JP3967118B2 - Method for producing metal separator for fuel cell - Google Patents
Method for producing metal separator for fuel cell Download PDFInfo
- Publication number
- JP3967118B2 JP3967118B2 JP2001371331A JP2001371331A JP3967118B2 JP 3967118 B2 JP3967118 B2 JP 3967118B2 JP 2001371331 A JP2001371331 A JP 2001371331A JP 2001371331 A JP2001371331 A JP 2001371331A JP 3967118 B2 JP3967118 B2 JP 3967118B2
- Authority
- JP
- Japan
- Prior art keywords
- separator
- fuel cell
- convex
- metal separator
- electrode structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池が備える金属製セパレータの製造方法に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層された積層体が1ユニットとされ、複数のユニットが積層されて燃料電池スタックとして構成される。電極構造体は、正極(カソード)および負極(アノード)を構成する一対のガス拡散電極の間にイオン交換樹脂等からなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層の外側にガス拡散層が形成されたものである。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路や冷媒流路が形成されている。このような燃料電池によると、例えば、負極側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、正極側のガス拡散電極に面するガス流路に酸素や空気等の酸化性ガスを流すと電気化学反応が起こり、電気が発生する。
【0003】
上記セパレータは、負極側の水素ガスの触媒反応により発生した電子を外部回路へ供給する一方、外部回路からの電子を正極側に送給する機能を具備する必要がある。そこで、セパレータには黒鉛系材料や金属系材料からなる導電性材料が用いられており、特に金属系材料のものは、機械的強度に優れている点や、薄板化による軽量・コンパクト化が可能である点で有利であるとされている。金属製のセパレータとしては、ステンレス鋼からなる薄板を素材とし、この素材をプレス成形により断面凹凸状に成形して、表裏面に形成された溝を上記ガス流路や冷媒流路としたものが挙げられる。
【0004】
【発明が解決しようとする課題】
このような金属製セパレータは、電極構造体と組み合わされた状態で、凸部表面が電極構造体のガス拡散電極に接触する。ところで、その凸部は、プレス成形後の脱型をスムーズにするために、側面が若干傾斜する台形状に形成されている。また、凸部表面から側面への移行部分である角部は、曲げ加工によってどうしてもR形状となる。これらのことから、凸部表面における電極構造体への実際の接触面積を大きくとることが規制されてしまう。電極構造体へのセパレータの接触面積の低減は接触抵抗の増大を招き、発電性能の向上を妨げるものであるから、接触面積の拡大化が望まれる。また、凸部表面は全体がRに近く、平坦面が少ないものがあり、その場合には電極構造体への接触状態において所望の面圧が確保されにくく、やはり接触抵抗の増大を招く。
【0005】
よって本発明は、プレス成形により成形される断面凹凸状の燃料電池用金属製セパレータにおいて、凸部表面における電極構造体への接触面積が拡大して所望の面圧が確保され、これによって接触抵抗が低減して発電性能の向上が図られる燃料電池用金属製セパレータの製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の燃料電池用金属製セパレータの製造方法は、金属板からなる素材をプレス成形により断面凹凸状に成形し、かつ、その成形時に凸部表面を平坦に形成し、この後、平坦な凸部表面を所定厚さ除去して平坦に形成することを特徴としている。
【0007】
図1は、本発明の製造方法で得られるセパレータを概念的に示しており、プレス成形後の凸部10の表面11が除去され、平坦な表面12が新たに形成されている。図1で斜線部分が除去部分であり、aで示す範囲、すなわち表面12が電極構造体への接触面である。ちなみに、bは表面11が除去されない状態、すなわち従来の凸部10の電極構造体への接触面である。
【0008】
図1で明らかなように、凸部表面の除去により接触面は拡大し、このため、電極構造体に対して所望の面圧が確保されるとともに、接触抵抗が低減して発電性能の向上が図られる。凸部表面が除去された状態においては、プレス成形によって生じた角部のRが除去されていると、接触面積がより拡大することになるので好ましい。本発明のセパレータは、ステンレス鋼等が好適に用いられるが、導電経路を形成する非金属の導電性介在物が金属組織中に分散したステンレス鋼は、良好な導電性を発揮することから、燃料電池用セパレータの材料としてとりわけ好適である。このようなステンレス鋼を本発明に適用すると、凸部表面を除去することにより表面に導電性介在物が突出し、セパレータとしての機能の向上が図られる。プレス成形後に除去される表面の除去量(厚さ)は、3μmを下回ると電極構造体に対する接触抵抗の低減効果を大きく得られないことから、3μm以上が好ましい。
【0009】
本発明においては、上述のように、凸部表面の除去量は、3μm以上が好ましい。凸部表面を除去する方法としては、電解エッチング等の電気化学的方法、エッチング等の化学的方法、切削やサンドブラスト等の物理的方法等が挙げられる。
【0010】
【実施例】
次に、本発明の実施例を説明する。
A.セパレータの製造
[実施例1〜10]
厚さ0.2mmのオーステナイト系ステンレス鋼板をプレス成形して、92mm×92mmの正方形状のセパレータ素材板を必要数得た。図2はこのセパレータ素材板を示しており、このセパレータ素材板は、中央に断面凹凸状の集電部を有し、その周囲に平坦な縁部を有している。図3は、このセパレータ素材板の集電部の一部断面および寸法を示している。次に、セパレータ素材板の集電部の両面の凹部内面にマスキングを施し、両面の凸部表面のみを電解エッチングによって除去して表面を平坦化させた。電解エッチングによる除去量(厚さ)は、表1に示すように、1μm、2μm、3μm、4μm、5μm、6μm、7μm、10μm、20μm、50μmとし、除去量が異なる10種類の実施例1〜10のセパレータを製造した。なお、マスキング材は、フロン工業社製の粘着テープ:F−7034(厚さ0.08mm)を用いた。また、電解エッチングは、ジャスコ社製リン酸系電解エッチング液:6C016を用い、温度50℃、電流密度0.125A/cm2の条件で行った。
【0011】
[比較例]
凸部表面を除去しない上記セパレータ素材板を、比較例のセパレータとした。
【0012】
【表1】
【0013】
B.接触抵抗の測定
次いで、実施例1〜10および比較例のセパレータを用いて、電極構造体(MEA)の両側にセパレータを積層した1つの燃料電池ユニットを構成し、このユニットを発電させて、電極構造体に対するセパレータの接触抵抗を測定した。その結果を表1に併記するとともに、凸部表面の除去量と接触抵抗との関係を図4にグラフ化した。
【0014】
図4で明らかなように、実施例1〜10のセパレータは、比較例よりも接触抵抗が格段に低く、凸部表面の除去による平坦化が発電性能の向上に寄与することが実証された。特に、凸部表面の除去量が3μmであると接触抵抗がより低減している。そして、3μmが確保されていれば、それ以上の除去量でも接触抵抗の低減効果が増すことはないことも確認された。
【0015】
【発明の効果】
以上説明したように、本発明によれば、プレス成形により断面凹凸状に成形される燃料電池用金属製セパレータにおいて、電極構造体に接触する凸部表面をプレス成形後に除去して平坦化することにより、凸部表面における電極構造体への接触面積が拡大して所望の面圧が確保され、これによって電極構造体に対する接触抵抗が低減し、結果として発電性能の向上が図られるといった効果を奏する。
【図面の簡単な説明】
【図1】 本発明のセパレータを概念的に示す図である。
【図2】 本発明の実施例で製造されるセパレータの平面写真である。
【図3】 実施例で製造されるセパレータの集電部(凹凸成形部分)の断面図である。
【図4】 実施例で測定した接触抵抗の結果を示すグラフである。
【符号の説明】
10…凸部
11…表面(除去された表面)
12…表面(表面が除去された後の新たな表面)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a metallic separators comprising a solid polymer electrolyte fuel cell.
[0002]
[Prior art]
In the polymer electrolyte fuel cell, a laminated body in which separators are laminated on both sides of a plate electrode assembly (MEA) is formed as one unit, and a plurality of units are laminated to form a fuel cell stack. The The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of gas diffusion electrodes constituting a positive electrode (cathode) and a negative electrode (anode). In the gas diffusion electrode, a gas diffusion layer is formed on the outside of the electrode catalyst layer in contact with the electrolyte membrane. The separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for allowing a gas to flow between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, is allowed to flow in a gas flow channel facing the negative electrode side gas diffusion electrode, and oxygen or air is oxidized in the gas flow channel facing the positive electrode side gas diffusion electrode. When a sex gas is flowed, an electrochemical reaction occurs and electricity is generated.
[0003]
The separator needs to have a function of supplying electrons generated by the catalytic reaction of the hydrogen gas on the negative electrode side to the external circuit, and supplying electrons from the external circuit to the positive electrode side. Therefore, conductive materials such as graphite and metal materials are used for the separator. Especially metal materials are excellent in mechanical strength, and can be made lighter and more compact by making them thinner. It is said that it is advantageous at this point. As a metal separator, a thin plate made of stainless steel is used as a raw material, this material is formed into a concave-convex shape by press molding, and the grooves formed on the front and back surfaces are used as the gas flow path and the refrigerant flow path. Can be mentioned.
[0004]
[Problems to be solved by the invention]
In such a metallic separator, the surface of the convex portion is in contact with the gas diffusion electrode of the electrode structure in a state where it is combined with the electrode structure. By the way, the convex portion is formed in a trapezoidal shape whose side surface is slightly inclined in order to smoothly remove the mold after press molding. Moreover, the corner | angular part which is a transition part from the convex part surface to a side surface becomes an R shape inevitably by bending. For these reasons, it is restricted to increase the actual contact area with the electrode structure on the convex surface. Since reduction of the contact area of the separator with the electrode structure causes an increase in contact resistance and hinders improvement in power generation performance, it is desired to increase the contact area. In addition, there are convex surfaces that are close to R as a whole and have a small flat surface. In this case, it is difficult to ensure a desired surface pressure in a contact state with the electrode structure, which also increases contact resistance.
[0005]
Therefore, the present invention provides a metal separator for a fuel cell having a concavo-convex shape formed by press molding, which increases the contact area to the electrode structure on the surface of the convex portion, thereby securing a desired surface pressure, thereby improving the contact resistance. There has been an object to provide a method for manufacturing a fuel cell metal separators improvement is achieved in the power generation performance is reduced.
[0006]
[Means for Solving the Problems]
The method for producing a metal separator for a fuel cell according to the present invention comprises forming a metal plate material into a concavo-convex shape by press molding, and forming a flat surface at the time of the molding, and thereafter forming a flat ridge. It is characterized in that the surface of the part is formed flat by removing a predetermined thickness .
[0007]
FIG. 1 conceptually shows a separator obtained by the production method of the present invention, in which the
[0008]
As is apparent from FIG. 1, the contact surface is enlarged by removing the convex surface, so that a desired surface pressure is ensured for the electrode structure, and the contact resistance is reduced to improve the power generation performance. Figured. In the state where the surface of the convex portion is removed, it is preferable that the corner R generated by the press molding is removed because the contact area is further expanded. For the separator of the present invention, stainless steel or the like is preferably used, but stainless steel in which nonmetallic conductive inclusions forming a conductive path are dispersed in a metal structure exhibits good conductivity. It is particularly suitable as a material for battery separators. When such stainless steel is applied to the present invention, the conductive inclusions protrude from the surface by removing the convex surface, and the function as a separator is improved. Since the removal amount (thickness) of the surface that is removed after press molding is less than 3 μm, the effect of reducing the contact resistance with respect to the electrode structure cannot be greatly obtained, and therefore 3 μm or more is preferable.
[0009]
In the present invention, as described above, the removal amount of the convex surface is preferably 3 μm or more. Examples of the method for removing the convex surface include an electrochemical method such as electrolytic etching, a chemical method such as etching, and a physical method such as cutting and sandblasting.
[0010]
【Example】
Next, examples of the present invention will be described.
A. Production of separator [Examples 1 to 10]
An austenitic stainless steel plate having a thickness of 0.2 mm was press-molded to obtain a necessary number of 92 mm × 92 mm square separator material plates. FIG. 2 shows this separator material plate. This separator material plate has a current collecting portion having a concave-convex cross section at the center and a flat edge around the current collecting portion. FIG. 3 shows a partial cross section and dimensions of the current collecting portion of the separator material plate. Next, the inner surfaces of the concave portions on both sides of the current collecting portion of the separator material plate were masked, and only the surfaces of the convex portions on both sides were removed by electrolytic etching to flatten the surface. As shown in Table 1, the removal amount (thickness) by electrolytic etching is 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 10 μm, 20 μm, and 50 μm. Ten separators were produced. The masking material used was an adhesive tape F-7034 (thickness 0.08 mm) manufactured by Freon Industries. Electrolytic etching was performed using a phosphoric acid-based electrolytic etching solution 6C016 manufactured by Jusco Corporation under conditions of a temperature of 50 ° C. and a current density of 0.125 A / cm 2 .
[0011]
[Comparative example]
The separator material plate from which the convex surface was not removed was used as a separator of a comparative example.
[0012]
[Table 1]
[0013]
B. Measurement of contact resistance Next, using the separators of Examples 1 to 10 and the comparative example, one fuel cell unit in which separators were stacked on both sides of an electrode structure (MEA) was constructed, and this unit was allowed to generate electricity to generate electrodes. The contact resistance of the separator with respect to the structure was measured. The results are shown in Table 1, and the relationship between the removal amount of the convex surface and the contact resistance is graphed in FIG.
[0014]
As is clear from FIG. 4, the separators of Examples 1 to 10 have much lower contact resistance than the comparative example, and it was proved that flattening by removing the convex surface contributes to improvement in power generation performance. In particular, when the removal amount of the convex surface is 3 μm, the contact resistance is further reduced. It was also confirmed that if 3 μm was secured, the contact resistance reduction effect would not increase even if the removal amount was more than that.
[0015]
【The invention's effect】
As described above, according to the present invention, in the metal separator for a fuel cell formed into a concavo-convex shape by press molding, the surface of the convex portion that contacts the electrode structure is removed and flattened after press molding. As a result, the contact area with the electrode structure on the surface of the convex portion is expanded, and a desired surface pressure is secured, thereby reducing the contact resistance with respect to the electrode structure, resulting in an improvement in power generation performance. .
[Brief description of the drawings]
FIG. 1 is a diagram conceptually showing a separator of the present invention.
FIG. 2 is a plan photograph of a separator manufactured in an example of the present invention.
FIG. 3 is a cross-sectional view of a current collecting portion (unevenness forming portion) of a separator manufactured in an example.
FIG. 4 is a graph showing the results of contact resistance measured in Examples.
[Explanation of symbols]
10 ... convex 11 ... surface (removed surface)
12 ... Surface (new surface after the surface is removed)
Claims (2)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001371331A JP3967118B2 (en) | 2001-12-05 | 2001-12-05 | Method for producing metal separator for fuel cell |
CA002558686A CA2558686A1 (en) | 2001-12-05 | 2002-12-04 | Fuel cell metallic separator and method for manufacturing same |
US10/309,320 US7325432B2 (en) | 2001-12-05 | 2002-12-04 | Method for manufacturing fuel cell metallic separator |
CA002558801A CA2558801C (en) | 2001-12-05 | 2002-12-04 | Fuel cell metallic separator and method for manufacturing same |
CA002413558A CA2413558C (en) | 2001-12-05 | 2002-12-04 | Fuel cell metallic separator and method for manufacturing same |
DE10256922.3A DE10256922B4 (en) | 2001-12-05 | 2002-12-05 | Method for producing a metallic separator of a fuel cell |
US11/966,374 US20080292937A1 (en) | 2001-12-05 | 2007-12-28 | Method for manufacturing fuel cell metallic separator |
US11/966,262 US20080108282A1 (en) | 2001-12-05 | 2007-12-28 | Method for manufacturing fuel cell metallic separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001371331A JP3967118B2 (en) | 2001-12-05 | 2001-12-05 | Method for producing metal separator for fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003173791A JP2003173791A (en) | 2003-06-20 |
JP3967118B2 true JP3967118B2 (en) | 2007-08-29 |
Family
ID=19180397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001371331A Expired - Fee Related JP3967118B2 (en) | 2001-12-05 | 2001-12-05 | Method for producing metal separator for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3967118B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4627406B2 (en) | 2004-04-02 | 2011-02-09 | 株式会社日立製作所 | Separator and fuel cell |
JP4648007B2 (en) | 2005-01-06 | 2011-03-09 | 株式会社日立製作所 | Fuel cell separator and fuel cell |
JP5277048B2 (en) * | 2009-03-31 | 2013-08-28 | 本田技研工業株式会社 | Manufacturing method of fuel cell separator |
-
2001
- 2001-12-05 JP JP2001371331A patent/JP3967118B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003173791A (en) | 2003-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3569491B2 (en) | Fuel cell separator and fuel cell | |
JP4707786B2 (en) | Manufacturing method of gas separator for fuel cell | |
JP6863129B2 (en) | Manufacturing method of separator for fuel cell | |
JP4041308B2 (en) | Fuel cell separator | |
JP3967118B2 (en) | Method for producing metal separator for fuel cell | |
JP3541172B2 (en) | Fuel cell and its separator | |
JP3842954B2 (en) | Fuel cell separator and fuel cell | |
JP2003272652A (en) | Metal separator for fuel cell and its manufacturing method | |
JP2006196328A (en) | Method and apparatus for manufacturing battery cell | |
JP3700016B2 (en) | Method for producing metal separator for fuel cell | |
JP2008277178A (en) | Cell for fuel cell | |
JP2000067888A (en) | Collector for fuel cell and its manufacture | |
JP4639744B2 (en) | Fuel cell | |
JP4545129B2 (en) | Manufacturing method of fuel cell separator | |
JP3913053B2 (en) | Method for producing metal separator for fuel cell | |
JP2002164058A (en) | Gas diffusion layer of fuel cell | |
KR100546016B1 (en) | Current collector for fuel cell, manufacturing method thereof and fuel cell having same | |
JP3330343B2 (en) | Fuel cell separator | |
JP4068344B2 (en) | Fuel cell and manufacturing method thereof | |
JP3357310B2 (en) | Fuel cell separator and method of manufacturing the same | |
JP3816377B2 (en) | Method for producing metal separator for fuel cell | |
JP2006107898A (en) | Separator for flat type polymer electrolyte fuel cell | |
JP2019192449A (en) | Fuel cell, and manufacturing method of separator for fuel cell | |
JP4503994B2 (en) | Polymer electrolyte fuel cell | |
JP4183428B2 (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060721 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070530 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3967118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130608 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130608 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140608 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |