JP3913053B2 - Method for producing metal separator for fuel cell - Google Patents

Method for producing metal separator for fuel cell Download PDF

Info

Publication number
JP3913053B2
JP3913053B2 JP2001378230A JP2001378230A JP3913053B2 JP 3913053 B2 JP3913053 B2 JP 3913053B2 JP 2001378230 A JP2001378230 A JP 2001378230A JP 2001378230 A JP2001378230 A JP 2001378230A JP 3913053 B2 JP3913053 B2 JP 3913053B2
Authority
JP
Japan
Prior art keywords
separator
base material
conductive
plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001378230A
Other languages
Japanese (ja)
Other versions
JP2003178768A (en
Inventor
輝幸 大谷
誠 辻
政男 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001378230A priority Critical patent/JP3913053B2/en
Priority to US10/497,540 priority patent/US7838171B2/en
Priority to CA002469805A priority patent/CA2469805C/en
Priority to DE10297495T priority patent/DE10297495B4/en
Priority to PCT/JP2002/011007 priority patent/WO2003050904A1/en
Publication of JP2003178768A publication Critical patent/JP2003178768A/en
Application granted granted Critical
Publication of JP3913053B2 publication Critical patent/JP3913053B2/en
Priority to US12/907,673 priority patent/US20110033783A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池が備える金属製セパレータの製造方法に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層された積層体が1ユニットとされ、複数のユニットが積層されて燃料電池スタックとして構成される。電極構造体は、正極(カソード)および負極(アノード)を構成する一対のガス拡散電極の間にイオン交換樹脂等からなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層の外側にガス拡散層が形成されたものである。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路や冷媒流路が形成されている。このような燃料電池によると、例えば、負極側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、正極側のガス拡散電極に面するガス流路に酸素や空気等の酸化性ガスを流すと電気化学反応が起こり、電気が発生する。
【0003】
上記セパレータは、負極側の水素ガスの触媒反応により発生した電子を外部回路へ供給する一方、外部回路からの電子を正極側に送給する機能を具備する必要がある。そこで、セパレータには黒鉛系材料や金属系材料からなる導電性材料が用いられており、特に金属系材料のものは、機械的強度に優れている点や、薄板化による軽量・コンパクト化が可能である点で有利であるとされている。金属製のセパレータとしては、導電経路を形成する非金属の導電性介在物が表面に突出したステンレス鋼製の薄板が好適に用いられる。このようなセパレータの製造方法としては、金属組織中に導電性介在物を有するステンレス鋼の表面に導電性介在物を突出させる処理を施してセパレータ素材板を得、次いで、このセパレータ素材板をプレス成形により断面凹凸状に成形して、表裏面に形成された溝を上記ガス流路や冷媒流路とする方法が挙げられる。導電性介在物を突出させる処理としては、例えばサンドブラスト等によって母材を除去する手段が採られる。
【0004】
【発明が解決しようとする課題】
図1(a)は、上記の導電性介在物を突出させる処理を行って得られるセパレータ素材板の表面を模式的に示している。図中符号10は母材であり、20が導電性介在物である。このセパレータ素材板がプレス成形されると、母材10の表面から突出する導電性介在物20は、図1(b)に示すように母材10にめり込むが、その状態において、母材10の表面と導電性介在物20との界面に隙間30が生じる場合がある。この隙間30が生じると、燃料電池の発電に伴い隙間30を起点とする孔食あるいは隙間腐食が起こって導電性介在物が脱落し、その結果、電極構造体に対する接触抵抗が増大して発電性能の低下を招くことになる。
【0005】
よって本発明は、プレス成形によって母材と導電性介在物との界面に生じる隙間に起因する導電性介在物の脱落が抑えられ、これによって接触抵抗が低減して発電性能の向上が図られる燃料電池用金属製セパレータの製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、表面から導電性介在物が突出するセパレータ素材板をプレス成形する燃料電池用金属製セパレータの製造方法において、セパレータ素材板の母材内に析出した導電性介在物である導電性金属間化合物を前記母材の表層部を除去することで表面から突出させ、さらにセパレータ素材板の表面に母材の体積膨張を促す化学物層形成処理を施すことを特徴としている。
【0007】
本発明に係る上記化学物層形成処理は、セパレータ素材板をプレス成形した後に行ってもよく、プレス成形の前に行ってもよい。プレス成形した後には、上述したように母材と導電性介在物との界面に隙間が生じるが、プレス成形後に化学物層形成処理を行うと、母材の体積膨張により隙間が埋められる。隙間の消滅により、隙間を起点とする孔食あるいは隙間腐食が起こることがなく、しかも導電性介在物が脱落しにくくなる。図2は、その原理を示している。すなわち、図2(a)はプレス成形したことにより導電性介在物20が母材10にめり込んで両者の界面に隙間30が生じている状態であり、この後、化学物層形成処理を行うと、母材10が体積膨張することによって図2(b)に示すように隙間30が埋められる。導電性介在物20が表面から脱落するには、体積膨張部分10Aを破壊しなくてはならないため、脱落しにくくなるのである。
【0008】
一方、セパレータ素材板をプレス成形する前に化学物層形成処理を行うと、図3(a)に示すように、母材10の体積膨張によって導電性介在物20の周囲の母材が盛り上がる(体積膨張部分10A)。この後プレス成形を行うと、図3(b)に示すように、導電性介在物20は母材10にめり込むが、その周囲には体積膨張部分10Aが埋め込まれる。これによって、隙間が生じることがなく、しかも導電性介在物20が脱落しにくくなる。
【0009】
このように、セパレータ素材板の表面への化学物層形成処理を、プレス成形後、もしくはプレス成形前に行うことにより、導電性介在物の脱落を防止することができ、結果として電極構造体に対する接触抵抗が低減して発電性能の向上が図られる。
【0010】
本発明の化学物層形成処理としては、不動態化処理が好適である。この不動態化処理により、母材には酸化物の生成による体積膨張が生じる。不動態化処理の具体的手段としては、酸性浴に浸漬するなどの手段が挙げられる。
【0011】
【実施例】
次に、本発明の実施例を説明する。
A.セパレータの製造
[実施例]
表1に示す成分を有する厚さ0.2mmのオーステナイト系ステンレス鋼板を、100mm×100mmの正方形状に切り出した。なお、このステンレス鋼板においては、Bが、MBおよびMB型の硼化物、M23(C,B)型の硼化物が導電性金属間化合物として金属組織中に析出しており、これら硼化物が、セパレータの表面に導電経路を形成する導電性介在物である。
【0012】
【表1】

Figure 0003913053
【0013】
a)導電性介在物の突出処理
次いで、このステンレス鋼板の表面にサンドブラスト処理を行い、表面に導電性介在物を突出させた。サンドブラスト処理は、アルミナ粒子(WA♯300)を砥粒とし、この砥粒を2kg/cmの圧力で10秒間吹き付けた。
b)プレス成形
次に、サンドブラスト処理したステンレス鋼板をプレス成形して92mm×92mmの正方形状のセパレータ素材板を得た。図4はこのセパレータ素材板を示しており、このセパレータ素材板は、中央に断面凹凸状の集電部を有し、その周囲に平坦な縁部を有している。
c)不動態化処理
続いて、セパレータ素材板を、50℃に保持されている50wt%硝酸液浴の中に10分間浸漬して不動態化処理を行い、この後、水洗して実施例のセパレータを得た。
【0014】
[比較例]
上記実施例において、不動態化処理を行わずプレス成形したままの状態のものを、比較例のセパレータとした。
【0015】
B.接触抵抗の測定
次いで、実施例および比較例のセパレータを用いて、電極構造体(MEA)の両側にセパレータを積層した1つの燃料電池ユニットを構成し、このユニットを発電させて、電極構造体に対するセパレータの接触抵抗を測定した。その結果を表2に示すとともに、発電時間の経過に伴う接触抵抗の変化を図5にグラフ化した。
【0016】
【表2】
Figure 0003913053
【0017】
図5で明らかなように、実施例のセパレータは、長時間の発電にもかかわらず接触抵抗値は初期のまま一定に保持されている。一方、比較例のセパレータは発電後1000時間までの間に接触抵抗が大幅に増大することが認められた。比較例のセパレータでは、電極構造体への接触面における母材と導電性介在物との界面に隙間が生じたままであり、これによって発電中に孔食や隙間腐食が発生したり導電性介在物が脱落したりして接触抵抗が増大したことが推察される。ところが実施例の接触抵抗は一定であり、したがって本発明の不動態化処理による作用効果が実証されたと言える。
【0018】
以上説明したように、本発明によれば、セパレータ素材板の表層部を除去することで、導電性介在物である導電性金属間化合物を母材の表面から突出させた状態とし、さらにプレス成形前もしくはプレス成形後に、母材の体積膨張を促す化学物層形成処理を施すことで、プレス成形によって母材と導電性介在物との界面に生じる隙間に起因する導電性介在物の脱落が抑えられ、これによって電極構造体に対する接触抵抗が低減し、結果として発電性能の向上が図られるといった効果を奏する。
【図面の簡単な説明】
【図1】 (a)は表面に導電性介在物を突出させたセパレータ素材板を模式的に示す断面図、(b)はプレス成形後のセパレータ素材板を模式的に示す断面図である。
【図2】 本発明をプレス成形後に適用した場合の原理を(a),(b)の順に示す図である。
【図3】 本発明をプレス成形前に適用した場合の原理を(a),(b)の順に示す図である。
【図4】 本発明の実施例で製造されるセパレータ素材板の平面写真である。
【図5】 実施例で測定した接触抵抗の結果を示すグラフである。
【符号の説明】
10…母材
10A…体積膨張部分
20…導電性介在物
30…隙間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal separator provided in a polymer electrolyte fuel cell.
[0002]
[Prior art]
In the polymer electrolyte fuel cell, a laminated body in which separators are laminated on both sides of a plate electrode assembly (MEA) is formed as one unit, and a plurality of units are laminated to form a fuel cell stack. The The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of gas diffusion electrodes constituting a positive electrode (cathode) and a negative electrode (anode). In the gas diffusion electrode, a gas diffusion layer is formed on the outside of the electrode catalyst layer in contact with the electrolyte membrane. The separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for allowing a gas to flow between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, is allowed to flow in a gas flow channel facing the negative electrode side gas diffusion electrode, and oxygen or air is oxidized in the gas flow channel facing the positive electrode side gas diffusion electrode. When a sex gas is flowed, an electrochemical reaction occurs and electricity is generated.
[0003]
The separator needs to have a function of supplying electrons generated by the catalytic reaction of the hydrogen gas on the negative electrode side to the external circuit, and supplying electrons from the external circuit to the positive electrode side. Therefore, conductive materials such as graphite and metal materials are used for the separator. Especially metal materials are excellent in mechanical strength, and can be made lighter and more compact by making them thinner. It is said that it is advantageous at this point. As the metallic separator, a thin plate made of stainless steel in which a nonmetallic conductive inclusion forming a conductive path protrudes on the surface is suitably used. As a method of manufacturing such a separator, a separator material plate is obtained by performing a process of projecting conductive inclusions on the surface of stainless steel having conductive inclusions in the metal structure, and then the separator material plate is pressed. There is a method in which the grooves formed on the front and back surfaces are formed into the above-mentioned gas flow path and refrigerant flow path by forming into a concave-convex shape by molding. As a process for projecting the conductive inclusions, for example, means for removing the base material by sandblasting or the like is employed.
[0004]
[Problems to be solved by the invention]
Fig.1 (a) has shown typically the surface of the separator raw material board obtained by performing the process which makes said electroconductive inclusion protrude. In the figure, reference numeral 10 is a base material, and 20 is a conductive inclusion. When this separator material plate is press-molded, the conductive inclusions 20 protruding from the surface of the base material 10 are recessed into the base material 10 as shown in FIG. A gap 30 may occur at the interface between the surface and the conductive inclusion 20. When this gap 30 is generated, pitting corrosion or crevice corrosion starting from the gap 30 occurs with the power generation of the fuel cell, and the conductive inclusions drop off. As a result, the contact resistance with respect to the electrode structure increases and the power generation performance Will be reduced.
[0005]
Accordingly, the present invention is a fuel in which the drop of the conductive inclusions due to the gap generated at the interface between the base material and the conductive inclusions is suppressed by press molding, thereby reducing the contact resistance and improving the power generation performance. It aims at providing the manufacturing method of the metal separators for batteries.
[0006]
[Means for Solving the Problems]
The present invention relates to a method of manufacturing a metal separator for a fuel cell in which a separator material plate from which conductive inclusions protrude from the surface is press-molded, and a conductive metal which is a conductive inclusion deposited in a base material of the separator material plate The intermetallic compound is protruded from the surface by removing the surface layer portion of the base material, and further, a chemical layer forming treatment for promoting the volume expansion of the base material is performed on the surface of the separator material plate.
[0007]
The said chemical substance layer formation process which concerns on this invention may be performed after press-molding a separator raw material board, and may be performed before press molding. After the press molding, a gap is generated at the interface between the base material and the conductive inclusion as described above. However, when the chemical layer forming process is performed after the press molding, the gap is filled by the volume expansion of the base material. Due to the disappearance of the gap, pitting corrosion or crevice corrosion starting from the gap does not occur, and the conductive inclusions do not easily fall off. FIG. 2 shows the principle. That is, FIG. 2A shows a state in which the conductive inclusion 20 is sunk into the base material 10 due to the press molding, and a gap 30 is generated at the interface between the two, and then a chemical layer forming process is performed. As the base material 10 expands in volume, the gap 30 is filled as shown in FIG. In order for the conductive inclusions 20 to drop off from the surface, the volume expansion portion 10A must be destroyed, so that it is difficult for the conductive inclusions 20 to drop off.
[0008]
On the other hand, when the chemical substance layer forming process is performed before the separator material plate is press-molded, the base material around the conductive inclusion 20 is raised by the volume expansion of the base material 10 as shown in FIG. Volume expansion portion 10A). Thereafter, when press molding is performed, as shown in FIG. 3B, the conductive inclusion 20 is embedded in the base material 10, but the volume expansion portion 10 </ b> A is embedded around the conductive inclusion 20. As a result, there is no gap, and the conductive inclusions 20 are less likely to drop off.
[0009]
Thus, by performing the chemical substance layer forming process on the surface of the separator material plate after the press molding or before the press molding, it is possible to prevent the conductive inclusions from falling off, and as a result, to the electrode structure. The contact resistance is reduced and the power generation performance is improved.
[0010]
As the chemical layer forming treatment of the present invention, a passivation treatment is suitable. This passivation treatment causes volume expansion due to oxide formation in the base material. Specific means for the passivation treatment include means such as immersion in an acid bath.
[0011]
【Example】
Next, examples of the present invention will be described.
A. Production of separator [Example]
A 0.2 mm thick austenitic stainless steel plate having the components shown in Table 1 was cut into a square shape of 100 mm × 100 mm. In this stainless steel sheet, B is precipitated in the metal structure as M 2 B and MB type borides and M 23 (C, B) 6 type borides as conductive intermetallic compounds. Boride is a conductive inclusion that forms a conductive path on the surface of the separator.
[0012]
[Table 1]
Figure 0003913053
[0013]
a) Protrusion Treatment of Conductive Inclusion Next, the surface of this stainless steel plate was subjected to sand blast treatment to cause the conductive inclusion to protrude on the surface. In the sandblast treatment, alumina particles (WA # 300) were used as abrasive grains, and the abrasive grains were sprayed at a pressure of 2 kg / cm 2 for 10 seconds.
b) Press forming Next, a sandblasted stainless steel plate was press formed to obtain a 92 mm × 92 mm square separator material plate. FIG. 4 shows this separator material plate. This separator material plate has a current collecting portion having a concave-convex shape in the center and a flat edge around the current collecting portion.
c) Passivation treatment Subsequently, the separator material plate was immersed in a 50 wt% nitric acid bath maintained at 50 ° C. for 10 minutes for passivation treatment, and then washed with water. A separator was obtained.
[0014]
[Comparative example]
In the above example, the separator in the state of being press-molded without performing the passivation treatment was used as the separator of the comparative example.
[0015]
B. Measurement of contact resistance Next, using the separators of Examples and Comparative Examples, one fuel cell unit in which separators are stacked on both sides of an electrode structure (MEA) is configured, and this unit is caused to generate power to The contact resistance of the separator was measured. The results are shown in Table 2, and the change in contact resistance with the passage of power generation time is graphed in FIG.
[0016]
[Table 2]
Figure 0003913053
[0017]
As apparent from FIG. 5, the separator of the example has a constant contact resistance value that remains constant despite the long-time power generation. On the other hand, it was recognized that the contact resistance of the separator of the comparative example greatly increased up to 1000 hours after power generation. In the separator of the comparative example, a gap remains at the interface between the base material and the conductive inclusion on the contact surface with the electrode structure, and this causes pitting corrosion and crevice corrosion during power generation or the conductive inclusion. It is inferred that the contact resistance increased due to falling off. However, the contact resistance of the examples is constant, and therefore, it can be said that the effect of the passivation treatment of the present invention has been demonstrated.
[0018]
As described above, according to the present invention, by removing the surface layer portion of the separator material plate, the conductive intermetallic compound, which is a conductive inclusion, is protruded from the surface of the base material, and further press-molded. By applying a chemical layer forming process that promotes volume expansion of the base material before or after press molding, the falling of conductive inclusions due to gaps formed at the interface between the base material and conductive inclusions due to press molding is suppressed. As a result, the contact resistance with respect to the electrode structure is reduced, and as a result, the power generation performance is improved.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view schematically showing a separator material plate with conductive inclusions protruding on the surface, and FIG. 1B is a cross-sectional view schematically showing a separator material plate after press molding.
FIG. 2 is a diagram showing the principle in the order of (a) and (b) when the present invention is applied after press molding.
FIG. 3 is a view showing the principle in the order of (a) and (b) when the present invention is applied before press molding.
FIG. 4 is a plan photograph of a separator blank produced in an example of the present invention.
FIG. 5 is a graph showing the results of contact resistance measured in Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Base material 10A ... Volume expansion part 20 ... Conductive inclusion 30 ... Gap

Claims (3)

セパレータ素材板の母材中に析出した導電性金属間化合物を前記母材の表層部を除去することで表面から突出させる工程と、
前記突出させる工程の後に、前記セパレータ素材板をプレス成形して前記導電性金属間化合物を前記母材内に押し込む工程と、
前記プレス成形の後に、前記セパレータ素材板の表面に、母材の体積膨張を促す不動態化処理を施す工程と
を具備することを特徴とする燃料電池用金属製セパレータの製造方法。
Projecting the conductive intermetallic compound precipitated in the base material of the separator material plate from the surface by removing the surface layer portion of the base material; and
After the step of projecting, pressing the separator material plate and pressing the conductive intermetallic compound into the base material; and
And a step of performing a passivation treatment for promoting volume expansion of the base material on the surface of the separator material plate after the press forming.
セパレータ素材板の母材中に析出した導電性金属間化合物を前記母材の表層部を除去することで表面から突出させる工程と、
前記突出させる工程の後に、前記セパレータ素材板の表面に、母材の体積膨張を促す不動態化処理を施す工程と、
前記不動態化処理の後に、前記セパレータ素材板をプレス成形して前記導電性金属間化合物を前記母材内に押し込む工程と
を具備することを特徴とする燃料電池用金属製セパレータの製造方法。
Projecting the conductive intermetallic compound precipitated in the base material of the separator material plate from the surface by removing the surface layer portion of the base material; and
After the projecting step, the surface of the separator material plate is subjected to a passivation treatment that promotes volume expansion of the base material; and
And a step of pressing the separator material plate and pressing the conductive intermetallic compound into the base material after the passivation treatment.
前記導電性金属間化合物が、ステンレス鋼板の金属組織中に析出した硼化物であることを特徴とする請求項1または2に記載の燃料電池用金属製セパレータの製造方法。The method for producing a metal separator for a fuel cell according to claim 1 or 2, wherein the conductive intermetallic compound is a boride precipitated in a metal structure of a stainless steel plate.
JP2001378230A 2001-12-12 2001-12-12 Method for producing metal separator for fuel cell Expired - Fee Related JP3913053B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001378230A JP3913053B2 (en) 2001-12-12 2001-12-12 Method for producing metal separator for fuel cell
US10/497,540 US7838171B2 (en) 2001-12-12 2002-10-23 Metal separator for fuel cell and its production method
CA002469805A CA2469805C (en) 2001-12-12 2002-10-23 Metal separator for fuel cell and its production method
DE10297495T DE10297495B4 (en) 2001-12-12 2002-10-23 Manufacturing method for a metal separator of a fuel cell
PCT/JP2002/011007 WO2003050904A1 (en) 2001-12-12 2002-10-23 Metal separator for fuel cell and its production method
US12/907,673 US20110033783A1 (en) 2001-12-12 2010-10-19 Metal separator for fuel cell and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378230A JP3913053B2 (en) 2001-12-12 2001-12-12 Method for producing metal separator for fuel cell

Publications (2)

Publication Number Publication Date
JP2003178768A JP2003178768A (en) 2003-06-27
JP3913053B2 true JP3913053B2 (en) 2007-05-09

Family

ID=19186011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378230A Expired - Fee Related JP3913053B2 (en) 2001-12-12 2001-12-12 Method for producing metal separator for fuel cell

Country Status (1)

Country Link
JP (1) JP3913053B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050100774A1 (en) * 2003-11-07 2005-05-12 Abd Elhamid Mahmoud H. Novel electrical contact element for a fuel cell
JP4575007B2 (en) * 2004-03-18 2010-11-04 本田技研工業株式会社 Method for producing conductive material-containing stainless steel separator
JP5014644B2 (en) 2006-02-27 2012-08-29 新日本製鐵株式会社 Separator for polymer electrolyte fuel cell and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683117B2 (en) * 1999-02-25 2005-08-17 トヨタ自動車株式会社 Gas separator for fuel cell, method for producing the same, and fuel cell
JP2000328200A (en) * 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd Austenitic stainless steel for conductive electric parts and fuel battery
JP2001032056A (en) * 1999-07-22 2001-02-06 Sumitomo Metal Ind Ltd Stainless steel for conductive parts and solid high polymer type fuel battery
JP4495796B2 (en) * 1999-05-12 2010-07-07 日新製鋼株式会社 Stainless steel separator for low-temperature fuel cell and method for producing the same
JP4529205B2 (en) * 1999-11-30 2010-08-25 株式会社豊田中央研究所 FUEL CELL SEPARATOR AND FUEL CELL HAVING THE SAME
JP3365385B2 (en) * 2000-01-31 2003-01-08 住友金属工業株式会社 Method for producing stainless steel material for separator of polymer electrolyte fuel cell
JP2001283880A (en) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd Low-temperature fuel cell separator and its manufacturing method
JP4639434B2 (en) * 2000-06-15 2011-02-23 住友金属工業株式会社 Bipolar plate and polymer electrolyte fuel cell
JP2003223904A (en) * 2001-02-22 2003-08-08 Jfe Steel Kk Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2003178768A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
JP4707786B2 (en) Manufacturing method of gas separator for fuel cell
JP4327489B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP3423799B2 (en) Method for forming reaction layer of fuel cell
CA3002453C (en) Method for producing fuel cell separator
JP4889910B2 (en) Low temperature fuel cell separator and method for producing the same
JP4041308B2 (en) Fuel cell separator
JP3913053B2 (en) Method for producing metal separator for fuel cell
US20110033783A1 (en) Metal separator for fuel cell and its production method
JP3842954B2 (en) Fuel cell separator and fuel cell
JP3917442B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2002367622A (en) Separator for low temperature type fuel cell and manufacturing method of the same
JP2000182640A (en) On-vehicle fuel cell
JP3816377B2 (en) Method for producing metal separator for fuel cell
JP3967118B2 (en) Method for producing metal separator for fuel cell
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
JP4068344B2 (en) Fuel cell and manufacturing method thereof
JP3404363B2 (en) Fuel cell separator
JP4545129B2 (en) Manufacturing method of fuel cell separator
JPWO2002035629A1 (en) Fuel cell separator and method of manufacturing the same
EP1253658A1 (en) fUEL CELL SEPARATOR
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2003229146A (en) Metallic separator for fuel cell and its manufacturing method
JP2003187829A (en) Metal separator for fuel cell, and its manufacturing method
JP2007149478A (en) Fuel cell, metal separator, method of manufacturing same, and die
CA2558686A1 (en) Fuel cell metallic separator and method for manufacturing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees