JPH0541237A - Solid fuel cell - Google Patents

Solid fuel cell

Info

Publication number
JPH0541237A
JPH0541237A JP3185092A JP18509291A JPH0541237A JP H0541237 A JPH0541237 A JP H0541237A JP 3185092 A JP3185092 A JP 3185092A JP 18509291 A JP18509291 A JP 18509291A JP H0541237 A JPH0541237 A JP H0541237A
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen
electrode
fuel cell
oxygen electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3185092A
Other languages
Japanese (ja)
Inventor
Takao Ishii
隆生 石井
Tsunekazu Iwata
恒和 岩田
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3185092A priority Critical patent/JPH0541237A/en
Publication of JPH0541237A publication Critical patent/JPH0541237A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent reaction substance from being deposited on an interface between a solid electrolyte and an oxygen electrode in a solid fuel cell so as to reduce deterioration of a characteristic of the cell. CONSTITUTION:Pyrochlore Ln(Zr0.8Ti0.2)2O7 (wherein Ln represents one kind or two or more kinds selected from Sm, Eu, Gd, Ho, Er. Yb and Lu) is used as materials of a solid electrolyte 2 and an oxygen electrode 1 in a solid fuel cell. Ca is doped so that electron conductivity is applied to the oxygen electrode 1. A fuel electrode 3 and an ion connector 4 are further laminated in sequence on the solid electrolyte 2. Since the materials having the same crystalline structure are used as the oxygen electrode 1 and the solid electrolyte 2, it is possible to prevent reaction substance from being deposited on the interface between them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素イオン導伝材料を固
体電解質及び酸素側電極材料に用いた固体燃料電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid fuel cell using an oxygen ion conducting material as a solid electrolyte and an oxygen side electrode material.

【0002】[0002]

【従来の技術】近年、燃料電池の分野では、酸素イオン
導電体に関する関心が高まりつつある。特に、小型で高
性能かつ信頼性の高い電池として全固体化電池が要求さ
れたり、エネルギーの有効利用という観点から、燃料電
池を核としたエネルギー並列供給の試みの検討がなされ
たりするなど、優れた材料の出現が強く望まれている。
このような材料として、従来、最も有望視されて来た酸
素イオン導電体には、Y23安定化ZrO2(YSZ)
がある。従来の固体燃料電池としては、YSZを固体電
解質の材料として用い、酸素側電極にはLaCoO3
LaMnO3などを用いて800℃前後の高温下で動作
させるものが知られている。
2. Description of the Related Art Recently, in the field of fuel cells, interest in oxygen ion conductors is increasing. In particular, all-solid-state batteries are required as compact, high-performance and highly reliable batteries, and from the viewpoint of effective use of energy, trials of parallel energy supply centering on fuel cells are being considered. The emergence of new materials is strongly desired.
As such a material, the most promising oxygen ion conductor has hitherto been Y 2 O 3 stabilized ZrO 2 (YSZ).
There is. As a conventional solid fuel cell, YSZ is used as a material for the solid electrolyte, and LaCoO 3 ,
It is known to use LaMnO 3 or the like to operate at a high temperature of around 800 ° C.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ようにYSZを固体電解質として用いる固体燃料電池で
は、酸素側電極にLaCoO3,LaMnO3を用いる
と、高温下でYSZと反応してLa2Zr27のような
絶縁物質が界面に折出してしまい、電池特性が著しく低
下してしまう問題があり、固体燃料電池の実現を困難に
していた。
However, in the solid fuel cell using YSZ as the solid electrolyte as described above, if LaCoO 3 , LaMnO 3 is used for the oxygen side electrode, it reacts with YSZ at high temperature to produce La 2 Zr. There is a problem that an insulating material such as 2 O 7 breaks out at the interface and the cell characteristics are significantly deteriorated, which makes it difficult to realize a solid fuel cell.

【0004】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、固体電解質と酸素側電
極の界面に反応物質が折出するのを防止し、電池特性の
低下を少なくする固体燃料電池を提供することにある。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to prevent the reaction substance from breaking out at the interface between the solid electrolyte and the oxygen-side electrode, thereby reducing the battery characteristics. An object of the present invention is to provide a solid fuel cell that can reduce the number of fuel cells.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の固体燃料電池において、AをSm,Eu,
Gd,Ho,Er,Yb,Luのうちから選ばれた1種
または2種以上とし、BをZr,Ti,Si,Sn,H
fのうちから選ばれた1種または2種以上とするパイロ
クロアA227化合物を固体電解質および酸素側電極
材料に用いることを特徴としている。
To achieve the above object, in the solid fuel cell of the present invention, A is Sm, Eu,
One or more selected from Gd, Ho, Er, Yb, and Lu, and B is Zr, Ti, Si, Sn, H
One or two or more pyrochlore A 2 B 2 O 7 compounds selected from among f are used for the solid electrolyte and the oxygen-side electrode material.

【0006】[0006]

【作用】本発明の固体燃料電池では、電解質と酸素側電
極に同一の結晶構造の材料を用いることによって、界面
への絶縁物質等の折出を防止し、電池特性の劣化を少な
くする。酸素側電極は電子伝導性とイオン伝導性を兼ね
備えている必要があるが、電解質材料にドーピングの手
法を用いて電子伝導性を付与することで、可能である。
本発明では、このような材料として、パイロクロアA2
27化合物(A=Sm,Eu,Gd,Ho,Er,Y
b,Luのうちから選ばれた1種または2種以上、B=
Zr,Ti,Si,Sn,Hfのうちから選ばれた1種
または2種以上)を選定している。この材料は、Aサイ
トとBサイトの無秩序化により生じる酸素欠陥を介して
酸素イオンが動き、高いイオン伝導性を示す。
In the solid fuel cell of the present invention, the same crystal structure material is used for the electrolyte and the oxygen-side electrode, so that the insulating material and the like are prevented from protruding to the interface and the deterioration of the cell characteristics is reduced. The oxygen-side electrode needs to have both electronic conductivity and ionic conductivity, but this can be achieved by imparting electronic conductivity to the electrolyte material using a doping technique.
In the present invention, as such a material, Pyrochlore A 2
B 2 O 7 compound (A = Sm, Eu, Gd, Ho, Er, Y
one or more selected from b and Lu, B =
One or more selected from Zr, Ti, Si, Sn and Hf) are selected. In this material, oxygen ions move through oxygen defects generated by disordering A sites and B sites, and thus exhibit high ionic conductivity.

【0007】[0007]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0008】図1は本発明の第1の実施例である単セル
の固体燃料電池の構成例を示す図である。本実施例の電
池構成において、1は酸素電極、2は固体電解質、3は
燃料電極、4はイオンコネクターである。酸素電極1お
よび固体電解質2としてはパイロクロアLn2(Zr0・8
Ti0・227(Ln=Sm,Eu,Gd,Ho,E
r,Yb,Luのうちから選ばれた1種または2種以
上)を用い、酸素電極1として用いた同じ固体電解質材
料にCaをドープしたものを用いる。これらの固体電解
質の作製方法は、次の通りである。まず、それぞれの材
料Ln23,ZrO2,TiO2,CaCO3を1000
℃で仮焼したのち微粉末にする。次に、ドクターブレイ
ド法によりセラミック薄膜を形成し1400℃で焼き上
げる。パイロクロアは1400℃の高温で初めて合成で
きるため結合エネルギーが大きく燃料電池使用温度80
0℃でのCaイオンの拡散速度は極めて小さく酸素電極
1は安定である。燃料電極3にはNi−ZrO2(ジル
コニア)を用いるが、結晶構造がパイロクロアとジルコ
ニアは似ているので熱的には安定である。なお、イオン
コネクター4にはLaCrO3を用いる。燃料電極3及
びインタコネクター4は単膜順次積層形成法でそれぞれ
1300℃及び1200℃で焼成して作る。
FIG. 1 is a diagram showing a structural example of a single-cell solid fuel cell which is a first embodiment of the present invention. In the battery structure of this embodiment, 1 is an oxygen electrode, 2 is a solid electrolyte, 3 is a fuel electrode, and 4 is an ion connector. The oxygen electrode 1 and the solid electrolyte 2 are pyrochlore Ln 2 (Zr 0.8
Ti 0 .2) 2 O 7 (Ln = Sm, Eu, Gd, Ho, E
One or more selected from r, Yb, and Lu) is used, and the same solid electrolyte material used as the oxygen electrode 1 is doped with Ca. The method for producing these solid electrolytes is as follows. First, each of the materials Ln 2 O 3 , ZrO 2 , TiO 2 , and CaCO 3 is set to 1000
It is calcined at ℃ and made into fine powder. Next, a ceramic thin film is formed by the doctor blade method and baked at 1400 ° C. Pyrochlore has a large binding energy because it can be synthesized for the first time at a high temperature of 1400 ° C.
The diffusion rate of Ca ions at 0 ° C. is extremely small, and the oxygen electrode 1 is stable. Ni-ZrO 2 (zirconia) is used for the fuel electrode 3, but since pyrochlore and zirconia have similar crystal structures, they are thermally stable. Incidentally, LaCrO 3 is used for the ion connector 4. The fuel electrode 3 and the interconnector 4 are formed by firing at 1300 ° C. and 1200 ° C., respectively, by a single film sequential lamination forming method.

【0009】以上のように構成した第1の実施例の作用
を述べる。図2は、本実施例の酸素イオン導伝材料であ
るパイロクロアA227の結晶構造を示す図である。
その結晶構造は、イオン伝導性の高いホタル石型結晶構
造が少し変形した構造を有し層状構造を有しており、B
イオンはO6八面体の中心に位置し、AイオンはO6八面
体で囲まれた隙間に位置している。A(=Ln)サイト
とB(=Zr0・8Ti0・2)サイトの無秩序化により生じ
る酸素欠陥を介して酸素イオンが動き、高いイオン伝導
性を示す。さらにAサイト(3価)の一部にCa2+のよ
うなイオンをドーピングすることにより電子伝導を有す
る材料となる。よって、同一の結晶構造で電解質と電極
を同時に作ることができる。このように固体電解質2と
酸素電極1に同一の結晶構造の材料を用いれば、高温下
で動作する際にその界面に両者の材料同士の反応で絶縁
物質等が析出されるのを防止することができ、それによ
る電池特性の劣化を抑えることができる。
The operation of the first embodiment constructed as above will be described. FIG. 2 is a diagram showing a crystal structure of pyrochlore A 2 B 2 O 7 which is an oxygen ion conducting material of this example.
Its crystal structure is a layered structure having a structure in which the fluorite type crystal structure with high ion conductivity is slightly deformed,
The ion is located in the center of the O 6 octahedron, and the A ion is located in the gap surrounded by the O 6 octahedron. Oxygen ions move through oxygen defects generated by disordering the A (= Ln) site and the B (= Zr 0 .8 Ti 0 .2) site, and show high ionic conductivity. Further, by doping a part of the A site (trivalent) with ions such as Ca 2+ , a material having electron conduction is obtained. Therefore, an electrolyte and an electrode can be simultaneously formed with the same crystal structure. In this way, when the solid electrolyte 2 and the oxygen electrode 1 are made of the same material having the same crystal structure, it is possible to prevent the deposition of an insulating substance or the like at the interface between the two materials when operating at high temperature. It is possible to suppress deterioration of battery characteristics due to the above.

【0010】次に、本実施例の効果を測定例で示す。図
1において、酸素電極1および燃料電極3の厚みを1m
mとし、固体電解質2の厚みを0.1mmとし、イオン
コネクター4の厚みを1mmとし、20mmφの単セル
を形成して800℃で500時間保持したが、固体電解
質2と酸素電極1の界面に析出物は認められなかった。
図3に酸素電極1と固体電解質2の材料がSm2(Zr
0・8Ti0・227の場合であってH2−空気雰囲気80
0℃における単セルの電流(電流密度)−電圧特性を、
図4にその電流密度が0.2A/cm2であって800
℃のときの電圧経時変化特性を、それぞれ示す。パイロ
クロア側の曲線が本実施例を示し、YSZ側の曲線が比
較のために示した従来例の特性である。このように、本
実施例は従来例より良好な電池特性即ち電流−電圧特性
と経時変化特性が得られる。
Next, the effect of this embodiment will be shown by a measurement example. In FIG. 1, the thickness of the oxygen electrode 1 and the fuel electrode 3 is 1 m.
m, the thickness of the solid electrolyte 2 was 0.1 mm, the thickness of the ion connector 4 was 1 mm, and a single cell of 20 mmφ was formed and held at 800 ° C. for 500 hours, but at the interface between the solid electrolyte 2 and the oxygen electrode 1. No precipitate was observed.
In FIG. 3, the materials for the oxygen electrode 1 and the solid electrolyte 2 are Sm 2 (Zr
0.8 Ti 0 .2) 2 O 7 and H 2 -air atmosphere 80
The current (current density) -voltage characteristics of a single cell at 0 ° C.
FIG. 4 shows that the current density is 0.2 A / cm 2
The voltage aging characteristics at the temperature of ° C are shown respectively. The curve on the pyrochlore side shows the characteristics of this embodiment, and the curve on the YSZ side shows the characteristics of the conventional example shown for comparison. As described above, the present embodiment can obtain better battery characteristics, that is, current-voltage characteristics and aging characteristics than the conventional example.

【0011】以下、同様にして測定したLn2(Zr0・8
Ti0・227(Ln=Eu,Gd,Ho,Er,Y
b,Lu)の場合の単セルの電池特性を表1に示すと、 表1 固体電解質 電池特性 Sm2(Zr0・8Ti0・227 良好 Eu2(Zr0・8Ti0・227 不良(電子伝導性を一部含む) Gd2(Zr0・8Ti0・227 良好 Ho2(Zr0・8Ti0・227 良好 Er2(Zr0・8Ti0・227 良好 Yb2(Zr0・8Ti0・227 良好 Lu2(Zr0・8Ti0・227 良好 となる。即ち、一部例外を除き良好な電池特性が得られ
る。
Hereinafter, Ln 2 (Zr 0.8
Ti 0 .2) 2 O 7 (Ln = Eu, Gd, Ho, Er, Y
The battery characteristics of the single cell in the case of (b, Lu) are shown in Table 1. Table 1 Solid electrolyte battery characteristics Sm 2 (Zr 0 .8 Ti 0 .2) 2 O 7 good Eu 2 (Zr 0 .8 Ti 0 · 2) contains part 2 O 7 poor (electron conductivity) Gd 2 (Zr 0 · 8 Ti 0 · 2) 2 O 7 good Ho 2 (Zr 0 · 8 Ti 0 · 2) 2 O 7 good Er 2 (Zr 0 .8 Ti 0 .2) 2 O 7 is good Yb 2 (Zr 0 .8 Ti 0 .2) 2 O 7 is good Lu 2 (Zr 0 .8 Ti 0 .2) 2 O 7 is good. That is, good battery characteristics can be obtained with some exceptions.

【0012】次に、本発明の第2の実施例を説明する。
図5は、その構成例を示す図である。本実施例を構成す
る要素は、第1の実施例と同様である。ただし、本実施
例では、酸素電極1および固体電解質2としてLn
2(Zr0・8Si0・227(Ln=Sm,Eu,Gd,
Ho,Er,Yb,Luのうちから選ばれた1種または
2種以上)を用い、酸素電極1として用いた固体電解質
材料にCaをドープしたものを用いる。その作製方法と
しては、まず、それぞれの材料Ln23,ZrO2,S
iO2,CaCO3を1000℃で仮焼したのち微粉末に
する。次に、ドクターブレイド法によりセラミック薄膜
を形成し1400℃で焼き上げる。パイロクロアは14
00℃の高温で初めて合成できるため結合エネルギーが
大きく、燃料電池使用温度800℃程度でのCaイオン
の拡散速度は極めて小さく、酸素電極1は安定である。
燃料電極3はNi−ZrO2(ジルコニア)を用いる
が、結晶構造がパイロクロアとジルコニアは似ているの
で熱的には安定である。なお、インタコネクター4には
LaCrO3を用いる。燃料電極3及びインタコネクタ
ー4は単膜順次積層法でそれぞれ1300℃及び120
0℃で焼成して作る。
Next, a second embodiment of the present invention will be described.
FIG. 5 is a diagram showing an example of the configuration. The constituent elements of this embodiment are similar to those of the first embodiment. However, in this embodiment, Ln is used as the oxygen electrode 1 and the solid electrolyte 2.
2 (Zr 0 · 8 Si 0 · 2) 2 O 7 (Ln = Sm, Eu, Gd,
One or more selected from Ho, Er, Yb, and Lu) is used, and the solid electrolyte material used as the oxygen electrode 1 is doped with Ca. As the manufacturing method, first, the materials Ln 2 O 3 , ZrO 2 , and S are used.
After calcination of iO 2 and CaCO 3 at 1000 ° C., it is made into fine powder. Next, a ceramic thin film is formed by the doctor blade method and baked at 1400 ° C. Pyrochlore is 14
Since it can be synthesized for the first time at a high temperature of 00 ° C., the binding energy is large, the diffusion rate of Ca ions at a fuel cell operating temperature of about 800 ° C. is extremely small, and the oxygen electrode 1 is stable.
Ni-ZrO 2 (zirconia) is used for the fuel electrode 3, but since pyrochlore and zirconia have similar crystal structures, they are thermally stable. LaCrO 3 is used for the interconnector 4. The fuel electrode 3 and interconnector 4 are formed by a single film sequential lamination method at 1300 ° C. and 120 ° C., respectively.
It is made by baking at 0 ° C.

【0013】このようにして作製した単セルの形状を第
1の実施例と同様の寸法すなわち、酸素電極1,固体電
解質2,燃料電極3,イオンコネクター4の順に各層の
厚みを1mm,0.1mm,1mm,1mmとし、径を
20mmφとして、H2−空気雰囲気800℃で500
時間保持したが、固体電解質2と酸素電極1の界面に析
出物は認められなかった。また、第1の実施例と同様に
して測定したLn2(Zr0・8Si0・227(Ln=S
m,Eu,Gd,Ho,Er,Yb,Lu)の場合の単
セルの電池特性を表2に示すと、 表2 固体電解質 電池特性 Sm2(Zr0・8Si0・227 良好 Eu2(Zr0・8Si0・227 不良(電子伝電性を一部含む) Gd2(Zr0・8Si0・227 良好 Ho2(Zr0・8Si0・227 良好 Er2(Zr0・8Si0・227 良好 Yb2(Zr0・8Si0・227 良好 Lu2(Zr0・8Si0・227 良好 となる。このように、本実施例も、第1の実施例と同様
の効果が得られる。
The shape of the single cell thus manufactured was the same as that of the first embodiment, that is, the oxygen electrode 1, the solid electrolyte 2, the fuel electrode 3, and the ion connector 4 were formed in this order with the thickness of each layer being 1 mm, 0. 1 mm, 1 mm, 1 mm, diameter 20 mmφ, H 2 -air atmosphere 800 ° C. 500
After holding for a period of time, no precipitate was observed at the interface between the solid electrolyte 2 and the oxygen electrode 1. Further, Ln 2 (Zr 0 .8 Si 0 .2) 2 O 7 (Ln = S was measured in the same manner as in the first embodiment.
m, Eu, Gd, Ho, Er, Yb, Lu), the battery characteristics of the single cell are shown in Table 2. Table 2 shows the solid electrolyte battery characteristics Sm 2 (Zr 0 .8 Si 0 .2) 2 O 7 Good Eu 2 (Zr 0 .8 Si 0 .2) 2 O 7 bad (including part of electronic conductivity) Gd 2 (Zr 0 .8 Si 0 .2) 2 O 7 good Ho 2 (Zr 0 .8) Si 0 .2) 2 O 7 good Er 2 (Zr 0 .8 Si 0 .2) 2 O 7 good Yb 2 (Zr 0 .8 Si 0 .2) 2 O 7 good Lu 2 (Zr 0 .8 Si 0・ 2 ) 2 O 7 is good. As described above, this embodiment also has the same effect as that of the first embodiment.

【0014】次に、本発明の第3の実施例を説明する。
本実施例を構成する要素も第1の実施例と同様である。
ただし、本実施例では、酸素電極1および固体電解質2
としてGd2(Zr1-xSnx27,Gd2(Zr1-x
x27(0<x<1)を用い、酸素電極1として用
いた固体電解質にCaをドープしたものを用いる。単セ
ルの作製方法は第1の実施例と同じである。
Next, a third embodiment of the present invention will be described.
The constituent elements of this embodiment are similar to those of the first embodiment.
However, in the present embodiment, the oxygen electrode 1 and the solid electrolyte 2 are
As Gd 2 (Zr 1-x Sn x ) 2 O 7 , Gd 2 (Zr 1-x H
f x) with 2 O 7 (0 <x < 1), using doped with Ca in the solid electrolyte is used as an oxygen electrode 1. The manufacturing method of the single cell is the same as that of the first embodiment.

【0015】このようにして作製した単セルの形状を第
1の実施例と同様の寸法すなわち、酸素電極1,固体電
解質2,燃料電極3,イオンコネクター4の順に各層の
厚みを1mm,0.1mm,1mm,1mmとし、径を
20mmφとして、H2−空気雰囲気800℃で500
時間保持したが、固体電解質2と酸素電極1の界面に析
出物は認められなかった。また、第1の実施例と同様に
して測定した単セルの電池特性を表3に示すと、 となる。このように、本実施例も、第1の実施例と同様
の効果が得られる。
The shape of the single cell thus manufactured was the same as that of the first embodiment, that is, the oxygen electrode 1, the solid electrolyte 2, the fuel electrode 3, and the ion connector 4 were formed in this order with the thickness of each layer being 1 mm, 0. 1 mm, 1 mm, 1 mm, diameter 20 mmφ, H 2 -air atmosphere 800 ° C. 500
After holding for a period of time, no precipitate was observed at the interface between the solid electrolyte 2 and the oxygen electrode 1. Table 3 shows the battery characteristics of the single cell measured in the same manner as in the first embodiment. Becomes As described above, this embodiment also has the same effect as that of the first embodiment.

【0016】次に、本発明の第4の実施例を説明する。
本実施例を構成する要素も第1の実施例と同様である。
ただし、本実施例では、酸素電極1および固体電解質2
としてGd2-xSmxZr27(0<x<2)を用い、酸
素電極1として用いた固体電解質にCaをドープしたも
のを用いる。単セルの作製方法は第1の実施例と同じで
ある。
Next, a fourth embodiment of the present invention will be described.
The constituent elements of this embodiment are similar to those of the first embodiment.
However, in the present embodiment, the oxygen electrode 1 and the solid electrolyte 2 are
Gd 2−x Sm x Zr 2 O 7 (0 <x <2) is used as the solid electrolyte, and the solid electrolyte used as the oxygen electrode 1 is doped with Ca. The manufacturing method of the single cell is the same as that of the first embodiment.

【0017】このようにして作製した単セルの形状を第
1の実施例と同様の寸法すなわち、酸素電極1,固体電
解質2,燃料電極3,イオンコネクター4の順に各層の
厚みを1mm,0.1mm,1mm,1mmとし、径を
20mmφとして、H2−空気雰囲気800℃で500
時間保持したが、固体電解質2と酸素電極1の界面に析
出物は認められなかった。また、第1の実施例と同様に
して測定した単セルの電池特性を表4に示すと、 となる。このように、本実施例も、第1の実施例と同様
の効果が得られる。
The shape of the single cell thus manufactured was the same as that of the first embodiment, that is, the oxygen electrode 1, the solid electrolyte 2, the fuel electrode 3, and the ion connector 4 were formed in this order with the thickness of each layer being 1 mm, 0. 1 mm, 1 mm, 1 mm, diameter 20 mmφ, H 2 -air atmosphere 800 ° C. 500
After holding for a period of time, no precipitate was observed at the interface between the solid electrolyte 2 and the oxygen electrode 1. Table 4 shows the battery characteristics of the single cell measured in the same manner as in the first example. Becomes As described above, this embodiment also has the same effect as that of the first embodiment.

【0018】以上に述べたように本発明は、その主旨に
沿って種々に応用され、種々の実施態様を取り得るもの
である。
As described above, the present invention can be applied in various ways in accordance with the gist thereof and can take various embodiments.

【0019】[0019]

【発明の効果】以上の説明で明らかなように、本発明の
固体燃料電池によれば、酸素側電極と固体電解質の材料
を同一結晶構造の材料としたことにより、従来のように
固体電解質にYSZを用いた時に起っていた固体電解質
酸素側電極との界面での反応が起こらないので電池特性
の劣化を少なくすることができ、固体燃料電池の分野で
大きく貢献できる利点が得られる。
As is apparent from the above description, according to the solid fuel cell of the present invention, the oxygen-side electrode and the solid electrolyte are made to have the same crystal structure, so that the solid electrolyte can be formed as in the conventional case. Since the reaction at the interface with the solid electrolyte oxygen-side electrode that occurs when YSZ is used does not occur, it is possible to reduce the deterioration of the cell characteristics, and it is possible to obtain the advantage of making a significant contribution to the field of the solid fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す単セルの固体燃料
電池の構成図
FIG. 1 is a configuration diagram of a single-cell solid fuel cell showing a first embodiment of the present invention.

【図2】パイロクロア(A227)の結晶構造を示す
FIG. 2 is a diagram showing a crystal structure of pyrochlore (A 2 B 2 O 7 ).

【図3】上記第1の実施例の測定例を示す単セルの電流
−電圧特性図
FIG. 3 is a current-voltage characteristic diagram of a single cell showing a measurement example of the first embodiment.

【図4】上記第1の実施例の測定例を示す単セルの電圧
の経時変化特性図
FIG. 4 is a characteristic diagram of a change with time of voltage of a single cell showing a measurement example of the first embodiment.

【図5】本発明の第2の実施例を示す単セルの固体燃料
電池の構成図
FIG. 5 is a configuration diagram of a single-cell solid fuel cell showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…酸素電極、2…固体電解質、3…燃料電極、4…イ
オンコネクター。
1 ... Oxygen electrode, 2 ... Solid electrolyte, 3 ... Fuel electrode, 4 ... Ion connector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 AをSm,Eu,Gd,Ho,Er,Y
b,Luのうちから選ばれた1種または2種以上とし、
BをZr,Ti,Si,Sn,Hfのうちから選ばれた
1種または2種以上とするパイロクロアA227化合
物を固体電解質および酸素側電極材料に用いることを特
徴とする固体燃料電池。
1. A is Sm, Eu, Gd, Ho, Er, Y
1 or 2 or more selected from b and Lu,
A solid fuel characterized by using a pyrochlore A 2 B 2 O 7 compound in which B is one or more selected from Zr, Ti, Si, Sn, and Hf as a solid electrolyte and an oxygen-side electrode material. battery.
JP3185092A 1991-07-25 1991-07-25 Solid fuel cell Pending JPH0541237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185092A JPH0541237A (en) 1991-07-25 1991-07-25 Solid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185092A JPH0541237A (en) 1991-07-25 1991-07-25 Solid fuel cell

Publications (1)

Publication Number Publication Date
JPH0541237A true JPH0541237A (en) 1993-02-19

Family

ID=16164705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185092A Pending JPH0541237A (en) 1991-07-25 1991-07-25 Solid fuel cell

Country Status (1)

Country Link
JP (1) JPH0541237A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790754A1 (en) * 2005-11-24 2007-05-30 Siemens Aktiengesellschaft Coating system including a mixed Gadolinium pyrochlor phase.
JP2009514698A (en) * 2005-11-04 2009-04-09 シーメンス アクチエンゲゼルシヤフト Two-layer heat-resistant protective structure with pyrochlore phase
JP2010241610A (en) * 2007-05-07 2010-10-28 Siemens Ag Ceramic powder, ceramic layer and layer system, with gadolinium mixed crystal pyrochlore phase and oxide
JP2020167052A (en) * 2019-03-29 2020-10-08 株式会社豊田中央研究所 Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using the same, and solid oxide fuel cell using the same
CN115010506A (en) * 2022-06-20 2022-09-06 有研资源环境技术研究院(北京)有限公司 RE-Zr (Hf) co-doped gadolinium zirconate material, preparation method and thermal barrier coating

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514698A (en) * 2005-11-04 2009-04-09 シーメンス アクチエンゲゼルシヤフト Two-layer heat-resistant protective structure with pyrochlore phase
EP1790754A1 (en) * 2005-11-24 2007-05-30 Siemens Aktiengesellschaft Coating system including a mixed Gadolinium pyrochlor phase.
WO2007060062A1 (en) * 2005-11-24 2007-05-31 Siemens Aktiengesellschaft Layered system comprising a gadolinium mixed crystal pyrochlore phase
JP2009517241A (en) * 2005-11-24 2009-04-30 シーメンス アクチエンゲゼルシヤフト Layered structure with gadolinium mixed crystal pyrochlore phase
GB2432591B (en) * 2005-11-24 2011-05-18 Siemens Ag Layer system
EP2278039A3 (en) * 2005-11-24 2012-03-28 Siemens Aktiengesellschaft Coating system including a mixed gadolinium pyrochlor phase
EP2278040A3 (en) * 2005-11-24 2012-03-28 Siemens Aktiengesellschaft Coating system including a mixed gadolinium pyrochlor phase
US9611551B2 (en) 2005-11-24 2017-04-04 Siemens Aktiengesellschaft Layer system comprising gadolinium solid solution pyrochlore phase
JP2010241610A (en) * 2007-05-07 2010-10-28 Siemens Ag Ceramic powder, ceramic layer and layer system, with gadolinium mixed crystal pyrochlore phase and oxide
JP2020167052A (en) * 2019-03-29 2020-10-08 株式会社豊田中央研究所 Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using the same, and solid oxide fuel cell using the same
CN115010506A (en) * 2022-06-20 2022-09-06 有研资源环境技术研究院(北京)有限公司 RE-Zr (Hf) co-doped gadolinium zirconate material, preparation method and thermal barrier coating

Similar Documents

Publication Publication Date Title
EP0188868B1 (en) Ceramic compound and air electrode materials for high-temperature electrochemical cells
US7838141B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
JP4608047B2 (en) Mixed ionic conductor and device using the same
JPH11335164A (en) Oxide ionic conductor and use thereof
US5413880A (en) Oxygen ion conductor and solid fuel cell
KR20020053786A (en) Mixed ions containing conductor and device using the same
JP2002352808A (en) Guiding method of electrode active oxide into aerial pole for solid electrolyte fuel cell
US5672437A (en) Solid electrolyte for a fuel cell
AU2003229677A1 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
JP5021761B2 (en) Free-standing membrane electrolyte / electrode assembly
JP3218555B2 (en) Ceria based solid electrolyte with protective layer
JPH0567473A (en) Solid electrolyte fuel cell
JP3456436B2 (en) Solid oxide fuel cell
JP4390530B2 (en) Electrolyte / electrode assembly and method for producing the same
JP4374631B2 (en) Oxide ion mixed conductor and its application
JPH0541237A (en) Solid fuel cell
JP3259756B2 (en) Multilayer solid electrolyte for solid fuel cells
JP6879456B2 (en) Method for manufacturing solid electrolyte member, solid oxide fuel cell, water electrolyzer, hydrogen pump and solid electrolyte member
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
US7758992B2 (en) Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices
JP3256919B2 (en) Solid electrolyte fuel cell
JPH07161360A (en) Air electrode material for low temperature action type solid fuel cell
JP2592067B2 (en) Oxygen electrode of solid oxide fuel cell
JPH1097860A (en) Manufacture of zro2 solid electrolyte film with sc2o3 and al2o3 added by sol-gel method
JP2005243473A (en) Cerium based solid electrolyte and its manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 14