JP2005078981A - Separator for fuel cell and method of manufacturing the same - Google Patents

Separator for fuel cell and method of manufacturing the same Download PDF

Info

Publication number
JP2005078981A
JP2005078981A JP2003309305A JP2003309305A JP2005078981A JP 2005078981 A JP2005078981 A JP 2005078981A JP 2003309305 A JP2003309305 A JP 2003309305A JP 2003309305 A JP2003309305 A JP 2003309305A JP 2005078981 A JP2005078981 A JP 2005078981A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
rib
flow path
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003309305A
Other languages
Japanese (ja)
Inventor
Hirotaka Chiba
啓貴 千葉
Nobufumi Oe
伸史 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003309305A priority Critical patent/JP2005078981A/en
Publication of JP2005078981A publication Critical patent/JP2005078981A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a fuel cell and a method of manufacturing the same in which assemblability of the fuel cell by reducing warpage and power generation efficiency of the fuel cell is improved by reducing scattering of gas distribution flow after the assembling of the fuel cell. <P>SOLUTION: In a separator of a gold fuel cell which is formed of group thin plate and includes a projection or recession-shaped flow channel for oxidant gas or fuel gas at the center, the flow channel is constructed so that a cross section in the direction perpendicular to the flow channel is corrugated shape, has a plurality rib mounds and channels alternately formed, an angle made by a flat portion of the rib mound 7 and an inclined surface portion of the rib mound 8 is an obtuse angle, and the flat portion of the rib mound 7 and a channel bottom portion 9 are arranged substantially in parallel. In a case that the length of the flat portion of the rib mound 7, the length of the inclined surface portion of the rib mound in the surface direction, the length of the channel bottom portion 9 and depth of the channel are represented by L1, L2, L3 and d, the board thickness t of the separator is 0.05-0.10 mm, and the following relations are satisfied;2t≤L2≤6t, 8t≤L1≤20t, and 5t≤d≤15t. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子電解質型燃料電池等に適用する燃料電池用セパレータ及びその製造方法に関する。   The present invention relates to a fuel cell separator applied to a solid polymer electrolyte fuel cell and the like, and a method for producing the same.

燃料電池は、反応ガスである水素含有ガス等の燃料ガスと、空気等の酸化剤ガスとを電気化学的に反応させて、燃料の持つ化学エネルギーを電気エネルギーに直接変換する装置である。化学エネルギーを電気エネルギーに直接変換できるため、燃料電池の発電効率は火力発電などの他の発電システムに比べて高い。また、化石燃料を使用しないため資源の枯渇が問題とならず、発電に伴い排気ガスが生じない等の利点を有するため、燃料電池は地球環境保護の観点からも注目されている。   A fuel cell is a device that directly converts a fuel's chemical energy into electric energy by electrochemically reacting a fuel gas such as a hydrogen-containing gas, which is a reaction gas, and an oxidant gas such as air. Since chemical energy can be directly converted into electric energy, the power generation efficiency of fuel cells is higher than other power generation systems such as thermal power generation. In addition, since no fossil fuel is used, depletion of resources does not pose a problem, and since there is an advantage that no exhaust gas is generated with power generation, fuel cells are attracting attention from the viewpoint of protecting the global environment.

燃料電池は、使用される電解質の種類に応じて、固体高分子電解質型、リン酸型、溶融炭酸塩型及び固体酸化物型等がある。そのうちの1つである固体高分子電解質型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)は、電解質として分子中にプロトン交換基を有する高分子樹脂膜を使用して、高分子樹脂膜を飽和に含水させるとプロトン伝導性電解質として機能することを利用した電池である。固体高分子電解質型燃料電池は、比較的低温で作動し、発電効率も高いため、電気自動車搭載用を始めとする各種の用途が見込まれている。固体高分子電解質型燃料電池は、例えば、以下に示す電極反応を示す。   Fuel cells include a solid polymer electrolyte type, a phosphoric acid type, a molten carbonate type, and a solid oxide type, depending on the type of electrolyte used. One of them, a polymer electrolyte fuel cell (PEFC), uses a polymer resin membrane having a proton exchange group in the molecule as an electrolyte, and saturates the polymer resin membrane with water. In other words, the battery functions as a proton conductive electrolyte. Solid polymer electrolyte fuel cells operate at a relatively low temperature and have high power generation efficiency, and therefore are expected to be used in various applications including those for electric vehicles. The solid polymer electrolyte fuel cell exhibits, for example, the following electrode reaction.

[化1]
燃料極:H2 →2H+ +2e- ・・・式(1)
酸化剤極:(1/2)O2 +2H+ +2e-→H2 O ・・・式(2)
燃料極には燃料ガスが供給され、式(1)の反応が進行してプロトンが生成される。プロトンは水和状態で固体高分子電解質内を移動して酸化剤極に至り、酸化剤極では、このプロトンと供給された酸化剤ガス中の酸素により、式(2)の反応が進行する。式(1)及び式(2)の反応が各極で進行して、燃料電池は起電力を生じる。
[Chemical 1]
Fuel electrode: H 2 → 2H + + 2e Expression (1)
Oxidant electrode: (1/2) O 2 + 2H + + 2e → H 2 O (2)
Fuel gas is supplied to the fuel electrode, and the reaction of Formula (1) proceeds to generate protons. Protons move through the solid polymer electrolyte in a hydrated state to reach the oxidant electrode. At the oxidant electrode, the reaction of the formula (2) proceeds by this proton and oxygen in the supplied oxidant gas. The reaction of Formula (1) and Formula (2) proceeds at each pole, and the fuel cell generates an electromotive force.

このような固体高分子電解質型燃料電池の構成は、基本単位となる単セルを複数積層した燃料電池スタックを含むものである。各単セルは、酸化剤極及び燃料極で固体高分子電解質膜を挟んだ膜電極接合体の両面に、それぞれ酸化剤極側セパレータと燃料極側セパレータとを配置しており、各セパレータは単セル間の電流を接続すると共に、燃料と酸素とを隔離している。   Such a configuration of the solid polymer electrolyte fuel cell includes a fuel cell stack in which a plurality of single cells as basic units are stacked. Each single cell has an oxidant electrode side separator and a fuel electrode side separator disposed on both sides of a membrane electrode assembly in which a solid polymer electrolyte membrane is sandwiched between an oxidant electrode and a fuel electrode. It connects the current between the cells and isolates the fuel and oxygen.

上記セパレータは、各セル間を電気的に接続する機能を有するため、電気伝導性が良好であり、かつ構成材料との接触抵抗が低いことが要求される。例えば、原材料であるカーボンをプレート状に成形し、その両面側に反応ガス流路を形成したセパレータが使用されている(非特許文献1参照)。セパレータをカーボン製にすると、セパレータと構成材料との接触抵抗は低いが、金属製のセパレータと比較すると強度が低かった。このため、カーボン製のセパレータの厚さを薄肉化できず、少なくとも1[mm]〜5[mm]程度の厚さが要求されるため燃料電池を小型化することができなかった。   Since the separator has a function of electrically connecting each cell, the separator is required to have good electrical conductivity and low contact resistance with a constituent material. For example, a separator in which carbon, which is a raw material, is formed into a plate shape and reaction gas channels are formed on both sides thereof is used (see Non-Patent Document 1). When the separator was made of carbon, the contact resistance between the separator and the constituent material was low, but the strength was low compared to a metal separator. For this reason, the thickness of the carbon separator cannot be reduced, and a thickness of at least about 1 [mm] to 5 [mm] is required, so that the fuel cell cannot be reduced in size.

そこで、近年、燃料電池の小型化及び低コスト化を実現するために、セパレータとして金属薄板を使用し、金属薄板をプレス成形して、断面が連続した波型形状を有するセパレータを使用する試みがなされている(特許文献2及び特許文献3参照)。
「固体高分子型燃料電池の開発と実用化」(株)技術情報協会1999年発行(第92頁) 特開2000−323149号公報(第4頁、第1図) 特開2002−190305号公報(第3頁、第1図)
Therefore, in recent years, in order to realize miniaturization and cost reduction of the fuel cell, an attempt has been made to use a metal sheet as a separator, press the metal sheet, and use a separator having a corrugated shape with a continuous cross section. (See Patent Document 2 and Patent Document 3).
"Development and commercialization of polymer electrolyte fuel cells", published by Technical Information Association, 1999 (page 92) JP 2000-323149 A (page 4, FIG. 1) JP 2002-190305 A (page 3, FIG. 1)

しかしながら、金属製のセパレータを波型形状にプレス成形すると、金属薄板に負荷がかかり、不均一に変形してセパレータに塑性歪みや残留応力が発生してしまっていた。また、断面を波型形状として凹凸形状を有するセパレータに成形すると、セパレータの凹凸形状に起因して、セパレータの両面で発生する残留応力が異なり、プレス成形後のセパレータに反りが生じていた。   However, when a metallic separator is press-molded into a corrugated shape, a load is applied to the thin metal plate, and the separator is deformed unevenly, resulting in plastic strain and residual stress in the separator. In addition, when a section having a corrugated cross section was formed into a separator having a concavo-convex shape, the residual stress generated on both surfaces of the separator was different due to the concavo-convex shape of the separator, and the separator after press molding was warped.

また、セパレータは、通常、ガス拡散電極に隣接して配置されるが、セパレータに過大な反りが生じると、燃料電池の組立時にガス拡散電極が追従しきれず、カーボンペーパから形成されるガス拡散電極を破断してしまい、燃料電池の組立が困難となっていた。   In addition, the separator is usually disposed adjacent to the gas diffusion electrode. However, if the separator is excessively warped, the gas diffusion electrode cannot be fully tracked when the fuel cell is assembled, and the gas diffusion electrode is formed from carbon paper. As a result, the fuel cell was difficult to assemble.

さらに、セパレータに過大な反りが生じた場合には、燃料電池を組み立てたとしても、組立後のガス拡散電極とセパレータのリブ面との間の面圧が不均一となり、接触抵抗の増大やガス配流のばらつきに起因して、燃料電池の発電効率が低下してしまっていた。   Furthermore, if the separator is excessively warped, even if the fuel cell is assembled, the surface pressure between the assembled gas diffusion electrode and the rib surface of the separator becomes non-uniform, resulting in increased contact resistance and gas Due to variations in distribution, the power generation efficiency of fuel cells has been reduced.

本発明は、上記課題を解決するためになされたものであり、燃料電池スタックの小型化、燃料電池の出力密度向上及び低コスト化を実現するために、金属薄板をプレス成形して断面を波形形状に成形した際に生じる反りの発生を解決したものである。   The present invention has been made to solve the above problems, and in order to achieve a reduction in the size of the fuel cell stack, an improvement in the output density of the fuel cell, and a reduction in cost, the metal sheet is press-molded to have a corrugated cross section. It solves the occurrence of warping that occurs when it is molded into a shape.

すなわち、第1の発明である燃料電池用セパレータは、金属薄板から形成され、中央部に凹凸形状の酸化剤ガス又は燃料ガスの流路を備え、前記流路と直交する方向の断面が波型形状であり、リブ山と溝とを交互に複数形成し、前記リブ山平坦部とリブ山斜面部とにより構成される角度を鈍角とすると共に、前記リブ山平坦部及び溝底部を略平行に配置し、前記中央部の外周である外周縁部のセパレータの板厚t、リブ山平坦部の長さL1、リブ山斜面部の面方向長さL2、溝底部の長さL3及び溝深さdとした場合に、セパレータの板厚tが0.05〜0.10mmであり、かつ、2t≦L2≦6t、8t≦L1≦20t、5t≦d≦15tの関係を満たすことを要旨とする。   That is, the fuel cell separator according to the first aspect of the present invention is formed of a thin metal plate, and has a concavo-convex oxidant gas or fuel gas flow path at the center, and a cross section perpendicular to the flow path is corrugated. A plurality of rib crests and grooves alternately, the angle formed by the rib crest flat portion and the rib crest slope portion being an obtuse angle, and the rib crest flat portion and the groove bottom portion being substantially parallel to each other The thickness t1 of the separator at the outer peripheral edge which is the outer periphery of the central portion, the length L1 of the rib crest flat portion, the surface direction length L2 of the rib crest slope portion, the length L3 of the groove bottom and the groove depth. In the case of d, the separator thickness t is 0.05 to 0.10 mm, and 2t ≦ L2 ≦ 6t, 8t ≦ L1 ≦ 20t, and 5t ≦ d ≦ 15t. .

第2の発明である燃料電池用セパレータの製造方法は、金属薄板から形成され、中央部を凹凸形状として酸化剤ガス又は燃料ガスの流路を構成した燃料電池用セパレータの製造方法であって、前記流路を形成する凹凸形状を成形するプレス型のパンチとダイスとの間のクリアランスを、セパレータの外周縁部における板厚tの3倍〜7倍として、リブ山斜面部が拘束されない状態としてプレス成形することを要旨とする。   A method for manufacturing a fuel cell separator according to a second aspect of the present invention is a method for manufacturing a fuel cell separator formed from a thin metal plate and having a central portion with an uneven shape to form a flow path for an oxidant gas or a fuel gas, The clearance between the punch and the die of the press mold for forming the uneven shape forming the flow path is set to 3 to 7 times the plate thickness t at the outer peripheral edge of the separator, so that the rib crest portion is not restrained. The gist is to press-mold.

本発明の燃料電池用セパレータによれば、反りを低減して燃料電池の組立性を向上できると共に、燃料電池の組立後におけるガス配流のばらつきを減らして燃料電池の発電効率を高めることができる。   According to the separator for a fuel cell of the present invention, it is possible to improve the assemblability of the fuel cell by reducing warpage, and to improve the power generation efficiency of the fuel cell by reducing variations in gas distribution after the assembly of the fuel cell.

本発明の燃料電池用セパレータの製造方法によれば、プレス成形時に反りの発生を防止して反りを低減した燃料電池用セパレータを得られるため、燃料電池の組立性を向上できると共に、燃料電池の組立後におけるガス配流のばらつきを低減して発電効率を高めることができる。   According to the method for manufacturing a fuel cell separator of the present invention, it is possible to obtain a fuel cell separator with reduced warpage by preventing the occurrence of warpage during press molding. It is possible to increase the power generation efficiency by reducing variations in gas distribution after assembly.

以下、本発明の実施の形態に係る燃料電池用セパレータ及びその製造方法について、図1〜図4及び表1を用いて説明する。   Hereinafter, a fuel cell separator and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to FIGS.

図1は、ガス流路面側における燃料電池用セパレータの上面図を示し、図2は、燃料電池用セパレータの断面を模式的に示した図である。   FIG. 1 is a top view of a fuel cell separator on the gas flow path side, and FIG. 2 is a diagram schematically showing a cross section of the fuel cell separator.

図1に示すように、燃料電池用セパレータ1は、発電部としての中央部2に電流を導通させる凸形状のリブ山3とリブ山3に隣接した凹形状のガス流路溝4とを交互に形成して凹凸形状とし、ガス流路溝4は、中央部2の対角線上の端部に形成されたガスマニホールド5に連結している。中央部2外周のセパレータ1の外周縁部にはビード部6を形成しており、セパレータ1を断面から観察すると、図2に示すように、連続した波型形状を有する。   As shown in FIG. 1, the fuel cell separator 1 includes alternating convex rib crests 3 for conducting current to a central portion 2 as a power generation section and concave gas flow channel grooves 4 adjacent to the rib crests 3. The gas channel groove 4 is connected to a gas manifold 5 formed at the end of the central portion 2 on the diagonal line. A bead portion 6 is formed on the outer peripheral edge of the separator 1 on the outer periphery of the central portion 2. When the separator 1 is observed from a cross section, it has a continuous corrugated shape as shown in FIG.

図3は、燃料電池用セパレータ1の中央部2における断面を説明する図である。図3に示すように、燃料電池用セパレータ1の中央部2には、リブ山平坦部7からリブ山斜面部8を介して溝底部9が連続しており、リブ山平坦部7及び溝底部9が略平行に配置される。隣接するリブ山平坦部7とリブ山斜面部8とにより形成される角度は、鈍角である。   FIG. 3 is a view for explaining a cross section in the central portion 2 of the fuel cell separator 1. As shown in FIG. 3, a groove bottom portion 9 is continuous from the rib crest flat portion 7 through the rib crest slope portion 8 to the central portion 2 of the fuel cell separator 1. 9 are arranged substantially in parallel. The angle formed by the adjacent rib crest flat part 7 and rib crest slope part 8 is an obtuse angle.

上記燃料電池用セパレータ1の外周縁部の板厚tは、0.05[mm]〜0.10[mm]であり、リブ山平坦部の長さをL1とし、リブ山斜面部の面方向長さをL2とし、溝底部の長さをL3とし、溝深さをdとした場合に、燃料電池用セパレータ1は、2t≦L2≦6t、8t≦L1≦20t、5t≦d≦15tの関係を満足する形状を有するものである。さらに、高い発電効率を維持するためには、L1≧3L2の関係を満たすことが好ましい。   The thickness t of the outer peripheral edge portion of the fuel cell separator 1 is 0.05 [mm] to 0.10 [mm], the length of the rib crest flat portion is L1, and the surface direction of the rib crest slope portion is When the length is L2, the length of the groove bottom is L3, and the groove depth is d, the fuel cell separator 1 has 2t ≦ L2 ≦ 6t, 8t ≦ L1 ≦ 20t, 5t ≦ d ≦ 15t. It has a shape that satisfies the relationship. Furthermore, in order to maintain high power generation efficiency, it is preferable to satisfy the relationship of L1 ≧ 3L2.

上記燃料電池用セパレータ1は、母材の両面に耐食性かつ導電性の表面処理を施して被覆層を形成したクラッド合金板から構成される。   The fuel cell separator 1 is composed of a clad alloy plate in which a coating layer is formed by subjecting both surfaces of a base material to a corrosion-resistant and conductive surface treatment.

母材としては、Fe基合金、Ni基合金、Ti基合金及びステンレス合金の中から選択される1種又は2種以上を組み合わせた合金から形成すると良い。上記Fe基合金の中では、SUS430等のフェライト系ステンレス鋼板又はSUS304、SUS316等のオーステナイト系ステンレス鋼板が、耐食性、加工性、コストの観点から最も好ましい。   As a base material, it is good to form from the alloy which combined 1 type, or 2 or more types selected from Fe base alloy, Ni base alloy, Ti base alloy, and stainless steel alloy. Among the Fe-based alloys, ferritic stainless steel plates such as SUS430 or austenitic stainless steel plates such as SUS304 and SUS316 are most preferable from the viewpoints of corrosion resistance, workability, and cost.

母材の両面に形成される被覆層は、金(Au)、プラチナ(Pt)又は銀(Ag)等の貴金属から構成される。これらの貴金属の中でも、特にAuとすると良く、耐食性及び展延性が良好であり、高い電気伝導度を得ることができる。   The coating layer formed on both surfaces of the base material is composed of a noble metal such as gold (Au), platinum (Pt), or silver (Ag). Among these noble metals, Au is particularly preferable, corrosion resistance and spreadability are good, and high electrical conductivity can be obtained.

また、被覆層は、母材上に厚さ0.01〜0.05μmの貴金属層を形成し、5%以上の圧延率により圧延して形成された層である。このように、母材上に貴金属層を形成したクラッド合金板を使用すると、接触抵抗が低いことから燃料電池の発電効率を維持でき、耐久信頼性に優れた燃料電池用セパレータを低コストで得ることができる。   The covering layer is a layer formed by forming a noble metal layer having a thickness of 0.01 to 0.05 μm on a base material and rolling it at a rolling rate of 5% or more. As described above, when a clad alloy plate having a noble metal layer formed on a base material is used, the power generation efficiency of the fuel cell can be maintained because the contact resistance is low, and a fuel cell separator having excellent durability and reliability can be obtained at low cost. be able to.

さらに、上記材料からクラッド合金板を構成することにより、燃料電池の小型化した場合においても強度を確保することができ、燃料電池用セパレータの薄型化が可能となり、出力密度の高い燃料電池を得ることができる。   Further, by forming the clad alloy plate from the above material, the strength can be ensured even when the fuel cell is downsized, the fuel cell separator can be thinned, and a fuel cell with high output density can be obtained. be able to.

上記燃料電池用セパレータ1は、以下に示す製造方法により製造される。   The fuel cell separator 1 is manufactured by the following manufacturing method.

まず、母材として、Fe基合金、Ni基合金、Ti基合金及びステンレス合金の中から選択される1種又は2種以上を組み合わせた合金板を準備し、母材の両面に金(Au)等の貴金属により0.01〜0.05μmの厚さの貴金属層を形成する。その後、5%以上の圧延率により圧延して、クラッド合金板を作製する。   First, as a base material, an alloy plate combining one or more selected from an Fe-based alloy, Ni-based alloy, Ti-based alloy and stainless steel alloy is prepared, and gold (Au) is formed on both surfaces of the base material. A noble metal layer having a thickness of 0.01 to 0.05 μm is formed of a noble metal such as. Thereafter, rolling is performed at a rolling rate of 5% or more to produce a clad alloy plate.

貴金属層を簿材上に形成する方法は、真空蒸着、スパッタリング、イオンプレーティングなどのPVD処理、CVD処理及び電気めっき、無電解めっき等のめっき処理が挙げられる。また、圧延は、母材と貴金属層との密着力を向上させて、貴金属層のポーラス構造を緻密化すると共に、ピンホールを閉孔して耐食性を向上させるものであり、通常使用される圧延ロールを用いて圧延することができる。   Examples of the method for forming the noble metal layer on the book include PVD processes such as vacuum deposition, sputtering, and ion plating, CVD processes, and plating processes such as electroplating and electroless plating. Rolling improves the adhesion between the base metal and the noble metal layer, densifies the porous structure of the noble metal layer, and closes the pinhole to improve the corrosion resistance. It can be rolled using a roll.

作製したクラッド合金板をプレス型に入れてプレス成形し、波形形状の燃料電池用セパレータとする。   The produced clad alloy plate is put into a press die and press-molded to obtain a corrugated fuel cell separator.

図4は、プレス成形時における、プレス型とクラッド合金板の断面を模式的に表す断面図である。図4に示すように、上型と下型であるパンチ10とダイス11との間のクリアランスCは、セパレータ外周縁部の板厚tの3倍〜7倍であり、リブ山斜面部8が、プレス型10,11に拘束されない状態としてプレス成形する。   FIG. 4 is a cross-sectional view schematically showing a cross section of a press die and a clad alloy plate at the time of press forming. As shown in FIG. 4, the clearance C between the punch 10 and the die 11 that are the upper die and the lower die is 3 to 7 times the plate thickness t of the outer peripheral edge of the separator, and the rib crest slope portion 8 is Then, press molding is performed in a state where the press dies 10 and 11 are not restrained.

次に、実施例1〜実施例11及び比較例1〜比較例6について各種製造条件を変えて燃料電池用セパレータを各々作製し、作製した各燃料電池用セパレータについて、反り量を測定し、また、燃料電池の組立性を評価した。   Next, for Example 1 to Example 11 and Comparative Examples 1 to 6, various production conditions were changed to produce fuel cell separators, and the amount of warpage was measured for each produced fuel cell separator. The assembly of the fuel cell was evaluated.

実施例1〜実施例11
実施例1〜実施例11では、いずれもSUS316Lの薄板材の両面に金(Au)めっきを施して、厚さ0.03[μm]の被覆層を形成した後、10%の圧延率で圧延して、0.05[mm]〜0.20[mm]の厚さとしたクラッド化薄板材を作製した。作製したクラッド化薄板材を縦横150[mm]角に切断して正方形の板材とした後、プレス成形し、図1及び図2に示す形状とした。
Examples 1 to 11
In each of Examples 1 to 11, all of the SUS316L thin plate material were plated with gold (Au) to form a coating layer having a thickness of 0.03 [μm], and then rolled at a rolling rate of 10%. Thus, a clad thin plate material having a thickness of 0.05 [mm] to 0.20 [mm] was produced. The produced clad thin plate material was cut into 150 [mm] squares in length and width to form a square plate material, and then press molded to obtain the shape shown in FIGS.

プレス成形後に得られた燃料電池用セパレータ1のガス流路及びリブ山を形成した凹凸のある中央部2の縦横が100[mm]、ビード部6外周の縦横が120[mm]、ビード部の幅が4[mm]としたものである。また、実施例1〜実施例11のいずれのセパレータにおいても、外周縁部の板厚tが0.05〜0.10[mm]であり、リブ山平坦部の長さをL1とし、リブ山斜面部の面方向長さをL2とし、溝底部の長さをL3とし、溝深さをdとした場合に、2t≦L2≦6t、L1≧3L2、8t≦L1≦20t、5t≦d≦15tの関係を全て満足する形状としたものである。   The vertical and horizontal of the uneven central part 2 forming the gas flow path and rib crest of the fuel cell separator 1 obtained after press molding is 100 [mm], and the vertical and horizontal of the outer periphery of the bead part 6 is 120 [mm]. The width is 4 [mm]. Further, in any of the separators of Examples 1 to 11, the thickness t of the outer peripheral edge portion is 0.05 to 0.10 [mm], the length of the rib crest flat portion is L1, and the rib crest When the length in the surface direction of the slope portion is L2, the length of the groove bottom portion is L3, and the groove depth is d, 2t ≦ L2 ≦ 6t, L1 ≧ 3L2, 8t ≦ L1 ≦ 20t, 5t ≦ d ≦ The shape satisfies all the relationships of 15t.

比較例1〜比較例6
本比較例では、上述した実施例1〜実施例11と同様の材質のクラッド化薄板材を使用し、比較例1及び比較例2では、0.05[mm]〜0.20[mm]の厚さとしたクラッド化薄板材を使用し、比較例3〜比較例6では0.05[mm]〜0.20[mm]の範囲外の厚さであるクラッド化薄板材を使用した。比較例1〜比較例6において、所定厚さのクラッド化薄板材を使用して、クリアランスCの幅を各々変えて、クリアランスCが、セパレータ外周縁部の板厚tの3倍〜7倍の範囲外となる条件としてプレス成形し、図1及び図2に示す形状とした。プレス成形後のセパレータは、2t≦L2≦6t、8t≦L1≦20t、5t≦d≦15tの関係を全て満足する形状ではなく、いずれかの条件が上記関係の範囲外となるものである。
Comparative Examples 1 to 6
In this comparative example, the clad thin plate material made of the same material as that of the above-described Example 1 to Example 11 is used. In Comparative Example 1 and Comparative Example 2, 0.05 [mm] to 0.20 [mm]. A clad thin plate material having a thickness was used, and in Comparative Examples 3 to 6, a clad thin plate material having a thickness outside the range of 0.05 [mm] to 0.20 [mm] was used. In Comparative Examples 1 to 6, using a clad thin plate material having a predetermined thickness, the width of the clearance C is changed, and the clearance C is 3 to 7 times the plate thickness t of the outer peripheral edge of the separator. Press molding was performed as a condition outside the range, and the shapes shown in FIGS. 1 and 2 were obtained. The separator after press molding does not have a shape that satisfies all the relationships of 2t ≦ L2 ≦ 6t, 8t ≦ L1 ≦ 20t, and 5t ≦ d ≦ 15t, and any of the conditions falls outside the above range.

上記実施例1〜実施例11及び比較例1〜比較例3により作製した燃料電池用セパレータの断面形状、プレス成形時におけるプレス型とクラッド板とのクリアランスの相違点及び製品の出来具合を評価する指標として、反り量を測定し、また、燃料電池の組立性を評価した。反り量は、例えば、水平定盤上にセパレータを載置して、セパレータの上から水平定盤に平行な押さえ板を徐々に降し、押さえ板がセパレータに接触し始めた高さからセパレータ全面が水平定盤に接するまでの下降距離を測定し、下降距離を反り量とした。また、燃料電池の組立性は、実施例1〜実施例11の各セパレータを用いた燃料電池の組立時間(組立工数)の平均を算出し、算出した平均組立時間に対して、例えば、70%未満の組立時間のものを「良好」とし、30%以上組立時間が延びるものを「不良」として評価した。各評価結果を表1に示す。

Figure 2005078981
Evaluation is made on the cross-sectional shape of the fuel cell separator produced in Examples 1 to 11 and Comparative Examples 1 to 3, the difference in clearance between the press die and the clad plate at the time of press molding, and the quality of the product. As an index, the amount of warpage was measured and the assembly property of the fuel cell was evaluated. The amount of warpage is, for example, by placing the separator on a horizontal surface plate, gradually lowering the pressing plate parallel to the horizontal surface plate from the top of the separator, and starting from the height at which the pressing plate starts to contact the separator. The descent distance until it touches the horizontal surface plate was measured, and the descent distance was taken as the amount of warpage. Moreover, the assembly property of the fuel cell is calculated by calculating the average of the assembly time (the number of assembly steps) of the fuel cell using each separator of Examples 1 to 11, and is, for example, 70% with respect to the calculated average assembly time. Those with less assembly time were evaluated as “good” and those with assembly time longer than 30% were evaluated as “bad”. Each evaluation result is shown in Table 1.
Figure 2005078981

表1に示す反り量の測定結果から明らかなように、比較例1〜比較例6では、反り量がいずれも10[mm]の高い値を示しているのに対し、実施例1〜実施例11では、反り量がいずれも3.0[mm]以下であり、反り量を大幅に低減できることが判明した。特に、板厚が0.05[mm]のクラッド化薄板材を使用した場合には、反り量の値が極めて低く、燃料電池の組立性が良好であった。   As is apparent from the measurement results of the warpage amount shown in Table 1, in Comparative Examples 1 to 6, the warpage amount shows a high value of 10 [mm], whereas Examples 1 to Examples In No. 11, the amount of warpage was 3.0 [mm] or less, and it was found that the amount of warpage could be greatly reduced. In particular, when a clad thin plate material having a plate thickness of 0.05 [mm] was used, the value of the warp amount was extremely low, and the assembly of the fuel cell was good.

このように実施例1〜実施例11では、中央部2の凹凸形成された流路部分について1つのリブ山及び溝底を見た場合に、溝深さd、溝底部の長さL3及びリブ山平坦部の長さL1が、セパレータの板厚tに比べて十分に大きくなっている。そして、セパレータを成形品として見た場合には、セパレータの曲げ剛性に比べて流路形成によるリブ剛性が向上するため、セパレータの反りを大幅に低減することができ、ガス拡散電極を破損することなく、燃料電池を組み立てることが容易となる。   As described above, in Example 1 to Example 11, when one rib crest and groove bottom are seen with respect to the channel portion in which the unevenness is formed in the central portion 2, the groove depth d, the length L3 of the groove bottom, and the ribs are observed. The length L1 of the mountain flat portion is sufficiently larger than the plate thickness t of the separator. And when the separator is viewed as a molded product, the rib rigidity due to flow path formation is improved compared to the bending rigidity of the separator, so the warpage of the separator can be greatly reduced and the gas diffusion electrode can be damaged. Therefore, it becomes easy to assemble the fuel cell.

さらに、プレス成形により塑性加工が施される部分では、パンチとダイスとの面方向の間隔であるクリアランスCが、セパレータ外周縁部の板厚すなわち塑性加工前の板厚より大きく、斜面部が拘束されない状態としてプレス成形した。このため、1つのリブ山、溝底部について見た場合に、不均一な塑性歪みや残留応力が入り難くなり、反りを低減した燃料電池用セパレータを得ることができる。   Further, in the portion where the plastic working is performed by press molding, the clearance C, which is the distance in the surface direction between the punch and the die, is larger than the plate thickness of the outer peripheral edge of the separator, that is, the plate thickness before plastic working, and the slope portion is restrained. It was press-molded as an unfinished state. For this reason, when it sees about one rib crest and a groove bottom part, a nonuniform plastic strain and a residual stress become difficult to enter, and the separator for fuel cells which reduced curvature can be obtained.

また、リブ山斜面部8を拘束しない状態としてプレス成形したため、リブ山斜面部8では、プレス成形時に実質的に摩擦力が発生することなく、金属薄板の方面に入るせん断、圧縮、引張りの残留応力を低減することができる。また、プレス型のパンチとダイスとのクリアランスCを金属薄板の厚さtよりも厚くした状態としてプレス成形したため、リブ山斜面部8がパンチとダイにしごかれることが無くなり、リブ山斜面部8を形成する際に、付与される金属薄板の裏表で発生する残留応力の差を無くすことができる。このように残留応力を低減することにより、セパレータ表裏の位置における不均一な残留応力の差を小さくして、セパレータの反りを大幅に低減することができる。   Further, since the rib crest slope portion 8 is press-molded so as not to be constrained, the rib crest slope portion 8 does not substantially generate frictional force during press molding, and remains in the direction of the thin metal plate in the shear, compression, and tension. Stress can be reduced. Moreover, since the press mold punch and die have been press-molded with the clearance C larger than the thickness t of the metal thin plate, the rib crest slope portion 8 is not crushed by the punch and the die, and the rib crest slope portion 8 When forming, it is possible to eliminate the difference in residual stress generated between the front and back of the applied thin metal plate. By reducing the residual stress in this way, it is possible to reduce the difference in non-uniform residual stress between the front and back sides of the separator, and to significantly reduce the warpage of the separator.

なお、実施例1〜実施例11によれば、リブ山斜面部8にプレス成形時に摺動痕の無いセパレータを得ることができる。このため、プレス成形によりガス流路部を形成する際、リブ山斜面部8となる金属薄板とプレス型との間の直接接触を防止できると共に、リブ山斜面部8を形成する際に付与される金属薄板の裏表での残留応力の差がほとんど無いことを部品状態で確認することができる。   In addition, according to Example 1- Example 11, the separator without a sliding trace can be obtained at the time of press molding in the rib crest slope part 8. FIG. For this reason, when forming a gas channel part by press molding, while preventing the direct contact between the metal thin plate used as the rib crest slope part 8 and a press die, it is provided when forming the rib crest slope part 8. It can be confirmed in the component state that there is almost no difference in residual stress between the front and back of the thin metal plate.

<その他の実施の形態>
上述した本発明に係る実施の形態により作製した実施例1〜実施例11の燃料電池用セパレータを用いて単セルを複数積層した燃料電池スタックとし、燃料電池を構成することができる。
<Other embodiments>
A fuel cell can be constituted by using a fuel cell stack in which a plurality of single cells are stacked using the fuel cell separators of Examples 1 to 11 manufactured according to the above-described embodiment of the present invention.

燃料電池スタックは、単セルを複数個積層し、各単セル間の内部に冷却水流路を形成したバイポーラプレート構造を有する。そして、各単セルは、固体高分子型電解質膜の両面に各々酸化剤極を有するガス拡散層と燃料極を有するガス拡散層とを形成して膜電極接合体(MEA)とし、膜電極接合体の酸化剤極側に酸化剤極側セパレータを配置して内部に酸化剤ガス流路を形成し、膜電極接合体の燃料極側に燃料極側セパレータを配置して内部に燃料ガス流路を形成している。   The fuel cell stack has a bipolar plate structure in which a plurality of single cells are stacked and a cooling water flow path is formed inside each single cell. Each single cell forms a membrane electrode assembly (MEA) by forming a gas diffusion layer having an oxidant electrode and a gas diffusion layer having a fuel electrode on both surfaces of the solid polymer electrolyte membrane, respectively. An oxidant electrode side separator is disposed on the oxidant electrode side of the body to form an oxidant gas flow path therein, and a fuel electrode side separator is disposed on the fuel electrode side of the membrane electrode assembly to provide a fuel gas flow path therein. Is forming.

本実施形態によれば、組立後の燃料電池スタックの各単セルにおける、ガス拡散電極とセパレータのリブ面との面圧不均一を防止でき、トータルとしての接触抵抗低減、ガス配流のばらつきを低減して発電効率を高めることができる。また、セパレータが使用される状態では、少なくとも凹凸が形成されている部分におけるリブ山の上の部分は高分子材料が剥がされているため、隣接するセパレータ同士、また、隣接するセパレータとガス拡散電極との間の接触抵抗を効果的に低減することができ、発電特性を向上することができる。   According to the present embodiment, it is possible to prevent uneven surface pressure between the gas diffusion electrode and the rib surface of the separator in each single cell of the assembled fuel cell stack, and to reduce the total contact resistance and the variation in gas distribution. Thus, power generation efficiency can be increased. In the state where the separator is used, since the polymer material is peeled off at least on the portion of the rib crest in the portion where the unevenness is formed, the adjacent separators, or between the adjacent separator and the gas diffusion electrode The contact resistance can be effectively reduced, and the power generation characteristics can be improved.

本発明の実施の形態に係る実施例及び比較例における、燃料電池用セパレータを模式的に示す平面図である。It is a top view which shows typically the separator for fuel cells in the Example and comparative example which concern on embodiment of this invention. 図1に示す燃料電池用セパレータの断面を示す模式図である。It is a schematic diagram which shows the cross section of the separator for fuel cells shown in FIG. 本発明の実施の形態に係る燃料電池用セパレータのガス流路部の寸法を説明する、燃料電池用セパレータの断面を示す要部拡大図である。It is a principal part enlarged view which shows the cross section of the separator for fuel cells explaining the dimension of the gas flow path part of the separator for fuel cells which concerns on embodiment of this invention. 本発明の実施の形態に係る燃料電池用セパレータをプレス成形する際における、燃料電池用セパレータの要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the separator for fuel cells at the time of press-molding the separator for fuel cells which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…燃料電池用セパレータ,
2…中央部,
3…リブ山,
4…ガス流路溝,
5…ガスマニホールド,
6…ビード部,
7…リブ山平坦部,
8…リブ山斜面部,
9…溝底部,
10…パンチ,
11…ダイス,
1 ... Fuel cell separator,
2 ... Central part,
3 ...
4 ... Gas channel groove,
5 ... Gas manifold,
6 ... Bead part,
7… Rib mountain flat part,
8 ... Rib Mountain slope,
9 ... groove bottom,
10 ... punch,
11 ... Dice,

Claims (6)

金属薄板から形成され、中央部に凹凸形状の酸化剤ガス又は燃料ガスの流路を備えた燃料電池用セパレータであって、
前記流路と直交する方向の断面が波型形状であり、リブ山と溝とを交互に複数形成し、前記リブ山平坦部とリブ山斜面部とにより構成される角度を鈍角とすると共に、前記リブ山平坦部及び溝底部を略平行に配置し、
前記中央部の外周である外周縁部のセパレータの板厚t、リブ山平坦部の長さL1、リブ山斜面部の面方向長さL2、溝底部の長さL3及び溝深さdとした場合に、セパレータの板厚tが0.05〜0.10mmであり、かつ、2t≦L2≦6t、8t≦L1≦20t、5t≦d≦15tの関係を満たすことを特徴とする燃料電池用セパレータ。
A separator for a fuel cell that is formed from a thin metal plate and has a concavo-convex oxidant gas or fuel gas flow path at the center,
The cross section in the direction perpendicular to the flow path is corrugated, and a plurality of rib crests and grooves are alternately formed, and the angle formed by the rib crest flat portion and the rib crest slope is an obtuse angle, The rib crest flat part and the groove bottom part are arranged substantially in parallel,
The thickness t of the separator at the outer peripheral edge which is the outer periphery of the central portion, the length L1 of the rib crest flat portion, the surface direction length L2 of the rib crest slope portion, the length L3 of the groove bottom portion, and the groove depth d. In this case, the thickness t of the separator is 0.05 to 0.10 mm, and 2t ≦ L2 ≦ 6t, 8t ≦ L1 ≦ 20t, and 5t ≦ d ≦ 15t are satisfied. Separator.
さらに、L1≧3L2の関係を満たすことを特徴とする請求項1記載の燃料電池用セパレータ。   2. The fuel cell separator according to claim 1, further satisfying a relationship of L1 ≧ 3L2. 前記金属薄板は、Fe基合金、Ni基合金、Ti基合金及びステンレス合金の中から選択される1種又は2種以上を組み合わせた合金から形成される母材と、前記母材の両面に耐食性かつ導電性の表面処理を施して形成された被覆層と、を有するクラッド合金板であることを特徴とする請求項1又は2記載の燃料電池用セパレータ。   The metal thin plate is made of a base material formed of an alloy selected from an Fe-based alloy, a Ni-based alloy, a Ti-based alloy, and a stainless alloy, or a combination of two or more, and has corrosion resistance on both surfaces of the base material. 3. A fuel cell separator according to claim 1, wherein the separator is a clad alloy plate having a coating layer formed by conducting a conductive surface treatment. 前記被覆層は、前記母材上に厚さ0.01〜0.05μmの貴金属層を形成し、5%以上の圧延率により圧延して形成された層であることを特徴とする請求項3記載の燃料電池用セパレータ。   The said coating layer is a layer formed by forming a noble metal layer having a thickness of 0.01 to 0.05 μm on the base material and rolling at a rolling rate of 5% or more. The fuel cell separator as described. 金属薄板から形成され、中央部を凹凸形状として酸化剤ガス又は燃料ガスの流路を構成した燃料電池用セパレータの製造方法であって、
前記流路を形成する凹凸形状を成形するプレス型のパンチとダイスとの間のクリアランスを、セパレータの外周縁部における板厚tの3倍〜7倍として、リブ山斜面部が拘束されない状態としてプレス成形することを特徴とする燃料電池用セパレータの製造方法。
A method for producing a separator for a fuel cell, which is formed from a thin metal plate and has a concavo-convex shape at the center portion to constitute a flow path for an oxidant gas or a fuel gas,
The clearance between the punch and the die of the press die for forming the uneven shape forming the flow path is set to 3 to 7 times the plate thickness t at the outer peripheral edge of the separator, so that the rib crest portion is not restrained. A method for producing a separator for a fuel cell, comprising press molding.
金属薄板から形成され、中央部を凹凸形状として酸化剤ガス又は燃料ガスの流路を構成した燃料電池用セパレータの製造方法であって、
前記流路を形成する凹凸形状を成形するプレス型のパンチとダイスとの間のクリアランスを、セパレータ外周縁部の板厚tの3倍〜7倍として、リブ山斜面部が拘束されない状態としてプレス成形して、請求項1記載の燃料電池用セパレータとすることを特徴とする燃料電池用セパレータの製造方法。

A method for producing a separator for a fuel cell, which is formed from a thin metal plate and has a concavo-convex shape at the center portion to constitute a flow path for an oxidant gas or a fuel gas,
The clearance between the punch and the die of the press mold for forming the concavo-convex shape forming the flow path is set to be 3 to 7 times the plate thickness t of the outer peripheral edge of the separator, and the rib crest is not restrained. A method for producing a fuel cell separator according to claim 1, wherein the fuel cell separator is molded.

JP2003309305A 2003-09-01 2003-09-01 Separator for fuel cell and method of manufacturing the same Withdrawn JP2005078981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309305A JP2005078981A (en) 2003-09-01 2003-09-01 Separator for fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309305A JP2005078981A (en) 2003-09-01 2003-09-01 Separator for fuel cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005078981A true JP2005078981A (en) 2005-03-24

Family

ID=34411506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309305A Withdrawn JP2005078981A (en) 2003-09-01 2003-09-01 Separator for fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005078981A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278172A (en) * 2005-03-29 2006-10-12 Nikko Kinzoku Kk Separator material for fuel sell
JP2006289447A (en) * 2005-04-12 2006-10-26 Nippon Steel Corp Multiple-stage roll forming device
WO2006135108A1 (en) * 2005-06-17 2006-12-21 University Of Yamanashi Metal separator for fuel cell and manufacturing method thereof
JP2009187757A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
WO2010010705A1 (en) * 2008-07-25 2010-01-28 株式会社Ihi Method and plant for manufacturing separator in solid polymer fuel cell
CN102423781A (en) * 2011-11-29 2012-04-25 大连大显精密轴有限公司 Rib-pressing mold of wedge block fastening shaft type workpiece
JP2015206556A (en) * 2014-04-22 2015-11-19 新日鐵住金株式会社 Top plate for indoor unit
JP2016182606A (en) * 2015-03-25 2016-10-20 日新製鋼株式会社 Manufacturing method for continuous waveform product
JPWO2014196277A1 (en) * 2013-06-04 2017-02-23 日産自動車株式会社 Molding method for removing separator distortion and molding apparatus for removing separator distortion
CN111952621A (en) * 2020-07-21 2020-11-17 东风汽车集团有限公司 Fuel cell stack and fuel cell vehicle
CN114221066A (en) * 2021-12-09 2022-03-22 万华化学(四川)有限公司 A indent type power battery aluminum hull and aluminum hull battery for ternary electricity core

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278172A (en) * 2005-03-29 2006-10-12 Nikko Kinzoku Kk Separator material for fuel sell
JP4700393B2 (en) * 2005-04-12 2011-06-15 新日本製鐵株式会社 Multi-stage roll forming equipment
JP2006289447A (en) * 2005-04-12 2006-10-26 Nippon Steel Corp Multiple-stage roll forming device
US9431666B2 (en) 2005-06-17 2016-08-30 University Of Yamanashi Metallic separator for fuel cells and method of manufacturing the metallic separator
JP2012209265A (en) * 2005-06-17 2012-10-25 Univ Of Yamanashi Metal separator for fuel cell, manufacturing method and fuel cell
WO2006135108A1 (en) * 2005-06-17 2006-12-21 University Of Yamanashi Metal separator for fuel cell and manufacturing method thereof
US9099690B2 (en) 2005-06-17 2015-08-04 University Of Yamanashi Metallic separator for fuel cells and method of manufacturing the metallic separator
JP5070548B2 (en) * 2005-06-17 2012-11-14 国立大学法人山梨大学 Metal separator for fuel cell and manufacturing method
JP2009187757A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
US8820132B2 (en) 2008-07-25 2014-09-02 Ihi Corporation Method and facility for producing separator for use in polymer electrolyte fuel cell
RU2459318C1 (en) * 2008-07-25 2012-08-20 АйЭйчАй КОРПОРЕЙШН Method and device for making separator for polymer-electrolyte fuel cell
TWI384681B (en) * 2008-07-25 2013-02-01 Ihi Corp Method and facility for producing separator for polymer electrolyte fuel cell
WO2010010705A1 (en) * 2008-07-25 2010-01-28 株式会社Ihi Method and plant for manufacturing separator in solid polymer fuel cell
JP2010033737A (en) * 2008-07-25 2010-02-12 Ihi Corp Method and plant for manufacturing separator for polymer electrolyte fuel cell
CN102423781A (en) * 2011-11-29 2012-04-25 大连大显精密轴有限公司 Rib-pressing mold of wedge block fastening shaft type workpiece
JPWO2014196277A1 (en) * 2013-06-04 2017-02-23 日産自動車株式会社 Molding method for removing separator distortion and molding apparatus for removing separator distortion
JP2015206556A (en) * 2014-04-22 2015-11-19 新日鐵住金株式会社 Top plate for indoor unit
JP2016182606A (en) * 2015-03-25 2016-10-20 日新製鋼株式会社 Manufacturing method for continuous waveform product
CN111952621A (en) * 2020-07-21 2020-11-17 东风汽车集团有限公司 Fuel cell stack and fuel cell vehicle
CN114221066A (en) * 2021-12-09 2022-03-22 万华化学(四川)有限公司 A indent type power battery aluminum hull and aluminum hull battery for ternary electricity core

Similar Documents

Publication Publication Date Title
KR101130028B1 (en) Metallic bipolar plate for fuel cells, and fuel cell comprising the same
US6291094B1 (en) Separator for fuel cell, fuel cell incorporating the same, and method of production of the same
JP2006318863A (en) Separator for fuel cell
CN109119652B (en) Method for manufacturing separator for fuel cell
CN103633337B (en) A kind of fuel battery metal double polar plate strengthening reaction gas distribution
CN112838232B (en) Full-through-hole metal fiber sintered body fuel cell bipolar plate and fuel cell stack
US20090208803A1 (en) Flow field for fuel cell and fuel cell stack
JP2002184422A (en) Separator for fuel cell
CN102460798A (en) Fuel cell
JP2005078981A (en) Separator for fuel cell and method of manufacturing the same
US20060254047A1 (en) Supply plate for an electrochemical system
CN100530788C (en) Fuel battery, fuel battery set and fuel battery manufacturing method
JP4133323B2 (en) Press separator for fuel cell
KR101410477B1 (en) Bipolar plate for fuel cell and method for manufacturing the same
US20070154772A1 (en) Plate structure for multi-slice fuel cell
JP5163028B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2001325966A (en) Separator for fuel cell and fuel cell
JP2005100813A (en) Separator for fuel cell and its manufacturing method, fuel cell stack and fuel cell vehicle
JP5282437B2 (en) Separator for fuel cell
JP2006190626A (en) Separator
JP2002164058A (en) Gas diffusion layer of fuel cell
JP2005100697A (en) Separator for fuel cell, fuel cell stack, and fuel cell vehicle
KR101353788B1 (en) Separator for solid oxide fuel cell, method for manufacturing the same and solid oxide fuel cell comprising the same
JP2005032591A (en) Separator for fuel cell and its manufacturing method
JP4545129B2 (en) Manufacturing method of fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090317