 (en) Separator of solid oxide fuel cell and method for manufacturing the same
JP2511095B2 (en) Electrode material
JP3389040B2 (en) Electrode materials for solid electrolyte fuel cells
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP3259756B2 (en) Multilayer solid electrolyte for solid fuel cells
JP3256919B2 (en) Solid electrolyte fuel cell
Lee et al. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+ δ–CGO composite cathodes for solid oxide fuel cell
JP3241306B2 (en) Interconnector material
US7758992B2 (en) Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode
JP2003331874A (en) Interconnector for solid oxide fuel cell and its formation method
JP3119084B2 (en) Air electrode and air electrode side current collector for solid oxide fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees