JP4608047B2 - Mixed ionic conductor and device using the same - Google Patents

Mixed ionic conductor and device using the same Download PDF

Info

Publication number
JP4608047B2
JP4608047B2 JP2000031734A JP2000031734A JP4608047B2 JP 4608047 B2 JP4608047 B2 JP 4608047B2 JP 2000031734 A JP2000031734 A JP 2000031734A JP 2000031734 A JP2000031734 A JP 2000031734A JP 4608047 B2 JP4608047 B2 JP 4608047B2
Authority
JP
Japan
Prior art keywords
ionic conductor
mixed ionic
mixed
present
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000031734A
Other languages
Japanese (ja)
Other versions
JP2000302550A5 (en
JP2000302550A (en
Inventor
昇 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000031734A priority Critical patent/JP4608047B2/en
Publication of JP2000302550A publication Critical patent/JP2000302550A/en
Publication of JP2000302550A5 publication Critical patent/JP2000302550A5/ja
Application granted granted Critical
Publication of JP4608047B2 publication Critical patent/JP4608047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、混合イオン伝導体およびこれを用いた燃料電池、ガスセンサーなど電気化学デバイスに関するものである。
【0002】
【従来の技術】
本出願人は、プロトンと酸素イオンの混合イオン伝導体について、開発を継続してきた(特開平5−28820号公報、特開平6−231611号公報等)。この混合イオン伝導体は、基本的に、バリウム、セリウムをベースとしたペロブスカイト型酸化物で、セリウムの一部を置換元素Mで置換することにより、高いイオン伝導体を発生させるものであった(一般式:BaCe1-pp3-q)。特に置換元素Mの置換量pを0.16から0.23とすると高い導電性を有し、従来、酸素イオン伝導体として用いられてきたジルコニア系酸化物(YSZ:イットリア安定化ジルコニア)よりも高イオン伝導性が得られる。置換元素Mとしては、希土類元素が適当であり、特に、重希土類元素は原子半径および電荷バランスの観点から最適である。
【0003】
この材料を固体電解質に用いた新しい燃料電池、センサなど、電気化学デバイスも開発されてきた。この材料を用いた燃料電池の放電特性や、センサ特性は、従来にない優れた特性を示し、工業的にも優れていることが実証されている。これらの関連特許出願としては、特開平5−234604号公報、特開平5−290860号公報、特開平6−223857号公報、特開平6−290802号公報、特開平7−65839号公報、特開平7−136455号公報、特開平8−29390号公報、特開平8−162121号公報、特開平8−220060号公報などがある。
【0004】
【発明が解決しようとする課題】
しかしながら、上記材料は、化学的安定性の点で、全く問題がないわけではなく、例えば、炭酸ガス中ではバリウムが析出することがある。この問題に対し、本出願人は、特開平9−295866号公報(特願平8−107918号)において、対策を提示した。しかしながら、上記対策は万全でなく、例えば低温85℃で湿度85%中での放置試験あるいは水中煮沸試験では、バリウムの析出が観察される。また、燃料電池での放電中のような高水蒸気圧下では、白金電極近傍でバリウムの偏析が見られる。一方、ガスセンサなどでは、低温での高イオン伝導性の長期保持や、酸化物自体の耐酸性の向上が問題であった。
【0005】
そこで、本発明は、本出願人が提案してきた混合イオン伝導体の化学的安定性をさらに改善することを目的とする。
【0006】
【課題を解決するための手段】
上記ペロブスカイト型酸化物の湿度による腐食の主な原因は、酸化物中の偏析バリウムが一旦水酸化バリウムとなった後に炭酸ガスと反応し、安定な炭酸バリウムを形成するためと考えられる。そこで、耐湿性を増すために、本発明では、以下のペロブズカイト型酸化物からなる混合イオン伝導体を用いることとした。
【0007】
すなわち本発明の混合イオン伝導体は、式Baa(Ce1-b1 b)LcO3-r
(ただし、M1はCeを除く3価の希土類元素、LはZr,Ti,V,Nb,Cr,Mo,W,Fe,Co,Ni,Cu,Ag,Au,Pd,Pt,Bi,Sb,SnおよびPbから選ばれる少なくとも1種の元素、
aは0.9以上1以下、
bは0.16以上0.26以下、
cは0.01以上0.1以下、
rは(2+b−2a)/2)
で表されるペロブスカイト型酸化物の焼結体からなることを特徴とする。
【0008】
上記混合イオン伝導体では、M1は、La,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,YおよびScから選ばれる少なくとも1種の元素であることが好ましく、特にGdおよびYから選ばれる少なくとも1種の元素が好適である。
【0009】
また、Lは、Zr,Ti,Fe,Co,Ni,Cu,Bi,Snおよびbから選ばれる少なくとも1種の元素が好ましく、Zr,Ti,Biおよびbから選ばれる少なくとも1種の元素がさらに好ましい。
【0014】
本発明の混合イオン伝導体は、燃料電池等の電気化学デバイスに必要な導電性を有しながらも、優れた耐湿性も兼ね備えている。
【0015】
なお、本明細書において、希土類元素とは、Sc、Yおよびランタノイド(原子番号57La〜同番号71Lu)を指す。また、上記各式において、r、sおよびtは、不定比の酸素欠損量により定まる。
【0016】
本発明は、上記混合イオン伝導体を用いたデバイスも提供する。すなわち、本発明の燃料電池は、上記混合イオン伝導体を固体電解質として含むことを特徴とする。また、本発明のガスセンサは、上記混合イオン伝導体を固体電解質として含むことを特徴とする。本発明の混合イオン伝導体を用いることにより、耐湿性が高く、高性能、長寿命である燃料電池、ガスセンサ等の電気デバイスとなる。
【0017】
【発明の実施の形態】
以下、本発明の好ましい実施形態について説明する。
本発明の混合イオン伝導体の高い導電性は、本出願人による上記公報に記載されているように、酸素イオンとプロトンとの混合イオン伝導性に由来する。この混合イオン伝導体の耐湿性を改善するために、上記第1の混合イオン伝導体では、ペロブスカイト型酸化物中のバリウムの量を化学量論比以下として、適切な置換元素を導入することとした。以下、この混合イオン伝導体を「添加物系」伝導体という。
【0018】
また、本発明によれば、耐湿性が高い混合イオン伝導体として、上記第2の混合イオン伝導体と上記第3の混合イオン伝導体とが提供される。以下、これらの混合イオン伝導体は、それぞれ、「バリウムジルコニウム系」伝導体、「バリウムジルコニウムセリウム系」伝導体という。これらの系では、プロトン伝導性を示す混合イオン伝導体でありながら、高い耐湿性が得られる。
【0019】
上記各系の混合イオン伝導体は、従来から用いられてきた原料と製法とを適用すれば得ることができる。製法の一例は、実施例として後述する。
【0020】
以下、本発明の混合イオン伝導体を用いたデバイスの例について説明する。
図1は、本発明の燃料電池の一形態の斜視図である。この平板型の燃料電池は、固体電界質2を介してアノード(空気極)1およびカソード(燃料極)3が積層されている。そして、この積層ユニット7の間にセパレータ4が介在した構造を有している。
【0021】
発電時には、アノード1には酸化ガス6(例えば空気)が供給され、カソード3には燃料ガス5(例えば水素、天然ガスなどの還元ガス)が供給される。各電極における酸化還元反応に伴って発生する電子が外部へと取り出される。
【0022】
図2は、本発明のガスセンサの一形態の断面図である。このHCセンサ(炭化水素センサ)は、固体電解質14を介してアノード15とカソード16とが積層されている。この積層体は、基板(セラミック基板)17上との間に空間が保持されるように、この基板上に無機接着剤18により固定されている。この内部空間20は、拡散律速孔13を介して外部と導通している。
【0023】
このセンサでは、両極15,16間に所定の電圧(例えば1.2V)を印加した状態を維持すると、アノード15に接する空間に存在する炭化水素の濃度に応じた電流値が出力として得られる。センサは、測定時には、基板に取り付けられたヒータ19により所定温度に保持される。内部空間20に流入する測定種(炭化水素)の流入量を制限するために、拡散律速孔13は設けることが好ましい。
【0024】
なお、上記ではHCセンサについて説明したが、図示した構成において、アノードとカソードとを入れ替えれば、酸素センサとすることも可能である。また、本発明の混合イオン伝導体は、上記に限らず、各種の電気化学デバイスに適用が可能である。
【0025】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例により制限されるものではない。
【0026】
本実施例では、(表1)〜(表6)に示すペロブスカイト型酸化物を合成した。各酸化物の合成は固相反応法を用いた。バリウム、セリウム、ジルコニウム、希土類元素など各元素の酸化粉末をそれぞれ表中の組成比となるように秤量し、メノウ乳鉢中においてエタノール溶媒を用いて粉砕および混合を行った。十分に混合した後、溶媒を飛散させ、さらにバーナーを用いて脱脂し、再度メノウ乳鉢中において粉砕および混合を繰り返した。その後、円柱状にプレス成形して1300℃で10時間焼成を行った。焼成後、粗粉砕し、さらにベンゼン溶媒中において遊星ボールミル粉砕により3μm程度に造粒した。得られた粉末を150℃真空乾燥した後、2トン/cm2での静水圧プレスにより円柱に成形し、直ちに1650℃で10時間焼成して、焼結体を合成した。ほとんどのサンプルについては、充分緻密で単相のペロブスカイト型酸化物が得られた。こうして得た各サンプルについて以下の項目を評価した。
【0027】
・煮沸試験
耐湿試験の加速試験として、100℃の沸騰水中にサンプルを投入し、Baの析出程度を10時間後のpH値で評価した。バリウムの析出とともに水溶液中のpH値が増加することを利用した評価法である。耐湿性は、pH変化が2以下の場合を優良(A)、2を超え3.5以下の場合を良(B)、3.5を超え4以下の場合を良-(C)、4を超える場合を不良(D)と判定した。
【0028】
・導電率
次に、上記煮沸試験後のサンプルを、円柱焼結体から厚さ0.5mmで直径13mmのディスク状に加工し、そのディスクの両面にそれぞれ0.5cm2の面積となるように白金ペーストを塗布し、焼き付け、イオン導電率測定用試料とした。この試料の導電率は、空気中、交流インピーダンス法による抵抗値から算出した。測定温度は500℃である。測定装置中のリード抵抗成分は完全に補正した。導電率(S/cm)は、0.007以上をA、0.001以上0.007未満をB、0.001未満をCと判定した。
【0029】
なお、図3に、本発明材料の導電率の一例をアレニウスプロットにより示す。
【0030】
・結晶性
焼結後、単相となった場合をA、多相となった場合をB、焼結不可であった場合をCと判定した。
また、各表に各々の500℃での導電率と、煮沸試験のpH評価結果と併せて示す。
【0031】
【表1】

Figure 0004608047
【0032】
【表2】
Figure 0004608047
【0033】
【表3】
Figure 0004608047
Figure 0004608047
【0034】
【表4】
Figure 0004608047
【0037】
評価結果から明らかなように、本発明の混合イオン伝導体は、耐湿性は著しく向上し、かつイオン伝導性も実用的なレベルを保持している。
【0038】
本実施例では、固相焼結法を用いて合成したが、これに限ることなく、例えば、共沈法、硝酸塩法、スプレー顆粒法などの手法を用いて酸化物を合成してもよい。また、CVD法、スパッタリング法などの成膜法を適用してもよい。また、溶射により作製しても構わない。酸化物の形状も限定されず、バルクや膜を含む如何なる形状であってもよい。
【図面の簡単な説明】
【図1】 本発明の混合イオン伝導体を用いた燃料電池の一形態を示す断面切り欠き図である。
【図2】 本発明の混合イオン伝導体を用いたガスセンサの一形態を示す断面図である。
【図3】 本発明の混合イオン伝導体の導電率の例を示すグラフである。
【符号の説明】
1,15 アノード(空気極)
2,14 固体電解質
3,16 カソード(燃料極)
4 セパレータ
5 燃料ガス(水素、天然ガス)
6 酸化ガス(空気)
7 積層ユニット
13 拡散律速孔
17 基板
18 無機接着剤
19 ヒータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mixed ionic conductor and an electrochemical device such as a fuel cell and a gas sensor using the same.
[0002]
[Prior art]
The present applicant has continued to develop a mixed ionic conductor of protons and oxygen ions (Japanese Patent Laid- Open Nos. 5-28820, 6-231611, etc.). This mixed ionic conductor is basically a perovskite oxide based on barium and cerium, and a high ionic conductor is generated by substituting a part of cerium with a substitution element M ( general formula: BaCe 1-p M p O 3-q). In particular, when the substitution amount p of the substitution element M is set to 0.16 to 0.23, it has high conductivity and is higher than the zirconia-based oxide (YSZ: yttria-stabilized zirconia) conventionally used as an oxygen ion conductor. High ionic conductivity is obtained. As the substitution element M, a rare earth element is appropriate, and in particular, a heavy rare earth element is optimal from the viewpoint of the atomic radius and charge balance.
[0003]
Electrochemical devices such as new fuel cells and sensors using this material as a solid electrolyte have also been developed. The discharge characteristics and sensor characteristics of the fuel cell using this material have been demonstrated to be superior and industrially superior. Examples of these related patent applications include JP-A-5-234604, JP-A-5-290860, JP-A-6-223857, JP-A-6-290802, JP-A-7-65839, JP-A-7-136455, JP-A-8-29390, JP-A-8-162121, JP-A-8-22060, and the like.
[0004]
[Problems to be solved by the invention]
However, the above materials are not completely free from chemical stability. For example, barium may precipitate in carbon dioxide gas. For this problem, the present applicant presented a countermeasure in Japanese Patent Application Laid-Open No. 9-295866 ( Japanese Patent Application No. 8-107918) . However, the above-mentioned measures are not perfect. For example, precipitation of barium is observed in a standing test in a low temperature of 85 ° C. and a humidity of 85% or a boiling test in water. Further, barium segregation is observed in the vicinity of the platinum electrode under a high water vapor pressure during discharge in a fuel cell. On the other hand, in gas sensors and the like, long-term retention of high ion conductivity at low temperatures and improvement in acid resistance of the oxide itself have been problems.
[0005]
Accordingly, an object of the present invention is to further improve the chemical stability of the mixed ionic conductor proposed by the present applicant.
[0006]
[Means for Solving the Problems]
The main cause of corrosion due to humidity of the perovskite oxide is considered to be that segregated barium in the oxide once becomes barium hydroxide and then reacts with carbon dioxide to form stable barium carbonate. Therefore, in order to increase moisture resistance, the present invention uses a mixed ionic conductor made of the following perovskite oxide.
[0007]
That is, the mixed ionic conductor of the present invention has the formula Ba a (Ce 1-b M 1 b ) LcO 3-r
(However, M 1 is a trivalent rare earth element excluding Ce, L is Zr, Ti, V, Nb, Cr, Mo, W, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt, Bi, Sb. , At least one element selected from Sn and Pb,
a is 0.9 or more and 1 or less,
b is 0.16 or more and 0.26 or less,
c is 0.01 or more and 0.1 or less,
r is (2 + b-2a) / 2)
It consists of the sintered compact of the perovskite type oxide represented by these.
[0008]
In the mixed ion conductor, M 1 is at least one element selected from La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y, and Sc. In particular, at least one element selected from Gd and Y is preferable.
[0009]
Further, L is, Zr, Ti, Fe, Co , Ni, Cu, Bi, et al or Sn and P b at least one element is preferably selected, Zr, Ti, Bi and P b or al least one selected These elements are more preferable.
[0014]
The mixed ion conductor of the present invention has excellent moisture resistance while having conductivity necessary for electrochemical devices such as fuel cells.
[0015]
In the present specification, the rare earth element refers to Sc, Y, and lanthanoid (atomic number 57La to same number 71Lu). In the above equations, r, s, and t are determined by the amount of oxygen vacancies in a non-stoichiometric ratio.
[0016]
The present invention also provides a device using the above mixed ionic conductor. That is, the fuel cell of the present invention is characterized by including the mixed ionic conductor as a solid electrolyte. The gas sensor of the present invention is characterized in that the mixed ion conductor is included as a solid electrolyte. By using the mixed ion conductor of the present invention, it becomes an electric device such as a fuel cell and a gas sensor having high moisture resistance, high performance and long life.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
The high conductivity of the mixed ionic conductor of the present invention is derived from the mixed ionic conductivity of oxygen ions and protons, as described in the above publication by the applicant. In order to improve the moisture resistance of the mixed ionic conductor, in the first mixed ionic conductor, an appropriate substitution element is introduced with the amount of barium in the perovskite oxide being less than the stoichiometric ratio. did. Hereinafter, this mixed ionic conductor is referred to as an “additive system” conductor.
[0018]
Moreover, according to this invention, the said 2nd mixed ion conductor and the said 3rd mixed ion conductor are provided as a mixed ion conductor with high moisture resistance. Hereinafter, these mixed ionic conductors are referred to as “barium zirconium-based” conductors and “barium zirconium cerium-based” conductors, respectively. In these systems, high moisture resistance is obtained while being a mixed ionic conductor exhibiting proton conductivity.
[0019]
The mixed ionic conductors of the above systems can be obtained by applying conventionally used raw materials and manufacturing methods. An example of the manufacturing method will be described later as an example.
[0020]
Hereinafter, examples of devices using the mixed ionic conductor of the present invention will be described.
FIG. 1 is a perspective view of one embodiment of the fuel cell of the present invention. In this flat type fuel cell, an anode (air electrode) 1 and a cathode (fuel electrode) 3 are stacked with a solid electrolyte 2 interposed therebetween. And it has the structure where the separator 4 intervened between this lamination | stacking unit 7. FIG.
[0021]
During power generation, an oxidizing gas 6 (for example, air) is supplied to the anode 1, and a fuel gas 5 (for example, a reducing gas such as hydrogen or natural gas) is supplied to the cathode 3. Electrons generated along with the oxidation-reduction reaction at each electrode are taken out.
[0022]
FIG. 2 is a cross-sectional view of one embodiment of the gas sensor of the present invention. In this HC sensor (hydrocarbon sensor), an anode 15 and a cathode 16 are laminated via a solid electrolyte 14. This laminate is fixed on the substrate with an inorganic adhesive 18 so that a space is maintained between the laminate (ceramic substrate) 17. The internal space 20 is electrically connected to the outside through the diffusion rate limiting hole 13.
[0023]
In this sensor, if a state in which a predetermined voltage (for example, 1.2 V) is applied between the electrodes 15 and 16 is maintained, a current value corresponding to the concentration of hydrocarbons existing in the space in contact with the anode 15 is obtained as an output. During measurement, the sensor is held at a predetermined temperature by a heater 19 attached to the substrate. In order to limit the amount of measurement species (hydrocarbons) flowing into the internal space 20, it is preferable to provide the diffusion-controlling holes 13.
[0024]
In the above description, the HC sensor is described. However, in the configuration shown in the figure, an oxygen sensor can be formed by replacing the anode and the cathode. The mixed ionic conductor of the present invention is not limited to the above and can be applied to various electrochemical devices.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by a following example.
[0026]
In this example, perovskite oxides shown in (Table 1) to (Table 6) were synthesized. Each oxide was synthesized using a solid phase reaction method. Oxidized powders of each element such as barium, cerium, zirconium, rare earth elements were weighed so as to have the composition ratios in the table, and pulverized and mixed in an agate mortar using an ethanol solvent. After sufficiently mixing, the solvent was scattered, degreased using a burner, and pulverization and mixing were repeated in an agate mortar again. Thereafter, it was press-molded into a cylindrical shape and baked at 1300 ° C. for 10 hours. After firing, the mixture was coarsely pulverized and further granulated to about 3 μm by planetary ball mill pulverization in a benzene solvent. The obtained powder was vacuum-dried at 150 ° C. and then formed into a cylinder by isostatic pressing at 2 ton / cm 2 and immediately fired at 1650 ° C. for 10 hours to synthesize a sintered body. For most samples, a sufficiently dense single phase perovskite oxide was obtained. The following items were evaluated for each sample thus obtained.
[0027]
-Boiling test As an accelerated test of the moisture resistance test, a sample was put into boiling water at 100 ° C, and the degree of Ba precipitation was evaluated by the pH value after 10 hours. This is an evaluation method using the fact that the pH value in the aqueous solution increases with the precipitation of barium. Moisture resistance, excellent where pH change is 2 or less (A), good in the case of 2 beyond 3.5 or less (B), good for the following: 4 exceeds the 3.5 - (C), the 4 The case where it exceeded was determined to be defective (D).
[0028]
Conductivity Next, the sample after the above boiling test is processed from a cylindrical sintered body into a disk shape having a thickness of 0.5 mm and a diameter of 13 mm so that each of the both surfaces of the disk has an area of 0.5 cm 2. A platinum paste was applied and baked to obtain a sample for measuring ionic conductivity. The conductivity of this sample was calculated from the resistance value by the AC impedance method in air. The measurement temperature is 500 ° C. The lead resistance component in the measuring device was completely corrected. The electrical conductivity (S / cm) was determined to be 0.007 or more as A, 0.001 or more and less than 0.007 as B, and less than 0.001 as C.
[0029]
In addition, in FIG. 3, an example of the electrical conductivity of this invention material is shown with an Arrhenius plot.
[0030]
-After crystalline sintering, the case where it became a single phase was judged as A, the case where it became multiphase was judged as B, and the case where sintering was impossible was judged as C.
Moreover, each table | surface is shown together with the electrical conductivity in each 500 degreeC, and the pH evaluation result of a boiling test.
[0031]
[Table 1]
Figure 0004608047
[0032]
[Table 2]
Figure 0004608047
[0033]
[Table 3]
Figure 0004608047
Figure 0004608047
[0034]
[Table 4]
Figure 0004608047
[0037]
As is apparent from the evaluation results, the mixed ionic conductor of the present invention has significantly improved moisture resistance and also has a practical level of ionic conductivity.
[0038]
In this embodiment, the synthesis was performed using the solid-phase sintering method, but the present invention is not limited to this. For example, the oxide may be synthesized using a method such as a coprecipitation method, a nitrate method, or a spray granulation method. Alternatively, a film formation method such as a CVD method or a sputtering method may be applied. Moreover, you may produce by thermal spraying. The shape of the oxide is not limited, and may be any shape including a bulk and a film.
[Brief description of the drawings]
FIG. 1 is a cross-sectional cutaway view showing one embodiment of a fuel cell using a mixed ionic conductor of the present invention.
FIG. 2 is a cross-sectional view showing one embodiment of a gas sensor using the mixed ion conductor of the present invention.
FIG. 3 is a graph showing an example of the conductivity of the mixed ionic conductor of the present invention.
[Explanation of symbols]
1,15 Anode (air electrode)
2,14 Solid electrolyte 3,16 Cathode (fuel electrode)
4 Separator 5 Fuel gas (hydrogen, natural gas)
6 Oxidizing gas (air)
7 Laminating unit 13 Diffusion-controlled hole 17 Substrate 18 Inorganic adhesive 19 Heater

Claims (6)

式Baa(Ce1-b1 b)LcO3-r
(ただし、M1はCeを除く3価の希土類元素、LはZr,Ti,V,Nb,Cr,Mo,W,Fe,Co,Ni,Cu,Ag,Au,Pd,Pt,Bi,Sb,SnおよびPbから選ばれる少なくとも1種の元素、
aは0.9以上1以下、
bは0.16以上0.26以下、
cは0.01以上0.1以下、
rは(2+b−2a)/2)
で表されるペロブスカイト型酸化物の焼結体からなることを特徴とする混合イオン伝導体。
Formula Ba a (Ce 1-b M 1 b ) LcO 3-r
(However, M 1 is a trivalent rare earth element excluding Ce, L is Zr, Ti, V, Nb, Cr, Mo, W, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt, Bi, Sb. , At least one element selected from Sn and Pb,
a is 0.9 or more and 1 or less,
b is 0.16 or more and 0.26 or less,
c is 0.01 or more and 0.1 or less,
r is (2 + b-2a) / 2)
A mixed ionic conductor comprising a sintered body of a perovskite oxide represented by the formula :
1がLa,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,YおよびScから選ばれる少なくとも1種の元素である請求項1に記載の混合イオン伝導体。2. The mixed ion according to claim 1, wherein M 1 is at least one element selected from La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y, and Sc. Conductor. 1がGdおよびYから選ばれる少なくとも1種の元素である請求項2に記載の混合イオン伝導体。The mixed ionic conductor according to claim 2, wherein M 1 is at least one element selected from Gd and Y. LがZr,Ti,Fe,Co,Ni,Cu,Bi,SnおよびPbから選ばれる少なくとも1種の元素である請求項1に記載の混合イオン伝導体。  The mixed ionic conductor according to claim 1, wherein L is at least one element selected from Zr, Ti, Fe, Co, Ni, Cu, Bi, Sn, and Pb. 請求項1に記載の混合イオン伝導体を固体電解質として含むことを特徴とする燃料電池。  A fuel cell comprising the mixed ionic conductor according to claim 1 as a solid electrolyte. 請求項1に記載の混合イオン伝導体を固体電解質として含むことを特徴とするガスセンサ。  A gas sensor comprising the mixed ionic conductor according to claim 1 as a solid electrolyte.
JP2000031734A 1999-02-17 2000-02-09 Mixed ionic conductor and device using the same Expired - Lifetime JP4608047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000031734A JP4608047B2 (en) 1999-02-17 2000-02-09 Mixed ionic conductor and device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3836999 1999-02-17
JP11-38369 1999-02-17
JP2000031734A JP4608047B2 (en) 1999-02-17 2000-02-09 Mixed ionic conductor and device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007024641A Division JP4608506B2 (en) 1999-02-17 2007-02-02 Mixed ionic conductor and device using the same

Publications (3)

Publication Number Publication Date
JP2000302550A JP2000302550A (en) 2000-10-31
JP2000302550A5 JP2000302550A5 (en) 2007-03-22
JP4608047B2 true JP4608047B2 (en) 2011-01-05

Family

ID=26377609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000031734A Expired - Lifetime JP4608047B2 (en) 1999-02-17 2000-02-09 Mixed ionic conductor and device using the same

Country Status (1)

Country Link
JP (1) JP4608047B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369949B1 (en) 2002-06-06 2013-01-30 Panasonic Corporation Solid electrolyte fuel cell and manufacturing method thereof
WO2004074205A1 (en) 2003-02-24 2004-09-02 National University Corporation Nagoya University Proton-conductive and electron-conductive ceramic
WO2005024850A1 (en) 2003-09-03 2005-03-17 Matsushita Electric Industrial Co., Ltd. Mixed ion conductor
US7258820B2 (en) * 2004-03-05 2007-08-21 Ceramatec, Inc. Ceramic mixed protonic/electronic conducting membranes for hydrogen separation
JP4528021B2 (en) * 2004-04-27 2010-08-18 新日本製鐵株式会社 Oxide ion mixed conductor, composite structure, oxygen separation device, and chemical reaction device
JP4583810B2 (en) * 2004-05-28 2010-11-17 東京窯業株式会社 Proton conductive ceramics and method for producing the same
US7625653B2 (en) 2005-03-15 2009-12-01 Panasonic Corporation Ionic conductor
KR101165124B1 (en) 2005-03-15 2012-07-12 파나소닉 주식회사 Ion conductor
JP5138876B2 (en) * 2005-07-19 2013-02-06 住友電気工業株式会社 Oxide proton conductive membrane and hydrogen permeable structure including the same
JP5011671B2 (en) * 2005-07-29 2012-08-29 トヨタ自動車株式会社 Fuel cell
JP5040123B2 (en) 2006-02-28 2012-10-03 トヨタ自動車株式会社 Proton conducting electrolyte and electrochemical cell using the same
JP5091433B2 (en) * 2006-06-29 2012-12-05 三井金属鉱業株式会社 Solid oxide fuel cell and manufacturing method thereof
JP4882806B2 (en) * 2007-03-07 2012-02-22 トヨタ自動車株式会社 Proton conducting electrolyte and electrochemical cell using the same
JP2008243627A (en) * 2007-03-27 2008-10-09 Toyota Motor Corp Proton conductor, electrochemical cell, and manufacturing method of proton conductor
JP5438607B2 (en) * 2010-06-30 2014-03-12 一般財団法人ファインセラミックスセンター Metal oxide film, oxygen sensor, oxygen permeable film and solid oxide fuel cell
JP2014055884A (en) * 2012-09-13 2014-03-27 Sumitomo Electric Ind Ltd Solid electrolyte for oxygen sensor, and oxygen sensor
US9437343B2 (en) 2013-07-16 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Proton conductor
WO2015008407A1 (en) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 Proton conductor
JP6132259B2 (en) * 2013-07-18 2017-05-24 住友電気工業株式会社 COMPOSITE MATERIAL FOR FUEL CELL, METHOD FOR PRODUCING COMPOSITE MATERIAL FOR FUEL CELL, AND FUEL CELL
JP6191090B2 (en) * 2013-08-27 2017-09-06 住友電気工業株式会社 ELECTRODE MATERIAL FOR FUEL ELECTRODE, SOLID ELECTROLYTE ELECTRODE LAMINATE, SOLID ELECTROLYTE ELECTRODE LAMINATE MANUFACTURING METHOD, AND FUEL CELL
WO2015114684A1 (en) 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 Proton conductor
US9458544B2 (en) 2014-02-07 2016-10-04 Panasonic Intellectual Property Management Co., Ltd. Organic hydride conversion device
JP6292381B2 (en) * 2014-02-07 2018-03-14 パナソニックIpマネジメント株式会社 Steam electrolysis hydrogenation equipment
JP6253015B2 (en) * 2014-02-07 2017-12-27 パナソニックIpマネジメント株式会社 Fuel cell
US9896771B2 (en) 2014-02-07 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Dehydrogenation device
JP7113326B2 (en) * 2017-12-12 2022-08-05 パナソニックIpマネジメント株式会社 Proton conductor and membrane electrode assembly
JP7054818B2 (en) * 2018-04-03 2022-04-15 パナソニックIpマネジメント株式会社 Fuel cell
CN114902460A (en) * 2020-01-07 2022-08-12 松下知识产权经营株式会社 Electrolyte membrane, membrane electrode assembly, electrochemical cell, and method for producing electrolyte membrane
CN111548160B (en) * 2020-05-22 2022-07-22 深圳先进电子材料国际创新研究院 Perovskite structure nano ceramic material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765839A (en) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd Reduced pole for barium cerium oxide solid electrolyte and its manufacture
JPH08327592A (en) * 1995-03-31 1996-12-13 Toyota Central Res & Dev Lab Inc Thin film type gas sensor and its manufacture
JPH09295866A (en) * 1996-04-26 1997-11-18 Matsushita Electric Ind Co Ltd Mixed ion connector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487510A (en) * 1987-09-29 1989-03-31 Nippon Denso Co Protonic conductive solid electrolyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765839A (en) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd Reduced pole for barium cerium oxide solid electrolyte and its manufacture
JPH08327592A (en) * 1995-03-31 1996-12-13 Toyota Central Res & Dev Lab Inc Thin film type gas sensor and its manufacture
JPH09295866A (en) * 1996-04-26 1997-11-18 Matsushita Electric Ind Co Ltd Mixed ion connector

Also Published As

Publication number Publication date
JP2000302550A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
JP4608047B2 (en) Mixed ionic conductor and device using the same
KR100352096B1 (en) Mixed ions containing conductor and device using the same
JP4608506B2 (en) Mixed ionic conductor and device using the same
JP3733030B2 (en) Ionic conductor
JP3453283B2 (en) Solid oxide fuel cell
JPH11335164A (en) Oxide ionic conductor and use thereof
JP5219370B2 (en) Ionic conductor
US7625653B2 (en) Ionic conductor
JP3456436B2 (en) Solid oxide fuel cell
JP4589683B2 (en) Mixed ionic conductor
JP4158966B2 (en) Composite oxide, oxide ion conductor, oxide ion conductive membrane and electrochemical cell
KR20060119701A (en) Mixed ion conductor
JP2001250563A (en) Oxidation electrode for oxide solid electrolyte
JP6933085B2 (en) Solid electrolyte, gas sensor, fuel cell
JP2002097021A (en) High temperature conductive oxide, electrode for fuel cell and fuel cell using the same
JP3446649B2 (en) Method for producing oxide ion conductor
JP2592070B2 (en) Electrode formation method
JP2005243473A (en) Cerium based solid electrolyte and its manufacturing method
JP2002316872A (en) Lanthanum gallate-base solid electrolytic material, method for manufacturing the same and solid electrolyte type fuel battery
JPH08222243A (en) Fuel cell
KR102237821B1 (en) Metal oxide-based material, fuel cell comprising metal oxide-based material, and method of preparing fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Ref document number: 4608047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

EXPY Cancellation because of completion of term