JP4545129B2 - Manufacturing method of fuel cell separator - Google Patents

Manufacturing method of fuel cell separator Download PDF

Info

Publication number
JP4545129B2
JP4545129B2 JP2006253487A JP2006253487A JP4545129B2 JP 4545129 B2 JP4545129 B2 JP 4545129B2 JP 2006253487 A JP2006253487 A JP 2006253487A JP 2006253487 A JP2006253487 A JP 2006253487A JP 4545129 B2 JP4545129 B2 JP 4545129B2
Authority
JP
Japan
Prior art keywords
power generation
generation unit
separator
fuel cell
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006253487A
Other languages
Japanese (ja)
Other versions
JP2007012634A (en
Inventor
輝幸 大谷
誠 辻
耕爾 小谷
政男 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006253487A priority Critical patent/JP4545129B2/en
Publication of JP2007012634A publication Critical patent/JP2007012634A/en
Application granted granted Critical
Publication of JP4545129B2 publication Critical patent/JP4545129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池が備えるセパレータの製造方法に関する。   The present invention relates to a method for manufacturing a separator provided in a polymer electrolyte fuel cell.

固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層された積層体が1ユニットとされ、複数のユニットが積層されて燃料電池スタックとして構成される。電極構造体は、正極(カソード)および負極(アノード)を構成する一対のガス拡散電極の間にイオン交換樹脂等からなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層の外側にガス拡散層が形成されたものである。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路や冷媒流路が形成されている。このような燃料電池によると、例えば、負極側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、正極側のガス拡散電極に面するガス流路に酸素や空気等の酸化性ガスを流すと電気化学反応が起こり、電気が発生する。   In the polymer electrolyte fuel cell, a laminated body in which separators are laminated on both sides of a planar electrode structure (MEA) is a single unit, and a plurality of units are laminated to form a fuel cell stack. The The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of gas diffusion electrodes constituting a positive electrode (cathode) and a negative electrode (anode). In the gas diffusion electrode, a gas diffusion layer is formed on the outside of the electrode catalyst layer in contact with the electrolyte membrane. The separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for allowing a gas to flow between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, is allowed to flow in a gas flow channel facing the negative electrode side gas diffusion electrode, and oxygen or air is oxidized in the gas flow channel facing the positive electrode side gas diffusion electrode. When a sex gas is flowed, an electrochemical reaction occurs and electricity is generated.

上記セパレータは、負極側の水素ガスの触媒反応により発生した電子を外部回路へ供給する一方、外部回路からの電子を正極側に送給する機能を具備する必要がある。そこで、セパレータには黒鉛系材料や金属系材料からなる導電性材料が用いられており、特に金属系材料のものは、機械的強度に優れている点や、薄板化による軽量・コンパクト化が可能である点で有利であるとされている。金属製のセパレータは、例えば、表面に導電経路を形成する導電性介在物が分散・露出したステンレス鋼からなる薄板を素材とし、この素材板をプレス成形して断面凹凸状に成形したものが挙げられる。   The separator needs to have a function of supplying electrons generated by the catalytic reaction of the hydrogen gas on the negative electrode side to the external circuit, and supplying electrons from the external circuit to the positive electrode side. Therefore, conductive materials such as graphite and metal materials are used for the separator. Especially metal materials are excellent in mechanical strength, and can be made lighter and more compact by making them thinner. It is said that it is advantageous at this point. Metal separators include, for example, a thin plate made of stainless steel in which conductive inclusions that form a conductive path on the surface are dispersed and exposed, and the material plate is press-molded to have a concavo-convex shape. It is done.

このような金属製セパレータにおいては、断面凹凸状に成形された部分が発電部とされるが、通常、この発電部の周囲には、平坦な縁状の非発電部が一体に成形されている。断面凹凸状の発電部は、溝と凸部とが交互に連続しており、溝がガス流路や冷媒流路を構成し、凸部が電極構造体のガス拡散電極に接触させられる。また、非発電部は、例えば燃料ガス等の供給口または排出口が設けられたり、冷媒流通用の穴が形成されたりする。   In such a metal separator, a portion formed in a concavo-convex shape in the cross section is used as a power generation unit. Usually, a flat edge-shaped non-power generation unit is integrally formed around the power generation unit. . In the power generation section having a concavo-convex cross section, the grooves and the convex portions are alternately continued, the grooves constitute a gas flow path and a refrigerant flow path, and the convex portions are brought into contact with the gas diffusion electrodes of the electrode structure. The non-power generation unit is provided with, for example, a supply port or a discharge port for fuel gas or the like, or a hole for circulating refrigerant is formed.

このような発電部と非発電部とを有する従来の金属製セパレータにおいては、非発電部は耐食性を有していることが望ましいが、一方、発電部は、電極構造体に対する接触抵抗を低減させて導電性を高くし、これによって発電性能を向上させる上で、耐食性を有していることより導電性を有していることが要求される。したがって、セパレータを製造する上では、非発電部の耐食性を保証するために全体の耐食性を上げて発電部の導電性を犠牲にするか、もしくは非発電部の耐食性を犠牲にして全体の耐食性を下げて発電部の発電性能を高めるかのいずれかの方策を採らざるを得なかった。   In a conventional metal separator having such a power generation unit and a non-power generation unit, it is desirable that the non-power generation unit has corrosion resistance, while the power generation unit reduces the contact resistance with respect to the electrode structure. Therefore, in order to increase the conductivity and thereby improve the power generation performance, it is required to have conductivity rather than to have corrosion resistance. Therefore, in manufacturing the separator, in order to guarantee the corrosion resistance of the non-power generation part, the overall corrosion resistance is raised to sacrifice the conductivity of the power generation part, or the overall corrosion resistance is sacrificed at the expense of the corrosion resistance of the non-power generation part. We had to take one of the measures to lower the power generation performance of the power generation section.

よって本発明は、発電部の高い導電性と非発電部の高い耐食性の双方を両立させることができる燃料電池用セパレータを製造する方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method of manufacturing a fuel cell separator that can achieve both high conductivity of a power generation unit and high corrosion resistance of a non-power generation unit.

本発明は、発電部の外周側に非発電部を有する燃料電池用セパレータの製造方法であって、金属組織中に導電性介在物を有する1枚の金属板を光輝焼鈍した後に、前記発電部の表面に導電性介在物を突出させる表面処理を施し、これによって前記発電部の表面に導電性を具備させるとともに、前記非発電部の表面に光輝焼鈍によって酸化被膜を形成して耐食性を具備させることを特徴としている。   The present invention is a method of manufacturing a separator for a fuel cell having a non-power generation part on the outer peripheral side of the power generation part, and after the bright annealing of one metal plate having conductive inclusions in the metal structure, the power generation part A surface treatment for projecting conductive inclusions is performed on the surface of the power generation unit, thereby providing the surface of the power generation unit with conductivity, and forming an oxide film by bright annealing on the surface of the non-power generation unit to provide corrosion resistance. It is characterized by that.

本発明によれば、例えば、金属組織中に導電性介在物を有するステンレス鋼板を素材とし、この素材を光輝焼鈍を行うことにより、表面に耐食性に優れる酸化被膜を形成する。次いで、この素材からセパレータを成形し、発電部の表面の母材を除去して表面に導電性介在物を突出させることにより、本発明のセパレータを得ることができる。発電部は、表面に導電性介在物が突出していることにより、この導電性介在物が導電経路として有効に働き、電極構造体に対する接触抵抗が低減して発電性能の向上が図られる。非発電部の表面は、酸化被膜が形成されており、耐食性が十分に確保される。また、酸化被膜を形成した非発電部の表面をさらに不動態化処理して不動態被膜を形成してもよい。   According to the present invention, for example, a stainless steel plate having conductive inclusions in a metal structure is used as a raw material, and this material is subjected to bright annealing, thereby forming an oxide film having excellent corrosion resistance on the surface. Next, the separator of the present invention can be obtained by forming a separator from this material, removing the base material on the surface of the power generation unit, and projecting conductive inclusions on the surface. Since the conductive inclusions protrude from the surface of the power generation unit, the conductive inclusions effectively work as a conductive path, and the contact resistance with respect to the electrode structure is reduced to improve the power generation performance. An oxide film is formed on the surface of the non-power generation portion, and sufficient corrosion resistance is ensured. Further, the surface of the non-power generation part on which the oxide film is formed may be further passivated to form a passive film.

本発明によれば、発電部の導電性が高まる一方、導電性とは相反する耐食性を非発電部に付与することができ、その結果、発電部の高い導電性と非発電部の高い耐食性の双方が両立した燃料電池用セパレータを得ることができるといった効果を奏する。   According to the present invention, while the conductivity of the power generation unit is increased, corrosion resistance contrary to conductivity can be imparted to the non-power generation unit, and as a result, the high conductivity of the power generation unit and the high corrosion resistance of the non-power generation unit are achieved. There is an effect that it is possible to obtain a fuel cell separator in which both are compatible.

次に、図面を参照して本発明の一実施形態を説明する。
図1は、本発明の一実施形態に係る正方形状の金属製セパレータである。このセパレータ1は、ステンレス鋼からなる薄板をプレス成形して得られたものであって、中央部に正方形状の発電部10Aが形成され、この発電部10Aの周囲に縁状の発電部20Aが形成されている。図2に示すように、発電部10Aは断面の輪郭が台形の凹凸が面方向に連続した波板状を呈しており、非発電部20Aは平板状である。発電部10Aにおいては、両面の溝がガス流路11とされ、溝間の凸部12の突端面が、図示せぬ電極構造体のガス拡散電極に接触させられる。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a square metal separator according to an embodiment of the present invention. This separator 1 is obtained by press-molding a thin plate made of stainless steel. A square power generation unit 10A is formed at the center, and an edge-shaped power generation unit 20A is formed around the power generation unit 10A. Is formed. As shown in FIG. 2, the power generation unit 10 </ b> A has a corrugated plate shape in which the contour of the cross section is trapezoidal and continues in the surface direction, and the non-power generation unit 20 </ b> A has a flat plate shape. In the power generation unit 10 </ b> A, the grooves on both sides serve as the gas flow paths 11, and the protruding end surfaces of the protrusions 12 between the grooves are brought into contact with gas diffusion electrodes of an electrode structure (not shown).

このセパレータ1の素材であるステンレス鋼板は、金属組織中に導電性介在物を有するものであって、発電部10Aの表面(ここでは表裏面を一括して表面と称する)にはその導電性介在物が突出している。この導電性介在物が、導電経路として有効に働く。一方、非発電部20Aの表面には、素材のままの状態で酸化被膜が形成されている。   The stainless steel plate as the material of the separator 1 has conductive inclusions in the metal structure, and the conductive intervening is provided on the surface of the power generation unit 10A (herein, the front and back surfaces are collectively referred to as the surface). Things are protruding. This conductive inclusion works effectively as a conductive path. On the other hand, an oxide film is formed on the surface of the non-power generation unit 20A as it is.

セパレータ1の素材であるステンレス鋼板としては、例えば次の成分を有するものが好適である。すなわち、C:0.15wt%以下、Si:0.01〜1.5wt%、Mn:0.01〜2.5wt%、P:0.035wt%以下、S:0.01wt%以下、Al:0.001〜0.2wt%、N:0.3wt%以下、Cu:0〜3wt%、Ni:7〜50wt%、Cr:17〜30wt%、Mo:0〜7wt%、残部がFe,Bおよび不可避的不純物であり、かつ、Cr,MoおよびBが次式を満足している。
Cr(wt%)+3×Mo(wt%)−2.5×B(wt%)≧17
このステンレス鋼板によれば、Bが、MBおよびMB型の硼化物、M23(C,B)型の硼化物として表面に析出し、これら硼化物が導電性介在物である。
As a stainless steel plate which is a material of the separator 1, for example, one having the following components is suitable. That is, C: 0.15 wt% or less, Si: 0.01 to 1.5 wt%, Mn: 0.01 to 2.5 wt%, P: 0.035 wt% or less, S: 0.01 wt% or less, Al: 0.001-0.2 wt%, N: 0.3 wt% or less, Cu: 0-3 wt%, Ni: 7-50 wt%, Cr: 17-30 wt%, Mo: 0-7 wt%, balance is Fe, B Inevitable impurities, and Cr, Mo and B satisfy the following formula.
Cr (wt%) + 3 × Mo (wt%) − 2.5 × B (wt%) ≧ 17
According to this stainless steel plate, B precipitates on the surface as M 2 B and MB type borides and M 23 (C, B) 6 type borides, and these borides are conductive inclusions.

次に、本発明に係る上記セパレータ1の製造方法の一例を説明する。
(1)圧延
冷間圧延と光輝焼鈍を繰り返すことによってステンレス鋼板を所定の厚さ(例えば0.2mm)に伸ばして素材を得る。通常、光輝焼鈍は、アンモニア分解ガスやH+Nの混合ガス等の不活性ガス中で、所定温度/時間で加熱する熱処理であり、酸化被膜が表面に形成されるのを防ぐために、酸素が存在しない雰囲気で行うものである。しかしながら本発明では、不活性ガスであるN雰囲気に酸素をわずかに導入し、酸素がわずかに存在する雰囲気にて光輝焼鈍を行うことにより、ステンレス鋼板の表面に耐食性に優れる酸化被膜を形成する。例えば、酸素分圧を0.001気圧、窒素分圧を0.999気圧として光輝焼鈍を行うことにより、耐食性に優れる酸化被膜を形成することができる。
Next, an example of the manufacturing method of the separator 1 according to the present invention will be described.
(1) Rolling By repeating cold rolling and bright annealing, the stainless steel plate is stretched to a predetermined thickness (for example, 0.2 mm) to obtain a material. Usually, bright annealing is a heat treatment in which heating is performed at a predetermined temperature / hour in an inert gas such as ammonia decomposition gas or a mixed gas of H 2 + N 2 , in order to prevent an oxide film from being formed on the surface. It is performed in an atmosphere where no exists. However, in the present invention, an oxide film having excellent corrosion resistance is formed on the surface of the stainless steel plate by introducing oxygen slightly into an N 2 atmosphere that is an inert gas and performing bright annealing in an atmosphere where oxygen is slightly present. . For example, by performing bright annealing with an oxygen partial pressure of 0.001 atm and a nitrogen partial pressure of 0.999 atm, an oxide film having excellent corrosion resistance can be formed.

(2)次に、所定寸法に切り出した素材をプレス成形し、発電部10Aと非発電部20Aを有するセパレータ素材を得る。
(3)続いて、発電部10Aの表面のみに、導電性介在物を突出させる処理を施して、発電部10Aの表面から導電性介在物を突出させる。導電性介在物を突出させる表面処理としては、電解エッチング等の電気化学的方法、エッチング等の化学的方法、切削やサンドブラスト等の物理的方法等によって、表面の母材を除去する方法が挙げられる。
(2) Next, the material cut into a predetermined size is press-molded to obtain a separator material having the power generation unit 10A and the non-power generation unit 20A.
(3) Subsequently, only the surface of the power generation unit 10A is subjected to a process of projecting conductive inclusions, and the conductive inclusions are projected from the surface of the power generation unit 10A. Examples of the surface treatment for projecting the conductive inclusions include a method of removing the surface base material by an electrochemical method such as electrolytic etching, a chemical method such as etching, or a physical method such as cutting or sandblasting. .

上記方法によれば、発電部10Aの表面は、導電性介在物が突出して導電性が高くなっており、一方、非発電部20Aの表面は、酸化被膜がそのまま残存していることにより高い耐食性を示す。なお、非発電部20Aの耐食性をより高めたい場合には、発電部10Aをマスキングした状態で非発電部20Aの表面のみを不動態化処理して非発電部20Aの表面に不動態被膜を形成する方法が挙げられる。不動態化処理は、酸性浴に浸漬するなどの方法で行うことができる。   According to the above method, the surface of the power generation unit 10A has high conductivity due to the protruding conductive inclusions, while the surface of the non-power generation unit 20A has high corrosion resistance due to the oxide film remaining as it is. Indicates. If it is desired to further improve the corrosion resistance of the non-power generation unit 20A, a passivation film is formed on the surface of the non-power generation unit 20A by passivating only the surface of the non-power generation unit 20A with the power generation unit 10A masked. The method of doing is mentioned. The passivation treatment can be performed by a method such as immersion in an acidic bath.

上記セパレータ1によれば、発電部10Aの表面は、導電性介在物が突出していることによって電極構造体に対する接触抵抗が低いものとなり、高い導電性を有している。一方の非発電部20Aの表面は、酸化被膜が形成されていることによって高い耐食性を示す。したがって、発電部10Aの高い導電性と非発電部20Aの高い耐食性の双方が両立するものとなっている。   According to the separator 1, the surface of the power generation unit 10A has a low contact resistance with respect to the electrode structure due to the protruding conductive inclusions, and has high conductivity. The surface of one non-power generation part 20A exhibits high corrosion resistance due to the formation of an oxide film. Therefore, both the high conductivity of the power generation unit 10A and the high corrosion resistance of the non-power generation unit 20A are compatible.

本発明の一実施形態に係るセパレータの平面図である。It is a top view of the separator which concerns on one Embodiment of this invention. 一実施形態のセパレータの一部断面図である。It is a partial cross section figure of the separator of one Embodiment.

符号の説明Explanation of symbols

1…セパレータ
10A…発電部
11…ガス流路
12…凸部
20A…非発電部
DESCRIPTION OF SYMBOLS 1 ... Separator 10A ... Power generation part 11 ... Gas flow path 12 ... Convex part 20A ... Non-power generation part

Claims (2)

発電部の外周側に非発電部を有する燃料電池用セパレータの製造方法であって、
金属組織中に導電性介在物を有する1枚の金属板を光輝焼鈍した後に、前記発電部の表面に導電性介在物を突出させる表面処理を施し、
これによって前記発電部の表面に導電性を具備させるとともに、前記非発電部の表面に光輝焼鈍によって酸化被膜を形成して耐食性を具備させることを特徴とする燃料電池用セパレータの製造方法。
A method of manufacturing a fuel cell separator having a non-power generation part on the outer peripheral side of a power generation part,
After bright annealing a single metal plate having conductive inclusions in the metal structure, a surface treatment is performed to project the conductive inclusions on the surface of the power generation unit,
Thus, a method for producing a fuel cell separator is provided, wherein the surface of the power generation unit is made conductive, and an oxide film is formed on the surface of the non-power generation unit by bright annealing to provide corrosion resistance.
前記非発電部の表面に不動態化処理を施して不動態被膜を形成することを特徴とする請求項1に記載の燃料電池用セパレータの製造方法。   The method for producing a fuel cell separator according to claim 1, wherein a passivation film is formed by subjecting the surface of the non-power generation part to passivation treatment.
JP2006253487A 2006-09-19 2006-09-19 Manufacturing method of fuel cell separator Expired - Fee Related JP4545129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253487A JP4545129B2 (en) 2006-09-19 2006-09-19 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253487A JP4545129B2 (en) 2006-09-19 2006-09-19 Manufacturing method of fuel cell separator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001392215A Division JP4041308B2 (en) 2001-12-25 2001-12-25 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2007012634A JP2007012634A (en) 2007-01-18
JP4545129B2 true JP4545129B2 (en) 2010-09-15

Family

ID=37750794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253487A Expired - Fee Related JP4545129B2 (en) 2006-09-19 2006-09-19 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP4545129B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763517B2 (en) 2016-06-10 2020-09-01 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
KR102165049B1 (en) 2016-06-10 2020-10-13 제이에프이 스틸 가부시키가이샤 Stainless steel sheet for separator of fuel cell and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180883A (en) * 1994-12-26 1996-07-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell
JP2000294256A (en) * 1999-04-09 2000-10-20 Sumitomo Metal Ind Ltd Solid high polymer fuel cell
JP2000294255A (en) * 1999-04-09 2000-10-20 Sumitomo Metal Ind Ltd Solid high polymer fuel cell
JP2001214286A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd Method for producing stainless steel for conductive part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180883A (en) * 1994-12-26 1996-07-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell
JP2000294256A (en) * 1999-04-09 2000-10-20 Sumitomo Metal Ind Ltd Solid high polymer fuel cell
JP2000294255A (en) * 1999-04-09 2000-10-20 Sumitomo Metal Ind Ltd Solid high polymer fuel cell
JP2001214286A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd Method for producing stainless steel for conductive part

Also Published As

Publication number Publication date
JP2007012634A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US7214440B2 (en) Metallic separator for fuel cell and production method for the same
US20130330654A1 (en) Method of depositing durable thin gold coating on fuel cell bipolar plates
US20080108282A1 (en) Method for manufacturing fuel cell metallic separator
EP2031687B1 (en) Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
JP4889910B2 (en) Low temperature fuel cell separator and method for producing the same
JP4041308B2 (en) Fuel cell separator
JP3917442B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4545129B2 (en) Manufacturing method of fuel cell separator
EP1735865B1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
US20060068262A1 (en) Separator for fuel cell and method for producing the same
JP2005166276A (en) Stainless steel for solid polymer fuel cell separator, the solid polymer fuel cell separator using the same, and solid polymer fuel cell
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
US7014938B2 (en) Separator for fuel cell
JP3967118B2 (en) Method for producing metal separator for fuel cell
JP3816377B2 (en) Method for producing metal separator for fuel cell
JP2007095388A (en) Manufacturing method of metal separator for fuel cell, manufacturing device, and metal separator for fuel cell
JP4068344B2 (en) Fuel cell and manufacturing method thereof
JP3913053B2 (en) Method for producing metal separator for fuel cell
CN220821635U (en) Bipolar plate assembly of fuel cell stack and fuel cell stack
CA2480757C (en) Metal separator for fuel cell and manufacturing method thereof
JP4183428B2 (en) Fuel cell
JP2010186578A (en) Fuel cell separator
US10985384B2 (en) Corrosion resistant current collector for high-temperature fuel cell
JP2007066632A (en) Separator for fuel cell, fuel cell stack, fuel cell vehicle, and manufacturing method of separator for the fuel cell
JP2003229146A (en) Metallic separator for fuel cell and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4545129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees