JP2000328200A - Austenitic stainless steel for conductive electric parts and fuel battery - Google Patents

Austenitic stainless steel for conductive electric parts and fuel battery

Info

Publication number
JP2000328200A
JP2000328200A JP11133218A JP13321899A JP2000328200A JP 2000328200 A JP2000328200 A JP 2000328200A JP 11133218 A JP11133218 A JP 11133218A JP 13321899 A JP13321899 A JP 13321899A JP 2000328200 A JP2000328200 A JP 2000328200A
Authority
JP
Japan
Prior art keywords
separator
stainless steel
steel
fuel cell
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11133218A
Other languages
Japanese (ja)
Inventor
Yoshio Taruya
芳男 樽谷
Akira Seki
彰 関
Norifumi Doi
教史 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11133218A priority Critical patent/JP2000328200A/en
Priority to KR1020000017853A priority patent/KR100361548B1/en
Priority to CN00105765A priority patent/CN1117882C/en
Priority to US09/548,673 priority patent/US6379476B1/en
Priority to CA002305839A priority patent/CA2305839C/en
Priority to DE60009781T priority patent/DE60009781T2/en
Priority to AT00401066T priority patent/ATE264409T1/en
Priority to EP00401066A priority patent/EP1046723B1/en
Priority to ES00401066T priority patent/ES2218081T3/en
Publication of JP2000328200A publication Critical patent/JP2000328200A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide austenitic stainless steel small in contact electric resistance and small in eluted metallic ions even in the case of being used in a pure state, particularly, in a separator environment of a solid high molecalar type fuel battery without executing expensive surface treatment and to provide a solid high molecular type fuel battery provided with a separator composed of the stainless steel. SOLUTION: This austenitic stainless steel for electric parts contains, by weight, <=0.03% C, 0.01 to 1.5% Si, 0.01 to 2.5% Mn, <=0.035% P, <=0.01% S, 17 to 30% Cr, 7 to 50% Ni, 0.0005 to 3.5% B, 0.001 to 0.2% Al, <=0.3% N, 0 to 7% Mo and 0 to 3% Cu, in which the contents of Cr, Mo and B also satisfy 17<=Cr+3Mo--2.5B, and the balance Fe, and B in the steel is precipitated as M2B type boride. The fuel battery provided with a separator is composed of the steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、通電電気部品と
して用いられる接触電気抵抗が低いオーステナイト系ス
テンレス鋼、自動車搭載用や家庭用等の小型分散型電源
として用いられる前記ステンレス鋼からなるセパレータ
(バイポーラプレートと呼ばれることもある)を備えた
固体高分子型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator (bipolar) made of austenitic stainless steel having a low contact electric resistance used as a current-carrying electrical part, and a stainless steel used as a small distributed power source for use in automobiles and homes. (Sometimes referred to as a plate).

【0002】[0002]

【従来の技術】オーステナイト系ステンレス鋼は、その
表面に不働態体皮膜が形成されているため耐食性に優れ
ている。しかし、表面の不働態体皮膜は電気抵抗が大き
いため、小さい接触電気抵抗が要求される通電用して使
用される電気部品には適していない。不働態体皮膜の厚
さが厚くなれば耐食性はより優れたものとなるが、電気
抵抗はより大きくなる傾向にある。
2. Description of the Related Art Austenitic stainless steel is excellent in corrosion resistance because a passive film is formed on its surface. However, since the passive film on the surface has a large electric resistance, it is not suitable for an electric component used for energization that requires a small contact electric resistance. The thicker the passive layer film, the better the corrosion resistance, but the higher the electrical resistance.

【0003】オーステナイト系ステンレス鋼の接触電気
抵抗を小さくすることができれば、オーステナイト系ス
テンレス鋼を耐食性が要求される通電電気部品として使
用することが可能となる。優れた耐食性と小さい接触電
気抵抗が要求される通電電気部品の一つに固体高分子型
燃料電池のセパレータがある。
[0003] If the contact electric resistance of austenitic stainless steel can be reduced, it becomes possible to use the austenitic stainless steel as a current-carrying electrical component requiring corrosion resistance. One of the current-carrying electrical components requiring excellent corrosion resistance and small contact electric resistance is a separator of a polymer electrolyte fuel cell.

【0004】燃料電池は、水素および酸素を利用して直
流電力を発電する電池であり、固体電解質型燃料電池、
溶融炭酸塩型燃料電池、リン酸型燃料電池および固体高
分子型燃料電池などがある。燃料電池の名称は、電池の
根幹をなす『電解質』部分の構成材料に由来している。
A fuel cell is a battery that generates DC power using hydrogen and oxygen, and is a solid oxide fuel cell,
There are a molten carbonate fuel cell, a phosphoric acid fuel cell, and a polymer electrolyte fuel cell. The name of the fuel cell is derived from the constituent materials of the "electrolyte" part that forms the basis of the cell.

【0005】現在、商用段階に達している燃料電池に
は、リン酸型燃料電池、溶融炭酸塩型燃料電池がある。
燃料電池のおおよその運転温度は、固体電解質型燃料電
池で1000℃、溶融炭酸塩型燃料電池で650℃、リ
ン酸型燃料電池で200℃および固体高分子型燃料電池
で80℃である。
At present, the fuel cells that have reached the commercial stage include a phosphoric acid fuel cell and a molten carbonate fuel cell.
Approximate operating temperatures of the fuel cell are 1000 ° C. for a solid oxide fuel cell, 650 ° C. for a molten carbonate fuel cell, 200 ° C. for a phosphoric acid fuel cell, and 80 ° C. for a polymer electrolyte fuel cell.

【0006】固体高分子型燃料電池は、運転温度が80
℃前後と低く起動−停止が容易であり、エネルギー効率
も40%程度が期待できることから、小規模事業所、電
話局などの非常用分散電源、都市ガスを燃料とする家庭
用小型分散電源、水素ガス、メタノールあるいはガソリ
ンを燃料とする低公害電気自動車搭載用電源として、世
界的に実用化が期待されている。
A polymer electrolyte fuel cell has an operating temperature of 80
Since it is easy to start and stop at a low temperature around ℃ and the energy efficiency can be expected to be about 40%, it is expected to be used for emergency dispersed power sources such as small business establishments and telephone offices, small household distributed power sources using city gas as fuel, and hydrogen. It is expected to be put to practical use worldwide as a power source for low-pollution electric vehicles using gas, methanol or gasoline as fuel.

【0007】上記の各種の燃料電池は、『燃料電池』と
言う共通の呼称で呼ばれているものの、それぞれの電池
構成材料を考える場合には、全く別物として捉えること
が必要である。使用される電解質による構成材料の腐食
の有無、380℃付近から顕在化し始める高温酸化の有
無、電解質の昇華と再析出、凝結の有無等により求めら
れる性能、特に耐食性能が、それぞれの燃料電池で全く
異なるためである。実際、使用されている材料も様々で
あり、黒鉛系素材から、Niクラッド材、高合金、ステ
ンレス鋼と多様である。
[0007] The above-mentioned various fuel cells are called by a common name of "fuel cell", but when considering the constituent materials of the respective cells, it is necessary to consider them completely different. The performance required by the presence or absence of corrosion of the constituent materials due to the electrolyte used, the presence or absence of high-temperature oxidation that begins to become apparent at around 380 ° C, the presence or absence of sublimation and reprecipitation of the electrolyte, the presence of condensation, etc. Because it is completely different. In fact, the materials used are also various, ranging from graphite-based materials to Ni clad materials, high alloys, and stainless steels.

【0008】商用化されているリン酸型燃料電池、溶融
炭酸塩型燃料電池に使用されている材料を、固体高分子
質型燃料電池の構成材料に適用することは全く考えるこ
とができない。
[0008] It is hardly conceivable to apply the materials used in commercially available phosphoric acid fuel cells and molten carbonate fuel cells to the constituent materials of solid polymer fuel cells.

【0009】図1は、固体高分子型燃料電池の構造を示
す図で、図1(a)は、燃料電池セル(単セル)の分解
図、図1(b)は燃料電池全体の斜視図である。同図に
示すように、燃料電池1は単セルの集合体である。単セ
ルは、図1(a)に示すように固体高分子電解質膜2の
1面に燃料電極膜(アノード)3を、他面には酸化剤電
極膜(カソード)4が積層されており、その両面にセパ
レータ5a、5bが重ねられた構造になっている。
FIG. 1 shows the structure of a polymer electrolyte fuel cell. FIG. 1 (a) is an exploded view of a fuel cell (single cell), and FIG. 1 (b) is a perspective view of the whole fuel cell. It is. As shown in FIG. 1, the fuel cell 1 is an aggregate of single cells. In the single cell, as shown in FIG. 1A, a solid polymer electrolyte membrane 2 has a fuel electrode membrane (anode) 3 laminated on one surface and an oxidant electrode membrane (cathode) 4 laminated on the other surface. It has a structure in which separators 5a and 5b are overlapped on both surfaces.

【0010】代表的な固体高分子電解質膜2としては、
水素イオン(プロトン)交換基を有するフッ素系イオン
交換樹脂膜がある。
A typical solid polymer electrolyte membrane 2 includes:
There is a fluorine ion exchange resin membrane having a hydrogen ion (proton) exchange group.

【0011】燃料電極膜3および酸化剤電極膜4には、
粒子状の白金触媒と黒鉛粉、必要に応じて水素イオン
(プロトン)交換基を有するフッ素樹脂からなる触媒層
が設けられており、燃料ガスまたは酸化性ガスと接触す
るようになっている。
The fuel electrode film 3 and the oxidant electrode film 4 include
A catalyst layer made of a particulate platinum catalyst, graphite powder, and, if necessary, a fluororesin having a hydrogen ion (proton) exchange group is provided so as to come into contact with a fuel gas or an oxidizing gas.

【0012】セパレータ5aに設けられている流路6a
から燃料ガス(水素または水素含有ガス)Aが流されて
燃料電極膜3に水素が供給される。また、セパレータ5
bに設けられている流路6bからは空気のような酸化性
ガスBが流され、酸素が供給される。これらガスの供給
により電気化学反応が生じて直流電力が発生する。
The flow path 6a provided in the separator 5a
From the fuel gas (hydrogen or hydrogen-containing gas) A to supply hydrogen to the fuel electrode film 3. Also, the separator 5
An oxidizing gas B such as air is flown from a flow path 6b provided in b, and oxygen is supplied. The supply of these gases causes an electrochemical reaction to generate DC power.

【0013】固体高分子型燃料電池セパレータに求めら
れる機能は、(1)燃料極側で、燃料ガスを面内均一に
供給する“流路”としての機能、(2)カソード側で生
成した水を、燃料電池より反応後の空気、酸素といった
キャリアガスとともに効率的に系外に排出させる“流
路”としての機能、(3)長時間にわたって電極として
低電気抵抗、良電導性を維持する単セル間の電気的“コ
ネクタ”としての機能、および(4)隣り合うセルで一
方のセルのアノード室と隣接するセルのカソード室との
“隔壁”としての機能などである。
The functions required of a polymer electrolyte fuel cell separator include (1) a function as a "flow path" for uniformly supplying fuel gas in a plane on the fuel electrode side, and (2) water generated on the cathode side. As a "flow path" for efficiently discharging the fuel and the carrier gas such as air and oxygen from the fuel cell to the outside of the system, and (3) simply maintaining low electrical resistance and good conductivity as an electrode for a long time. The function as an electrical "connector" between cells, and (4) the function as a "partition wall" between an anode chamber of one cell and a cathode chamber of an adjacent cell in an adjacent cell.

【0014】これまで、セパレータ材料としてカーボン
板材の適用が鋭意検討されてきているが、カーボン板材
には“割れやすい”という問題があり、さらに表面を平
坦にするための機械加工コストおよびガス流路形成のた
めの機械加工コストが非常に高くなる問題がある。それ
ぞれが宿命的な問題であり、燃料電池の商用化そのもの
を難しくさせかねない状況がある。
So far, the use of a carbon plate as a separator material has been intensively studied. However, the carbon plate has a problem that it is easily cracked, and furthermore, the machining cost for flattening the surface and the gas flow path are reduced. There is a problem that the machining cost for forming is very high. Each is a fatal issue, and there are situations that can make commercialization of fuel cells themselves difficult.

【0015】カーボンの中でも、熱膨張性黒鉛加工品は
格段に安価であることから、固体高分子型燃料電池セパ
レータ用素材として最も注目されている。しかしなが
ら、ガス透過性を低減して前記隔壁としての機能を付与
するためには、“複数回”に及ぶ樹脂含浸と焼成を実施
しなければならない。また、平坦度確保および溝形成の
ための機械加工コスト等今後も解決すべき課題が多く、
実用化に至っていない。
[0015] Among carbons, a heat-expandable graphite processed product has been receiving the most attention as a material for a polymer electrolyte fuel cell separator because it is extremely inexpensive. However, in order to reduce the gas permeability and impart the function as the partition wall, the resin impregnation and firing must be performed “a plurality of times”. In addition, there are many issues to be solved in the future, such as machining costs for securing flatness and forming grooves,
It has not been put to practical use.

【0016】こうした黒鉛系素材の適用の検討に対峙す
る動きとして、コスト削減を目的に、セパレータにステ
ンレス鋼を適用する試みが開始されている。
As a move against the study of the use of graphite-based materials, attempts have been made to apply stainless steel to the separator for the purpose of cost reduction.

【0017】特開平10−228914号公報には、金
属製部材からなり、単位電池の電極との接触面に直接金
めっきを施した燃料電池用セパレータが開示されてい
る。金属製部材として、ステンレス鋼、アルミニウムお
よびNi−鉄合金が挙げられており、ステンレス鋼とし
ては、SUS304が用いられている。この発明では、
セパレータは金めっきが施されているので、セパレータ
と電極との接触抵抗が低下し、セパレータから電極への
電子の導通が良好となるため、燃料電池の出力電圧が大
きくなるとされている。
Japanese Patent Application Laid-Open No. 10-228914 discloses a fuel cell separator made of a metal member and having a gold plating directly applied to a contact surface of a unit cell with an electrode. Stainless steel, aluminum, and Ni-iron alloy are listed as metal members, and SUS304 is used as stainless steel. In the present invention,
It is said that since the separator is plated with gold, the contact resistance between the separator and the electrode is reduced, and the conduction of electrons from the separator to the electrode is improved, so that the output voltage of the fuel cell is increased.

【0018】特開平8−180883号公報には、表面
に形成される不働態膜が大気により容易に生成される金
属材料からなるセパレータが用いられている固体高分子
電解質型燃料電池が開示されている。金属材料としてス
テンレス鋼とチタン合金が挙げられている。この発明で
は、セパレータに用いられる金属の表面には、必ず不働
態膜が存在しており、金属の表面が化学的に侵され難く
なって燃料電池セルで生成された水がイオン化される度
合いが低減され、燃料電池セルの電気化学反応度の低下
が抑制されるとされている。また、セパレータの電極膜
等に接触する部分の不働体膜を除去し、貴金属層を形成
することにより、電気接触抵抗値が小さくなるとされて
いる。
JP-A-8-180883 discloses a solid polymer electrolyte fuel cell in which a passive film formed on the surface uses a separator made of a metal material which is easily formed by the atmosphere. I have. Stainless steel and titanium alloy are mentioned as metal materials. In the present invention, a passivation film is always present on the surface of the metal used for the separator, and the degree of ionization of water generated in the fuel cell is reduced due to the fact that the surface of the metal is hardly chemically attacked. The fuel cell is said to be reduced, and a decrease in the electrochemical reactivity of the fuel cell is suppressed. Further, it is said that the electrical contact resistance value is reduced by removing the passive body film at the portion of the separator that contacts the electrode film or the like and forming a noble metal layer.

【0019】しかしながら、上記の公開公報に開示され
ている表面に不働態膜を備えたステンレス鋼のような金
属材料をそのままセパレータに用いても、耐食性が十分
でなく金属の溶出が起こり、溶出金属イオンにより担持
触媒性能が劣化(以下、担持触媒の被毒と記す)する。
また、溶出後に生成するCr-OH、Fe-OHのような腐食生成
物により、セパレータの接触抵抗が増加するという問題
があるので、金属材料からなるセパレータには、コスト
を度外視した金めっき等の貴金属めっきが施されている
のが現状である。
However, even if a metal material such as stainless steel provided with a passivation film on the surface disclosed in the above-mentioned publication is used for the separator as it is, the corrosion resistance is not sufficient and the metal is eluted, and the metal eluted. The performance of the supported catalyst is degraded by the ions (hereinafter, referred to as poisoning of the supported catalyst).
In addition, corrosion products such as Cr-OH and Fe-OH generated after elution have a problem that the contact resistance of the separator increases. At present, noble metal plating is applied.

【0020】これまでの金属材料のセパレータへの適用
は、適用したという実績があるにすぎず、実用化にはほ
ど遠い状況がある。
The application of metal materials to separators so far has only been applied, and there is a situation far from practical application.

【0021】セパレータとして、高価な表面処理を施さ
ない“無垢”で適用できる、電池環境での電気伝導性に
優れ、接触電気抵抗が小さいと共に、耐食性に優れたス
テンレス鋼の開発が極めて強く望まれており、ステンレ
ス鋼製セパレータの実用化が固体高分子型燃料電池の商
用化、適用拡大の成否を握っていると言っても過言では
ない。
It is very strongly desired to develop a stainless steel which can be used as a separator without any expensive surface treatment and which is "pure", has excellent electric conductivity in a battery environment, has low contact electric resistance and is excellent in corrosion resistance. It is no exaggeration to say that the practical application of stainless steel separators has succeeded in commercializing polymer electrolyte fuel cells and expanding their applications.

【0022】[0022]

【発明が解決しようとする課題】本発明の課題は、接触
電気抵抗が小さく、特に固体高分子型燃料電池のセパレ
ータ環境で、高価な表面処理を施すことなく無垢のまま
で使用しても、溶出金属イオンの少ないオーステナイト
系ステンレス鋼およびそのステンレス鋼からなるセパレ
ータを備えた固体高分子型燃料電池を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low contact electric resistance, especially in a separator environment of a polymer electrolyte fuel cell, even when used intact without expensive surface treatment. An object of the present invention is to provide a polymer electrolyte fuel cell provided with an austenitic stainless steel with less eluting metal ions and a separator made of the stainless steel.

【0023】[0023]

【課題を解決するための手段】本発明の要旨は、以下の
通りである。
The gist of the present invention is as follows.

【0024】(1)重量%で、C:0.03%以下、S
i:0.01〜1.5%、Mn:0.01〜2.5%、
P:0.035%以下、S:0.01%以下、Cr:1
7〜30%、Ni:7〜50%、B:0.0005〜
3.5%、Al:0.001〜0.2%、N:0.3%
以下、Mo:0〜7%、Cu:0〜3%を含有し、かつ
Cr、MoおよびB含有量は下記式を満足しており、残
部Feおよび不可避不純物からなり、鋼中のBがM2
型硼化物として析出している接触電気抵抗の低い通電電
気部品用オーステナイト系ステンレス鋼。
(1) By weight%, C: 0.03% or less, S
i: 0.01 to 1.5%, Mn: 0.01 to 2.5%,
P: 0.035% or less, S: 0.01% or less, Cr: 1
7-30%, Ni: 7-50%, B: 0.0005-
3.5%, Al: 0.001 to 0.2%, N: 0.3%
Hereinafter, Mo: 0 to 7%, Cu: 0 to 3%, and the contents of Cr, Mo, and B satisfy the following formula. The balance consists of Fe and unavoidable impurities. 2 B
Austenitic stainless steel for energized electrical components with low contact electrical resistance, precipitated as a type boride.

【0025】17≦Cr+3Mo−2.5B ただし、式中の各元素記号は含有量(重量%)を示す (2)固体高分子電解質膜を中央にして燃料電極膜と酸
化剤電極膜を重ね合わせた単位電池を複数個、単位電池
間にセパレータを介在させて積層した積層体に、燃料ガ
スと酸化剤ガスを供給して直流電力を発生させる固体高
分子型燃料電池において、セパレータが上記(1)記載
のオーステナイト系ステンレス鋼からなる固体高分子型
燃料電池。
17 ≦ Cr + 3Mo−2.5B However, each element symbol in the formula indicates the content (% by weight). (2) The fuel electrode film and the oxidant electrode film are overlapped with the solid polymer electrolyte membrane at the center. In a polymer electrolyte fuel cell in which a fuel cell and an oxidizing gas are supplied to a stacked body in which a plurality of unit cells are stacked with a separator interposed between the unit cells to generate DC power, the separator (1) 20) A polymer electrolyte fuel cell comprising the austenitic stainless steel according to the above.

【0026】ここで、M2Bの“M”は金属元素を示
す。特定の金属元素ではなく鋼中に含有されているBと
の化学的親和力の強い金属元素である。Mは、共存元素
との関係より、Cr、Feを主体とし、Ni、Moを微
量含有する。
Here, “M” of M 2 B represents a metal element. It is a metal element having a strong chemical affinity with B contained in steel instead of a specific metal element. M mainly contains Cr and Fe and a small amount of Ni and Mo because of the relationship with coexisting elements.

【0027】具体的な例として、(Cr、Fe)2B、
(Cr、Fe、Ni)2B、(Cr、Fe、Mo)2B、(C
r、Fe、Ni、Mo)2B、Cr1.2Fe0.76Ni0.04
といったものがある。いずれにしても“硼化物中の金属
元素であるCr、Fe、Mo、Ni、X(ここで、Xは
Cr、Fe、Mo、Ni以外の鋼中金属元素)とB量と
の間において、“(Cr重量%/Cr原子量+Fe重量
%/Fe原子量+Mo重量%/Mo原子量+Ni重量%/
Ni原子量+X重量%/X原子量)/(B重量%/B原
子量) 2である”ことがM2B表記の理由である。本
表記法は、特殊なものではなくて極めて一般的な表記法
である。
As specific examples, (Cr, Fe) 2 B,
(Cr, Fe, Ni) 2 B, (Cr, Fe, Mo) 2 B, (C
r, Fe, Ni, Mo) 2 B, Cr 1.2 Fe 0.76 Ni 0.04 B
There is something like that. In any case, “between Cr, Fe, Mo, Ni, and X (where X is a metal element in steel other than Cr, Fe, Mo, and Ni), which is a metal element in boride, and B content, "(Cr wt% / Cr atomic weight + Fe wt% / Fe atomic weight + Mo wt% / Mo atomic weight + Ni wt% /
Ni atomic weight + X weight% / X atomic weight) / (B weight% / B atomic weight) 2 is the reason for the notation of M 2 B. This notation is not a special one but a very general notation. It is.

【0028】なお、セパレータとは前述した4つの機能
を有するものである。すなわち、a)燃料極側で、燃料
ガスを面内均一に供給する"流路"としての機能、b)カ
ソード側で生成した水を、燃料電池より反応後の空気、
酸素といったキャリアガスとともに効率的に系外に排出
させる"流路"としての機能、c)長時間にわたって電極
として低電気抵抗、良電導性を維持する単セル間の電気
的"コネクタ"としての機能、およびd)隣り合うセルで
一方のセルのアノード室と隣接するセルのカソード室と
の"隔壁"としての機能を有するものである。これらの機
能を複数枚のプレートで機能分担させる構造にする場合
もある。本発明でいうセパレータとは、少なくとも上記
c)の機能を有するプレートをセパレータと言う。
The separator has the above-mentioned four functions. That is, a) a function as a "flow path" for uniformly supplying a fuel gas in-plane on the fuel electrode side, b) air generated on the cathode side by reacting air from the fuel cell,
Function as a "flow path" to efficiently discharge the carrier gas together with a carrier gas such as oxygen, c) Function as an electrical "connector" between single cells that maintains low electrical resistance and good electrical conductivity as an electrode for a long time And d) adjacent cells have a function as a "partition wall" between the anode chamber of one cell and the cathode chamber of the adjacent cell. In some cases, the functions are shared by a plurality of plates. As used herein, the term “separator” refers to a plate having at least the function of c).

【0029】本発明者らは、接触電気抵抗の小さい通電
電気部品用のオーステナイト系ステンレス鋼、特に固体
高分子型型燃料電池セパレータ環境において、鋼表面か
ら溶出する金属イオンができるだけ少なく、長時間にわ
たってセパレータとして使用しても、電極用黒鉛との接
触電気抵抗が大きくならないステンレス鋼の開発を目指
して種々の試験を実施した。その結果、以下の知見を得
て本発明を完成するに至った。
The present inventors have found that in an environment of an austenitic stainless steel for a current-carrying electric component having a small contact electric resistance, particularly in a polymer electrolyte fuel cell separator environment, the amount of metal ions eluted from the steel surface is as small as possible, and for a long time. Various tests were conducted with the aim of developing a stainless steel that does not increase the contact electric resistance with graphite for electrodes even when used as a separator. As a result, the present inventors have obtained the following findings and completed the present invention.

【0030】a)セパレータ環境で、オーステナイト系
ステンレス鋼は比較的良好な耐食性を発揮するが、一般
のオーステナイト系ステンレス鋼では金属溶出が起こ
る。
A) Austenitic stainless steel exhibits relatively good corrosion resistance in a separator environment, but metal elution occurs in general austenitic stainless steel.

【0031】b)金属溶出が起こると、腐食生成物(F
eを主体とする水酸化物)が生成し、接触電気抵抗の増
大をもたらし、かつ担持触媒性能に著しい悪影響を及
す。起電力に代表される電池性能が短時間で劣化し、水
素イオン(プロトン)交換基を有するフッ素系イオン交
換樹脂膜のプロトン伝導性が劣化する。 c)表面に形成される不働態皮膜の電気抵抗は、ステン
レス鋼固有のものであり、その電気抵抗を電池性能を発
揮するのに十分低い値に安定して維持させることは容易
でない。
B) When metal elution occurs, the corrosion product (F
e-based hydroxide) is produced, resulting in an increase in contact electric resistance and a significant adverse effect on supported catalyst performance. Battery performance represented by electromotive force deteriorates in a short time, and proton conductivity of a fluorine-based ion exchange resin membrane having a hydrogen ion (proton) exchange group deteriorates. c) The electric resistance of the passive film formed on the surface is inherent to stainless steel, and it is not easy to stably maintain the electric resistance at a value low enough to exhibit battery performance.

【0032】d)一方で、電池本体内環境におけるセパ
レータとしての耐食性を確保するためには、不働態皮膜
は必要不可欠である。
D) On the other hand, in order to secure corrosion resistance as a separator in the environment inside the battery body, a passive film is indispensable.

【0033】e)耐食性確保のために不働態被膜を強固
にしても、被膜厚が厚くなると接触電気抵抗が増大し、
電池効率が著しく低下する。
E) Even if the passive film is strengthened to secure corrosion resistance, the contact electric resistance increases as the film thickness increases,
Battery efficiency is significantly reduced.

【0034】f)ステンレス鋼表面に析出したM2B型
硼化物が、電気伝導性に優れた接触点として作用してお
り、接触電気抵抗は、接触単位面積当りの接触点数と面
積、表面に形成される不働態皮膜の電気抵抗に依存して
いる。
F) M 2 B-type boride precipitated on the surface of stainless steel acts as a contact point having excellent electric conductivity, and the contact electric resistance is determined by the number of contact points per contact unit area, the area, and the surface. It depends on the electric resistance of the passive film formed.

【0035】g)鋼中にFe、Crを主体に含有するM
2B型硼化物が析出したステンレス鋼は、鋼表面の不働
態皮膜の如何によらず、接触電気抵抗を継時的に低く維
持することができる。
G) M containing mainly Fe and Cr in steel
The stainless steel on which the 2B-type boride is precipitated can maintain a low contact electric resistance over time regardless of the passive film on the steel surface.

【0036】h)しかし、M2B型硼化物を積極的に析
出させると、耐食性改善元素であるCr、Mo、Feお
よびNiといった元素を消費するため、Cr,Mo濃度
低下による母材耐食性低下が顕著となる。そのため、鋼
中Cr、Mo濃度を高め不働態被膜を強固にして、セパ
レータ環境で金属の溶出を抑制するるため、(Cr+3
Mo−2.5B)を17%以上とする必要がある i)積極的にMoを添加することで、耐食性が確保され
るが、Moは溶出したとしても、アノードおよびカソー
ド部に担持されている触媒の性能に対する影響は比較的
軽微である。
H) However, when the M 2 B-type boride is positively precipitated, elements such as Cr, Mo, Fe and Ni, which are elements for improving corrosion resistance, are consumed. Is remarkable. Therefore, in order to increase the concentration of Cr and Mo in the steel, to strengthen the passive film, and to suppress metal elution in the separator environment, (Cr + 3
Mo-2.5B) needs to be 17% or more i) Corrosion resistance is ensured by positively adding Mo, but even if Mo is eluted, it is supported on the anode and cathode parts. The effect on catalyst performance is relatively minor.

【0037】[0037]

【発明の実施の形態】以下、本発明のオーステナイト系
ステンレス鋼の化学組成を規定した理由を詳しく説明す
る。なお、下記の%表示は重量%を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for defining the chemical composition of the austenitic stainless steel of the present invention will be described in detail below. In addition, the following% display shows weight%.

【0038】C:Cは、鋼中でクロム系炭化物を形成し
やすく、鋭敏化による耐食性低下を招く。したがって、
Cr炭化物の析出をできるだけ少なくするために上限を
0.03%とした。本発明鋼においては、硼化物を積極
的に析出させることで、Cr,Feを主体とし、Ni、
Moを微量含有する(Cr,Fe)2B、(Cr,F
e,Ni)2BといったM2B型硼化物として析出させ、
不働態皮膜で覆われるステンレス鋼表面の接触電気抵抗
を下げることができるが、鋼中Cが0.03%を超えて
含有する場合には、高温からの放冷過程における炭化物
析出に伴う鋭敏化が顕在化しやすく、鋭敏化対策として
の特段の熱処理が必要となる。 Si:Siは、量産鋼においてはAlと同様に有効な脱
酸元素である。0.01%未満では脱酸が不十分とな
り、一方1.5%を超えると成形性が低下するので、S
i含有は0.01〜1.5%とした。
C: C easily forms chromium carbides in steel and causes a decrease in corrosion resistance due to sensitization. Therefore,
The upper limit is set to 0.03% in order to minimize the precipitation of Cr carbide. In the steel of the present invention, the boride is positively precipitated, so that the main component is Cr and Fe, Ni,
(Cr, Fe) 2 B, (Cr, F)
e, Ni) is precipitated as M 2 B-type boride such as 2 B,
Although the contact electric resistance of the stainless steel surface covered with the passivation film can be reduced, if C in the steel exceeds 0.03%, sensitization accompanying carbide precipitation in a cooling process from a high temperature is allowed. Is likely to become apparent, and a special heat treatment is required as a countermeasure for sensitization. Si: Si is a deoxidizing element as effective as Al in mass-produced steel. If it is less than 0.01%, the deoxidation becomes insufficient, while if it exceeds 1.5%, the moldability deteriorates.
The i content was 0.01 to 1.5%.

【0039】Mn:通常、Mnは鋼中のSをMn系の硫
化物として固定する作用があり、熱間加工性を改善する
効果がある。また、脱酸元素あるいはNiバランス調整
元素でもある。これらの効果を得るには、0.01%以
上が必要である。一方、2.5%を超えると製造時の表
面スケール生成量が多くなり鋼板表面性状がわるくなる
ため上限は2.5%とした。
Mn: Mn usually has the effect of fixing S in steel as Mn-based sulfide, and has the effect of improving hot workability. It is also a deoxidizing element or a Ni balance adjusting element. To obtain these effects, 0.01% or more is required. On the other hand, if it exceeds 2.5%, the amount of surface scale generated during production increases and the surface properties of the steel sheet deteriorate, so the upper limit was made 2.5%.

【0040】P:鋼中のPは、Sと並んで最も有害な不
純物で0.035%以下であることが必要である。低け
れば低い程望ましい。
P: P in steel is the most harmful impurity along with S and must be 0.035% or less. The lower the better.

【0041】S:Sは、Pと同様最も有害な不純物で上
限を0.01%とする。鋼中共存元素および鋼中のS量
に応じて、Mn系硫化物、Cr系硫化物、Fe系硫化
物、あるいは、これらの複合硫化物および酸化物との複
合非金属介在物としてほとんどは析出している。しかし
ながら、セパレータ環境においては、いずれの組成の非
金属介在物も、程度の差はあるものの腐食の起点として
作用し、不働態化の維持、腐食溶出抑制に有害である。
通常の量産鋼の鋼中S量は、0.005%超え0.00
8%前後であるが、上記の有害な影響を防止するために
は0.004%以下に低減することが望ましい。より、
望ましい鋼中S量は0.002%以下であり、最も望ま
しい鋼中S量レベルは、0.001%未満であり、低け
れば低い程よい。工業的量産レベルで0.001%未満
とすることは、現状の精錬技術をもってすれば全く問題
ない。
S: S is the most harmful impurity like P and the upper limit is made 0.01%. Mn-based sulfides, Cr-based sulfides, Fe-based sulfides, or mostly non-metallic inclusions with these complex sulfides and oxides, depending on the coexisting elements in steel and the amount of S in the steel are doing. However, in a separator environment, non-metallic inclusions of any composition, although varying in degree, act as a starting point of corrosion and are harmful to maintaining passivation and suppressing corrosion elution.
S content in normal mass-produced steel exceeds 0.005% and 0.00
Although it is about 8%, it is desirable to reduce it to 0.004% or less in order to prevent the above harmful effects. Than,
The desirable S content in steel is 0.002% or less, and the most desirable S content level in steel is less than 0.001%, the lower the better. At less than 0.001% at the industrial mass production level, there is no problem with the current refining technology.

【0042】Cr:Crは、母材の耐食性を確保する上
で極めて重要な基本合金元素である。含有量は高いほど
高耐食となる。30%を超えると熱間で割れが発生し易
くなり量産規模での生産が難しくなる。また、17%未
満では、その他の元素を変化させてもセパレータとして
必要な耐食性の確保が困難となる。M2B型硼化物形成
により、耐食性向上に寄与する鋼中Cr量が低下し、母
材耐食性が劣化する。そのため、鋼中CrおよびMo濃
度を高め不働態被膜を強固にして、セパレータ環境で金
属の溶出を抑制するるため、(Cr+3Mo−2.5
B)を17以上とする必要がある。
Cr: Cr is a very important basic alloy element for ensuring the corrosion resistance of the base material. The higher the content, the higher the corrosion resistance. If it exceeds 30%, cracks are likely to occur during hot working, making production on a mass production scale difficult. On the other hand, if it is less than 17%, it is difficult to secure the corrosion resistance required for the separator even if other elements are changed. Due to the formation of the M 2 B type boride, the amount of Cr in the steel contributing to the improvement of the corrosion resistance is reduced, and the corrosion resistance of the base metal is deteriorated. Therefore, in order to increase the concentration of Cr and Mo in the steel, to strengthen the passive film, and to suppress metal elution in the separator environment, (Cr + 3Mo−2.5
B) needs to be 17 or more.

【0043】Ni:Niは、金属組織学的にオーステナ
イト系とするために重要な元素である。オーステナイト
系とすることで、製造性、耐食性および成形性が確保さ
れる。下限を7%、上限を50%とする。7%以下では
オーステナイト組織とすることが困難となり、一方、5
0%を超えるとコスト的に極めて高価なものとなる。ご
くわずかのNiがM2B型硼化物中に含有される。
Ni: Ni is an important element for making austenite based on metallography. Manufacturability, corrosion resistance, and moldability are ensured by using austenite. The lower limit is 7% and the upper limit is 50%. If it is less than 7%, it is difficult to form an austenitic structure, while
If it exceeds 0%, the cost becomes extremely high. Very little Ni is contained in the M 2 B type boride.

【0044】B:Bは、本発明においてもっとも重要な
元素である。Cr、Fe を主体とし、Ni、Moを微
量含有する(Cr,Fe)2B、(Cr,Fe,Ni)2
B といったM2B型硼化物として析出させることによ
り、不働態皮膜で覆われているステンレス鋼表面の接触
電気抵抗を下げる効果がある。
B: B is the most important element in the present invention. (Cr, Fe) 2 B, (Cr, Fe, Ni) 2 mainly containing Cr and Fe and containing trace amounts of Ni and Mo
Precipitation as an M 2 B-type boride such as B has the effect of lowering the contact electric resistance of the surface of the stainless steel covered with the passive film.

【0045】ステンレス鋼におけるM2B型硼化物析出
は、耐食性低下の原因であり一般に厄介者扱いされるこ
とが多い。本発明では、これまで厄介者扱いされてきた
2B型硼化物を積極的に析出させ、不働態皮膜形成に
より増大する接触電気抵抗を減じさせる『電気の通り道
(迂回路)』として活用するのである。
M 2 B-type boride precipitation in stainless steel is a cause of deterioration of corrosion resistance and is generally treated as a troublesome person. In the present invention, the M 2 B-type boride, which has been treated as a troublesome substance, is positively precipitated, and is used as an “electric path (bypass circuit)” for reducing the contact electric resistance which increases due to the formation of a passive film. It is.

【0046】硼化物が、接触電気抵抗を下げる効果があ
ることは、これらの硼化物が金属的性質を有しており、
不働態皮膜よりも良好な電気伝導性を有していることに
より説明できる。
The fact that borides have the effect of lowering the contact electric resistance means that these borides have metallic properties,
This can be explained by having better electrical conductivity than the passive film.

【0047】一般にステンレス鋼表面には、数十 程度
の極々薄い不働態皮膜が生成して優れた耐食性を示す
が、多かれ少なかれ不働態皮膜は母材に比べて電気伝導
性が劣り、接触電気抵抗を高める。不働態皮膜を薄くす
ることで、電気抵抗を小さくすることも可能ではある
が、腐食環境で安定して不動態皮膜を薄いまま維持する
ことは容易ではない。特に固体高分子型燃料電池内部で
用いた場合、不働態皮膜を薄く維持するのは容易でな
い。
In general, an extremely thin passive film of about several tens of degrees is formed on the surface of stainless steel and shows excellent corrosion resistance. However, the passive film is more or less inferior in electric conductivity as compared with the base material and has a low contact electric resistance. Enhance. Although it is possible to reduce the electric resistance by making the passivation film thinner, it is not easy to stably maintain the passivation film thin in a corrosive environment. Particularly when used inside a polymer electrolyte fuel cell, it is not easy to keep the passivation film thin.

【0048】電気電導性に優れた硼化物が、不働態皮膜
に覆われることなく表面に直接露出していることが、ス
テンレス鋼表面の良電気伝導性を長時間にわたって安定
させることに有効である。すなわち、硼化物が耐食的に
安定で、かつ表面に不働態皮膜を形成しないために、た
とえ固体高分子型燃料電池内部で表面の不働態皮膜が厚
くなったとしても、鋼表面に露出している硼化物を介し
て良電導性が確保される。その結果、鋼表面の接触電気
抵抗が高くなるのを抑制することができる。言いかえる
ならば、不働態皮膜に覆われることなく露出している微
細な硼化物が『電気の通り道(迂回路)』として機能す
ることで、接触電気抵抗を低く維持することができる。
The fact that the boride having excellent electric conductivity is directly exposed on the surface without being covered with the passivation film is effective for stabilizing the good electric conductivity of the stainless steel surface for a long time. . That is, since the boride is stable in corrosion resistance and does not form a passive film on the surface, even if the passive film on the surface becomes thick inside the polymer electrolyte fuel cell, it is exposed to the steel surface. Good electrical conductivity is ensured through the boride. As a result, it is possible to suppress an increase in the contact electric resistance of the steel surface. In other words, the fine boride exposed without being covered by the passivation film functions as an “electric path (bypass)”, so that the contact electric resistance can be kept low.

【0049】一般に、Bを多量に含有させると、オース
テナイト系ステンレス鋼は強度、硬度が高くなり、延性
も低下して製造性が低下する。固体高分子型燃料電池用
セパレータ材としての成形性を確保するためにも、鋼中
のBを硼化物として析出させて、固溶B量を下げる必要
がある。硼化物としてBを析出させることで、鋼の成形
性が改善される。すなわち、成形性確保の点からも、鋼
中のBを硼化物として析出させることが必要である。
In general, when B is contained in a large amount, the austenitic stainless steel increases in strength and hardness, decreases ductility, and decreases in productivity. In order to ensure moldability as a separator for a polymer electrolyte fuel cell, it is necessary to precipitate B in steel as boride to reduce the amount of solid solution B. Precipitating B as a boride improves the formability of the steel. That is, it is necessary to precipitate B in steel as boride also from the viewpoint of ensuring formability.

【0050】本発明では、積極的に硼化物を析出させる
ために0.0005%以上、3.5%以下のBを含有量
させる。3.5%を超えて含有量させることは、通常の
溶解法での製造が困難となる。また、固体高分子型燃料
電池セパレータ用としての常温での成形性を確保するこ
とができなくなる。好ましくは0.005〜1.8%
で、さらに好ましくは0.05〜1.20%である。鋼
中のBは、通常の製造方法でそのほとんどが硼化物とし
て析出する。1125℃においても0.01%程度固溶
するのみである。低温側では、固溶量はさらに低くな
る。本発明鋼においても、温度、鋼中成分に依存しつ
つ、0.01%以下程度の微量固溶Bが存在している。
In the present invention, B is contained in an amount of 0.0005% or more and 3.5% or less in order to positively precipitate boride. When the content exceeds 3.5%, production by a usual dissolution method becomes difficult. Further, the moldability at room temperature for a polymer electrolyte fuel cell separator cannot be ensured. Preferably 0.005 to 1.8%
More preferably, it is 0.05 to 1.20%. Most of B in steel is precipitated as boride by a usual production method. Even at 1125 ° C., it only forms a solid solution of about 0.01%. On the low temperature side, the amount of solid solution becomes even lower. Also in the steel of the present invention, a trace amount of solute B of about 0.01% or less exists depending on the temperature and the components in the steel.

【0051】析出温度は含有量にもよるが凝固温度近傍
にあり、一端析出するとほとんど再固溶しない。硼化物
そのものの変形能が極めて劣ることから、B含有量が多
く硼化物析出が顕著になるほど製造時、加工時の割れ問
題が大きくなる。Bの含有量の増加と共に液相線が低下
し、熱間での鍛造可能温度範囲も狭くなる問題がある。
ただし、B含有量が1.5%を超えて本発明で規定する
上限である3.5%までの場合には相当の困難さを伴う
ものの工業的規模での製造は可能である。B含有量が数
十ppm程度である場合には、硼化物は結晶粒界に析出
する傾向が大きい。接触電気抵抗を低くする上で、硼化
物が粒界、粒内いずれに析出するかはさほどの影響はな
いと判断しているが、常温での加工性、割れ問題回避の
点より均一に分散させる方が好ましい。このことから、
B含有量を0.05%以上とするのが、硼化物の粒内の
析出量が比較的多くなることから好ましい。硼化物析出
により、母材の耐食性は低下する。その理由は、硼化物
が析出することでその周囲のCrが多量に消費されるか
らである。あらかじめ、硼化物形成により消費されるC
rおよびMo量に相当するCrとMoを溶鋼の段階で添
加しておくことが耐食性低下軽減に対して極めて効果的
である。冷却速度の影響は比較的小さい。CrおよびM
o量を、Cr+3Mo−2.5B%を17%以上となる
ように調整することが、固体高分子型燃料電池本体内部
での耐食性確保に必要である。上記式の各元素にかかる
係数は実験則である。
Although the precipitation temperature depends on the content, it is near the solidification temperature, and once precipitated, it hardly forms a solid solution again. Since the boride itself has extremely poor deformability, the problem of cracking during production and processing increases as the B content increases and boride precipitation becomes more pronounced. As the content of B increases, the liquidus decreases, and there is a problem that the temperature range in which hot forging is possible is narrowed.
However, when the B content is more than 1.5% and up to 3.5%, which is the upper limit specified in the present invention, production on an industrial scale is possible with considerable difficulty. When the B content is about several tens ppm, the boride tends to precipitate at the crystal grain boundaries. In reducing the contact electrical resistance, it is judged that there is no significant effect on whether boride precipitates at the grain boundaries or within the grains. It is more preferable to do so. From this,
The B content is preferably 0.05% or more because the amount of boride precipitated in the grains becomes relatively large. Due to boride precipitation, the corrosion resistance of the base material decreases. The reason is that the precipitation of boride consumes a large amount of Cr around it. C previously consumed by boride formation
It is extremely effective to add Cr and Mo corresponding to the amounts of r and Mo at the stage of molten steel in order to reduce the reduction in corrosion resistance. The effect of the cooling rate is relatively small. Cr and M
It is necessary to adjust the o content so that Cr + 3Mo-2.5B% becomes 17% or more to ensure corrosion resistance inside the polymer electrolyte fuel cell main body. The coefficients for each element in the above formula are experimental rules.

【0052】鋼中B量の定量は、試料を、AA液(10
%アセチルアセトンー1%テトラメチルアンモニウムク
ロライド−残りメタノール)を用いる非水溶媒溶液中で
の定電流電解をおこなうことにより抽出した残渣中のB
量を分析することにより可能である。
For the determination of the amount of B in steel, a sample was prepared using an AA solution (10%).
% Acetylacetone-1% tetramethylammonium chloride-residual methanol) in the residue extracted by performing galvanostatic electrolysis in a non-aqueous solvent solution.
It is possible by analyzing the amount.

【0053】また、硼化物としてBと結合している金属
元素の定量は、誘導結合プラズマ発光分光分析法を利用
することで可能である。定性分析は、X線回折法により
可能である Al:Alは、脱酸元素として溶鋼段階で添加し、0.
001〜0.2%の範囲で含有量させる。本発明鋼で添
加するBは、溶鋼中酸素との結合力が強い元素であり、
Al脱酸により酸素濃度を下げておく必要がある。
Further, the quantitative determination of the metal element bonded to B as a boride can be made by utilizing inductively coupled plasma emission spectroscopy. Qualitative analysis is possible by X-ray diffraction . Al: Al is added at the molten steel stage as a deoxidizing element,
The content is in the range of 001 to 0.2%. B added in the steel of the present invention is an element having a strong bonding force with oxygen in molten steel,
It is necessary to lower the oxygen concentration by Al deoxidation.

【0054】N:Nは、オーステナイト形成元素として
金属組織調整に用いることがあり、必要に応じて0.3
%以下の量で含有させる。
N: N is sometimes used as an austenite-forming element for adjusting the metallographic structure.
% Or less.

【0055】Mo:Moは、Crに比べて少量で耐食性
を改善する効果があり、必要により7%以下で含有させ
る。7%を超えて含有させると、シグマ相等の金属間化
合物の析出回避が困難であり、鋼の脆化の問題から生産
が困難となるので上限を7%とした。本発明のオーステ
ナイト系ステンレス鋼を固体高分子型燃料電池のセパレ
ータとして用いた場合、たとえ鋼中のMoが溶出したと
しても、アノードおよびカソード部に担持されている触
媒の性能に対する影響は比較的軽微である。水素イオン
(プロトン)交換基を有するフッ素系イオン交換樹脂膜
の陽イオン伝導度に対する影響も小さい。
Mo: Mo has an effect of improving corrosion resistance in a small amount compared to Cr, and is contained at 7% or less as necessary. If the content exceeds 7%, it is difficult to avoid precipitation of an intermetallic compound such as a sigma phase, and production becomes difficult due to the problem of embrittlement of steel. Therefore, the upper limit was set to 7%. When the austenitic stainless steel of the present invention is used as a separator in a polymer electrolyte fuel cell, even if Mo in the steel elutes, the effect on the performance of the catalyst supported on the anode and the cathode is relatively small. It is. The effect on the cation conductivity of the fluorinated ion exchange resin membrane having hydrogen ion (proton) exchange groups is also small.

【0056】Mo含有量は、硼化物になることを考慮し
てCr含有量との関係で(Cr+3Mo−2.5B)≧
17%なる関係式を満たすことが必要である。
The Mo content is (Cr + 3Mo−2.5B) ≧ in relation to the Cr content in consideration of becoming a boride.
It is necessary to satisfy the relational expression of 17%.

【0057】Cu:Cuは、必要により3%以下の量で
含有させる。Cuを適当量含有させると、不働態化が促
進され、セパレータ環境で金属の溶出を防止する効果が
ある。含有させる場合0.01%以上とするのが好まし
く、一方3%超えて含有させると熱間での加工性を減ず
ることとなり、量産が難しくなる。
Cu: Cu is contained in an amount of 3% or less as necessary. When an appropriate amount of Cu is contained, passivation is promoted, and there is an effect of preventing metal elution in a separator environment. When it is contained, the content is preferably 0.01% or more. On the other hand, when it exceeds 3%, workability during hot work is reduced, and mass production becomes difficult.

【0058】その他不純物として、少量のV、REM
(希土類元素)などを含有することは、本発明において
大きな影響はない。
As other impurities, a small amount of V, REM
Including (rare earth element) or the like has no significant effect in the present invention.

【0059】本発明のオーステナイト系ステンレス鋼
は、通常の溶解、分塊、熱間加工および冷間加工により
製造できる。焼鈍、酸洗は、通常のステンレス鋼の量産
に用いられる連続焼鈍、酸洗ラインをそのまま流用する
ことができる。
The austenitic stainless steel of the present invention can be produced by ordinary melting, lumping, hot working and cold working. For annealing and pickling, a continuous annealing and pickling line used for ordinary mass production of stainless steel can be used as it is.

【0060】しかし、B含有ステンレス鋼は熱間加工性
がわるく、熱間加工時に鋼板の両側端部が降温して耳割
れが発生し易い。この耳割れの発生は、熱間加工の途中
で再加熱するか、スラブの両側端面に肉盛り溶接層を設
けて熱間加工することにより防止できる。熱間で強圧下
加工することにより、変形能が劣る硼化物を“砕き”微
細に分散させることにより、硼化物析出に伴い劣化する
靭性を改善することができる。さらに、硼化物を熱処理
で凝集粗大化させることも、加工性を一層改善させるの
に有効である。熱処理で長時間保持することにより、硼
化物は凝集し粗大化する。
However, the B-containing stainless steel has poor hot workability, and both ends of the steel plate are cooled during hot working, so that ear cracks are likely to occur. The occurrence of the ear cracks can be prevented by reheating during the hot working or by providing the overlay welding layers on both side end surfaces of the slab and performing the hot working. By subjecting the boride having poor deformability to "crushing" and finely dispersing by hot rolling under high pressure, it is possible to improve the toughness which is deteriorated due to boride precipitation. Further, the coagulation and coarsening of the boride by heat treatment is also effective for further improving the processability. By holding for a long time in the heat treatment, the boride aggregates and becomes coarse.

【0061】なお、上記のように本発明のオーステナイ
ト系ステンレス鋼は、固体高分子型燃料電池のセパレー
タ用として好適であり、セパレータを主体に説明した
が、通電する電気部品で小さい接触電気抵抗が要求され
るような部品に用いることができる。例えば、電線と電
線または電気機械器具同志とを接続するためのコネクタ
ー等の電気部品である。
As described above, the austenitic stainless steel of the present invention is suitable for use as a separator in a polymer electrolyte fuel cell, and has been described mainly with respect to the separator. Can be used for parts as required. For example, it is an electric component such as a connector for connecting an electric wire to an electric wire or an electric machine.

【0062】以下、具体的な実施例により本発明の効果
を詳細に説明する。
Hereinafter, the effects of the present invention will be described in detail with reference to specific examples.

【0063】[0063]

【実施例】高周波誘導加熱方式の150kg真空溶解炉
で、表1に示した21種の化学組成のオーステナイト系
ステンレス鋼を溶解した。溶解原料としては、市販の溶
解原料を使用し、鋼中の不純物量を調整した。B添加に
は市販のFe−B合金鉄を用いた。
EXAMPLES Austenitic stainless steels of 21 chemical compositions shown in Table 1 were melted in a high-frequency induction heating type 150 kg vacuum melting furnace. A commercially available melting raw material was used as the melting raw material, and the amount of impurities in the steel was adjusted. Commercially available Fe-B alloy iron was used for B addition.

【0064】[0064]

【表1】 [Table 1]

【0065】造塊した横断面が丸形のインゴットは、大
気中で1220℃に3時間加熱した後、プレス方式鍛造
機で熱間鍛造し、厚さ70mm、幅380mm、長さ5
50mmのスラブに仕上げた。鍛造スラブは、スラブ表
面を切削加工して、表面の酸化スケール、端面の割れを
除去し、厚さ60mmのスラブに仕上げた。このスラブ
を大気中で1220℃に加熱し、熱間圧延して厚さ4m
mに仕上げた後、量産での熱延終了直後の温度履歴を模
擬した断熱材巻き付け条件で徐冷した。
The ingot thus formed into a round cross section was heated at 1220 ° C. for 3 hours in the atmosphere, and then hot forged with a press-type forging machine to obtain a thickness of 70 mm, a width of 380 mm and a length of 5 mm.
Finished to a 50 mm slab. The forged slab was processed into a slab having a thickness of 60 mm by cutting the slab surface to remove oxide scale on the surface and cracks on the end surface. This slab is heated to 1220 ° C. in the air and hot-rolled to a thickness of 4 m.
m, and then gradually cooled under heat insulating material winding conditions simulating the temperature history immediately after the end of hot rolling in mass production.

【0066】M2B型硼化物は金属化合物でありながら
常温域、高温域ともに変形能が極めて悪く、熱間加工時
の鋼材割れの原因となりやすいので、1000〜120
0℃の温度範囲で再加熱を繰り返しながら鍛造および圧
延をおこなった。コイルの両側端部の温度は低下しやす
くて耳割れが発生しやすいので、コイル端面を加熱しな
がら熱間圧延した。
Although the M 2 B type boride is a metal compound, its deformability is extremely poor at both the normal temperature range and the high temperature range, and it is likely to cause cracking of steel during hot working.
Forging and rolling were performed while repeating reheating in a temperature range of 0 ° C. Since the temperature at both ends of the coil is apt to decrease and ear cracks easily occur, hot rolling was performed while heating the coil end surface.

【0067】熱延素材は、大気雰囲気、1080℃にて
焼鈍、空冷した後、酸洗して冷間圧延ミルを用いて冷間
圧延をおこなった。必要に応じて、途中板厚で1080
℃における軟化焼鈍と酸洗をおこない、最終板厚目標で
ある3mm厚のコイルまで圧延した。
The hot-rolled material was annealed in the air atmosphere at 1080 ° C., air-cooled, pickled, and cold-rolled using a cold rolling mill. If necessary, the intermediate plate thickness is 1080
After softening and pickling at ℃, rolling was performed to a coil having a thickness of 3 mm, which is the target of the final thickness.

【0068】冷延コイルは、大気中、1080℃にて焼
鈍、酸洗して供試した。酸洗後のコイル表面も通常のオ
ーステナイト系ステンレス鋼と見た目は全く変らない様
相を呈していた。
The cold-rolled coil was annealed at 1080 ° C. in the air, pickled, and tested. The surface of the coil after pickling also appeared to be no different from ordinary austenitic stainless steel in appearance.

【0069】なお、B含有量の定量は下記のようにして
おこなった。
The B content was determined as follows.

【0070】各鋼片から採取した試料を、AA液(10
%アセチルアセトン−1%テトラメチルアンモニウムク
ロライド−残りメタノール)非水溶媒液中にて、20m
A/cm2の電流密度にて約3時間の定電流電解をおこな
うことで約0.4g相当を溶解し、電解後すみやかに電
解試験片を超音波洗浄したAA非水溶媒液と電解に用い
たAA非水溶媒溶液をフィルター径0.2μmのCoster
Scientific Corporation社製“商品名Nuclepore”で濾
し取り、フィルター上のM2Bの化合物を分析した。
A sample taken from each steel slab was used as an AA solution (10
% Acetylacetone-1% tetramethylammonium chloride-remaining methanol) in a non-aqueous solvent, 20 m
A constant current electrolysis of about 3 hours was performed at a current density of A / cm 2 to dissolve about 0.4 g equivalent, and the electrolysis test piece was ultrasonically cleaned immediately after electrolysis and used for electrolysis with AA non-aqueous solvent. The AA non-aqueous solvent solution was filtered using a Coster
Filtered off with Scientific Corporation Co., Ltd. "trade name Nuclepore", and analyzed the compound of M 2 B on the filter.

【0071】鋼中の硼化物量が少なく残渣量が40μg
以下の少ない場合には、蒸留分離した後クルクミン吸光
光度法により、40μg以上の場合には硫りん酸(特級
りん酸:特級硫酸:蒸留水=1:1:1)中で溶解した
後、これを島津製作所製誘導結合プラズマ発光分光分析
装置“商品名ICPV-1014”にて金属成分を分析し、硼化
物として析出しているB量を定量した。これは、一般的
な定量方法である。
The amount of boride in steel is small and the amount of residue is 40 μg.
If the amount is less than the following, it is separated by distillation and then curcumin absorptiometry. If it is 40 μg or more, it is dissolved in phosphoric acid (special grade phosphoric acid: special grade sulfuric acid: distilled water = 1: 1: 1). Was analyzed with an inductively coupled plasma emission spectrometer “ICPV-1014” manufactured by Shimadzu Corporation to determine the amount of B precipitated as boride. This is a common quantification method.

【0072】図2は、冷圧板のミクロ組織(200倍)
を示す。分散相がM2B型硼化物である。
FIG. 2 shows the microstructure of the cold pressing plate (200 times).
Is shown. The dispersed phase is an M 2 B type boride.

【0073】カーボン板との接触電気抵抗測定は、厚さ
0.6mmの市販のグラッシーカーボン板を用い、評価
用ステンレス鋼試験片接触面積を1cm2とし、4端子
法にて測定した。評価用試験片表面は、評価直前に湿式
600番エメリー研磨とし、表面を洗浄後評価に供試し
た。負荷荷重は12kg/cm2とした。負荷荷重により
接触電気抵抗は変化するが、12kg/cm2ではほぼ一
定値が得られる。
The contact electric resistance with the carbon plate was measured by a four-terminal method using a commercially available glassy carbon plate having a thickness of 0.6 mm and a contact area of a stainless steel test piece for evaluation of 1 cm 2 . Immediately before the evaluation, the surface of the test piece for evaluation was subjected to wet-type No. 600 emery polishing, and the surface was subjected to evaluation after cleaning. The applied load was 12 kg / cm 2 . Although the contact electric resistance changes depending on the applied load, an almost constant value is obtained at 12 kg / cm 2 .

【0074】燃料電池内での性能評価に用いたコルゲー
ト形状のセパレータ板の詳細は下記の通りである。ただ
し、供試鋼5については、常温での薄板加工が困難であ
ったので、4mm厚熱延コイルから機械加工によりガス
流路を切削加工し、試験に供試した。外観は、概ね図1
に示した通りである。溝幅2mm、溝深さ1mmで両面
に溝を形成し、アノード極側、カソード極側とした。
The details of the corrugated separator used in the performance evaluation in the fuel cell are as follows. However, for the test steel 5, it was difficult to form a thin plate at room temperature. Therefore, the gas flow path was cut by machining from a 4 mm thick hot-rolled coil and subjected to a test. Appearance is roughly Fig. 1.
As shown in FIG. Grooves were formed on both sides with a groove width of 2 mm and a groove depth of 1 mm, and were formed on the anode electrode side and the cathode electrode side.

【0075】(1)0.3mm厚の鋼板より成形加工し
たセパレータ形状:厚さ0.3mm、縦80mm、横8
0mm ガス流路:高さ0.8mm、山と山との間隔1.2mm
(コルゲート加工) (2)セパレータ表面仕上げ:表面をショット加工用S
iC砥粒を用いて機械的にショット研磨仕上げし、5%
HNO3+3%HF、40℃中で15分間の超音波洗浄
をおこない、さらに試験直前に6%水酸化ナトリウム水
溶液を用いたアルカリ噴霧脱脂処理をおこない、流水で
簡易水洗した後、バッチ型水槽で蒸留水浸漬洗浄を3回
おこない、さらに蒸留水噴霧洗浄を4分間おこなって冷
風ドライアー乾燥させた後、各試験に供した。
(1) Shape of separator formed from a 0.3 mm thick steel plate: thickness 0.3 mm, length 80 mm, width 8
0mm gas flow path: height 0.8mm, gap between peaks 1.2mm
(Corrugating) (2) Separator surface finish: S for surface shot processing
Mechanically shot-polished using iC abrasives, 5%
Perform ultrasonic cleaning for 15 minutes in HNO 3 + 3% HF at 40 ° C., perform alkali spray degreasing using a 6% aqueous sodium hydroxide solution immediately before the test, and perform simple water washing with running water. Distilled water immersion washing was performed three times, and distilled water spray washing was further performed for 4 minutes to dry with a cool air dryer, and then subjected to each test.

【0076】固体高分子型単セル電池内部にセパレータ
として装填した状態での特性評価は、電池内に燃料ガス
を流してから1時間経過後に単セル電池の電圧を測定
し、初期の電圧と比較することにより電圧の低下率を調
べて行った。なお、低下率は、1−(1時間経過後の電
圧V/初期電圧v)により求めた。
In the evaluation of the characteristics in a state where the separator was loaded inside the solid polymer type single cell battery, the voltage of the single cell battery was measured one hour after the fuel gas was flown into the battery, and the voltage was compared with the initial voltage. Then, the rate of voltage decrease was checked. The rate of decrease was determined by 1− (voltage V after one hour has elapsed / initial voltage v).

【0077】評価に用いた固体高分子型燃料単セル電池
は、米国Electrochem社製市販電池セルFC50を改造して
用いた。
As the solid polymer fuel single cell battery used for the evaluation, a commercially available battery cell FC50 manufactured by Electrochem, USA, was modified and used.

【0078】アノード極側燃料用ガスとしては99.9
999%水素ガスを用い、カソード極側ガスとしては空
気を用いた。電池本体は全体を78±2℃に保温すると
共に、電池内部の湿度制御は、セル出側の排ガス水分濃
度測定をもとに入り側でおこなった。電池内部の圧力は
1気圧である。水素ガス、空気の電池への導入ガス圧は
0.04〜0.20barの範囲で調整した。セル性能
評価は、単セル電圧で500±20mA/cm2−0.62
±0.04Vが確認できた状態より継時的に測定を行っ
た。
The gas for fuel on the anode side is 99.9.
999% hydrogen gas was used, and air was used as the cathode electrode side gas. The entire body of the battery was kept at 78 ± 2 ° C., and the humidity inside the battery was controlled on the entry side based on the measurement of the exhaust gas moisture concentration on the cell exit side. The pressure inside the battery is
One atmosphere. The introduction gas pressure of hydrogen gas and air into the battery was adjusted in the range of 0.04 to 0.20 bar. The cell performance evaluation was 500 ± 20 mA / cm 2 −0.62 at a single cell voltage.
The measurement was performed successively from the state where ± 0.04 V was confirmed.

【0079】単セル性能測定用システムとしては、米国
スクリブナー社製890シリーズを基本とした燃料電池計
測システムを改造して用いた。電池運転状態により、特
性に変化があると予想されるが、同一条件での比較評価
である。
As a single cell performance measuring system, a modified fuel cell measuring system based on the 890 series manufactured by Scribner, USA was used. It is expected that the characteristics will change depending on the battery operating state, but this is a comparative evaluation under the same conditions.

【0080】評価結果を表2に示す。Table 2 shows the evaluation results.

【0081】[0081]

【表2】 [Table 2]

【0082】表2から明らかなように、本発明例では電
圧低下率は全て0.05未満であるのに対し、本発明で
規定した化学組成を外れた比較例では、電圧低下率が
0.3以上と極めて大きかった。また、本発明例の場
合、接触電気抵抗は0.12Ω・cm2以下と低いのに対
し、比較例では0.41〜0.96Ω・cm2とかなり高
い。
As is clear from Table 2, the voltage drop rate is less than 0.05 in all of the examples of the present invention, while the voltage drop rate is less than 0.05 in the comparative examples deviating from the chemical composition specified in the present invention. It was extremely large, 3 or more. In the case of the present invention, the contact electric resistance is as low as 0.12 Ω · cm 2 or less, whereas in the comparative example, it is as high as 0.41 to 0.96 Ω · cm 2 .

【0083】[0083]

【発明の効果】本発明のオーステナイト系ステンレス鋼
は、耐食性に優れており、かつ接触電気抵抗が小さく、
特に固体高分子型燃料電池のセパレータ用として好適で
あり、安価な固体高分子型燃料電池の製造に貢献すると
ころ大である。
The austenitic stainless steel of the present invention has excellent corrosion resistance, low contact electric resistance,
In particular, it is suitable for use as a separator in a polymer electrolyte fuel cell, and greatly contributes to the production of an inexpensive polymer electrolyte fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子型燃料電池の構造を示す図である。FIG. 1 is a diagram showing a structure of a polymer electrolyte fuel cell.

【図2】M2B型硼化物の析出状態を示すミクロ写真を
示す図である。
FIG. 2 is a view showing a microphotograph showing a precipitation state of an M 2 B-type boride.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 固体分子電解質膜 3 燃料電極膜 4 酸化剤電極膜 5a、5b セパレータ DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Solid molecular electrolyte membrane 3 Fuel electrode membrane 4 Oxidizer electrode membrane 5a, 5b Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土井 教史 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 Fターム(参考) 5H026 AA06 CC03 EE08 HH05  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Norifumi Doi 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. F-term (reference) 5H026 AA06 CC03 EE08 HH05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.03%以下、Si:
0.01〜1.5%、Mn:0.01〜2.5%、P:
0.035%以下、S:0.01%以下、Cr:17〜
30%、Ni:7〜50%、B:0.0005〜3.5
%、Al:0.001〜0.2%、N:0.3%以下、
Mo:0〜7%、Cu:0〜3%を含有し、かつCr、
MoおよびB含有量は下記式を満足しており、残部Fe
および不可避不純物からなり、鋼中のBがM2B型硼化
物として析出していることを特徴とする接触電気抵抗の
低い通電電気部品用オーステナイト系ステンレス鋼。 17≦Cr+3Mo−2.5B ただし、式中の各元素記号は含有量(重量%)を示す
(1) In weight%, C: 0.03% or less, Si:
0.01 to 1.5%, Mn: 0.01 to 2.5%, P:
0.035% or less, S: 0.01% or less, Cr: 17 to
30%, Ni: 7 to 50%, B: 0.0005 to 3.5
%, Al: 0.001 to 0.2%, N: 0.3% or less,
Mo: 0 to 7%, Cu: 0 to 3%, and Cr,
The Mo and B contents satisfy the following equation, and the balance Fe
Austenitic stainless steel for current-carrying electric parts having low contact electric resistance, characterized in that B in the steel is precipitated as M 2 B-type boride and is composed of unavoidable impurities. 17 ≦ Cr + 3Mo−2.5B However, each element symbol in the formula indicates the content (% by weight).
【請求項2】固体高分子電解質膜を中央にして燃料電極
膜と酸化剤電極膜を重ね合わせた単位電池を複数個、単
位電池間にセパレータを介在させて積層した積層体に、
燃料ガスと酸化剤ガスを供給して直流電力を発生させる
固体高分子型燃料電池において、セパレータが請求項1
記載のオーステナイト系ステンレス鋼からなることを特
徴とする固体高分子型燃料電池。
2. A laminate in which a plurality of unit cells in which a fuel electrode membrane and an oxidant electrode membrane are overlapped with the solid polymer electrolyte membrane in the center, and a separator is interposed between the unit cells,
In a polymer electrolyte fuel cell that generates a DC power by supplying a fuel gas and an oxidant gas, the separator is a separator.
A polymer electrolyte fuel cell comprising the austenitic stainless steel according to any one of the preceding claims.
JP11133218A 1999-04-19 1999-05-13 Austenitic stainless steel for conductive electric parts and fuel battery Pending JP2000328200A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP11133218A JP2000328200A (en) 1999-05-13 1999-05-13 Austenitic stainless steel for conductive electric parts and fuel battery
KR1020000017853A KR100361548B1 (en) 1999-04-19 2000-04-06 Stainless steel product for producing polymer electrode fuel cell
CN00105765A CN1117882C (en) 1999-04-19 2000-04-06 Stainless steel material for solid polymer fuel battery
US09/548,673 US6379476B1 (en) 1999-04-19 2000-04-13 Stainless steel product for producing polymer electrode fuel cell
CA002305839A CA2305839C (en) 1999-04-19 2000-04-14 Stainless steel product for producing polymer electrode fuel cell
DE60009781T DE60009781T2 (en) 1999-04-19 2000-04-17 Bipolar plate for use in a fuel cell with polymer electrodes
AT00401066T ATE264409T1 (en) 1999-04-19 2000-04-17 BIPOLAR PLATE FOR USE IN A FUEL CELL HAVING POLYMER ELECTRODES
EP00401066A EP1046723B1 (en) 1999-04-19 2000-04-17 Bipolar plate for use in a polymer electrode fuel cell
ES00401066T ES2218081T3 (en) 1999-04-19 2000-04-17 BIPOLAR PLATE FOR USE IN FUEL CELLS OF POLYMER ELECTRODES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11133218A JP2000328200A (en) 1999-05-13 1999-05-13 Austenitic stainless steel for conductive electric parts and fuel battery

Publications (1)

Publication Number Publication Date
JP2000328200A true JP2000328200A (en) 2000-11-28

Family

ID=15099502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11133218A Pending JP2000328200A (en) 1999-04-19 1999-05-13 Austenitic stainless steel for conductive electric parts and fuel battery

Country Status (1)

Country Link
JP (1) JP2000328200A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039530A1 (en) * 2000-11-10 2002-05-16 Honda Giken Kogyo Kabushiki Kaisha Press separator for fuel cell
WO2003049220A1 (en) * 2001-12-07 2003-06-12 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and its production method
WO2003050904A1 (en) * 2001-12-12 2003-06-19 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and its production method
WO2003052848A1 (en) * 2001-12-18 2003-06-26 Honda Giken Kogyo Kabushiki Kaisha Method of producing fuel cell-use separator and device for producing it
JP2003178768A (en) * 2001-12-12 2003-06-27 Honda Motor Co Ltd Manufacturing method of metallic separator for fuel cell
WO2003083980A1 (en) * 2002-03-29 2003-10-09 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and manufacturing method thereof
WO2004019437A1 (en) * 2002-08-20 2004-03-04 Daido Tokushuko Kabushiki Kaisha Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel cell
KR100467720B1 (en) * 2000-12-16 2005-01-24 주식회사 포스코 Non magnetic stainless steel for electronic parts having good surface quality
KR100488922B1 (en) * 2001-02-22 2005-05-11 제이에프이 스틸 가부시키가이샤 Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
WO2008020602A1 (en) 2006-08-14 2008-02-21 Toyo Seikan Kaisha, Ltd. Stainless steel member for fuel cell
JP2010037614A (en) * 2008-08-06 2010-02-18 Sumitomo Metal Ind Ltd Stainless steel for fuel cell separator and fuel cell separator
WO2014021298A1 (en) 2012-07-31 2014-02-06 新日鐵住金株式会社 Titanium or titanium alloy for fuel cell separator having improved contact conductivity with carbon and durability, fuel cell separator using same, and production method therefor
WO2014119730A1 (en) 2013-02-01 2014-08-07 新日鐵住金株式会社 Titanium or titanium alloy used for fuel cell separator excellent in contact conductivity to carbon and durability, fuel cell separator using same, and fuel cell
WO2014119734A1 (en) 2013-02-01 2014-08-07 新日鐵住金株式会社 Titanium material or titanium alloy material used for fuel cell separator excellent in contact conductivity to carbon and durability, fuel cell separator using same, and fuel cell
WO2015111652A1 (en) 2014-01-22 2015-07-30 新日鐵住金株式会社 Titanium material or titanium alloy material that have surface conductivity, fuel cell separator using same, and fuel cell
WO2015111653A1 (en) 2014-01-22 2015-07-30 新日鐵住金株式会社 Titanium material or titanium alloy material having surface conductivity, production method therefor, fuel cell separator using same, and fuel cell
WO2016140128A1 (en) * 2015-03-03 2016-09-09 新日鐵住金株式会社 Thin stainless steel sheet for solid polymer fuel cell separator
KR20160122843A (en) 2014-04-03 2016-10-24 신닛테츠스미킨 카부시키카이샤 Composite metal foil for fuel cell separator, fuel cell separator, fuel cell, and method for producing composite metal foil for fuel cell separator
WO2017212905A1 (en) 2016-06-10 2017-12-14 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators, and production method therefor
KR20190009812A (en) 2016-06-10 2019-01-29 제이에프이 스틸 가부시키가이샤 Stainless steel sheet for separator of fuel cell and manufacturing method thereof
WO2019224287A1 (en) * 2018-05-23 2019-11-28 Ab Sandvik Materials Technology New austenitic alloy

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039530A1 (en) * 2000-11-10 2002-05-16 Honda Giken Kogyo Kabushiki Kaisha Press separator for fuel cell
US6953636B2 (en) 2000-11-10 2005-10-11 Honda Giken Kogyo Kabushiki Kaisha Press separator for fuel cell made of stainless steel press formed in contiguous corrugations
KR100467720B1 (en) * 2000-12-16 2005-01-24 주식회사 포스코 Non magnetic stainless steel for electronic parts having good surface quality
KR100488922B1 (en) * 2001-02-22 2005-05-11 제이에프이 스틸 가부시키가이샤 Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
WO2003049220A1 (en) * 2001-12-07 2003-06-12 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and its production method
JP2003178768A (en) * 2001-12-12 2003-06-27 Honda Motor Co Ltd Manufacturing method of metallic separator for fuel cell
US7838171B2 (en) 2001-12-12 2010-11-23 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and its production method
WO2003050904A1 (en) * 2001-12-12 2003-06-19 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and its production method
WO2003052848A1 (en) * 2001-12-18 2003-06-26 Honda Giken Kogyo Kabushiki Kaisha Method of producing fuel cell-use separator and device for producing it
US7254887B2 (en) 2001-12-18 2007-08-14 Honda Giken Kogyo Kabushiki Kaisha Fuel cell separator manufacturing method and manufacturing apparatus
WO2003083980A1 (en) * 2002-03-29 2003-10-09 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and manufacturing method thereof
US7597987B2 (en) 2002-08-20 2009-10-06 Daido Tokushuko Kabushiki Kaisha Metal component for fuel cell and method of manufacturing the same, austenitic stainless steel for polymer electrolyte fuel cell and metal component for fuel cell material and method of manufacturing the same, corrosion-resistant conductive component and method of manufacturing the same, and fuel cell
WO2004019437A1 (en) * 2002-08-20 2004-03-04 Daido Tokushuko Kabushiki Kaisha Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel cell
US8133632B2 (en) 2002-08-20 2012-03-13 Daido Tokushuko Kabushiki Kaisha Metal component for fuel cell and method of manufacturing the same, austenitic stainless steel for polymer electrolyte fuel cell and metal component for fuel cell using the same, polymer electrolyte fuel cell material and method of manufacturing the same, corrosion-resistant conductive component and method of manufacturing the same, and fuel cell
WO2008020602A1 (en) 2006-08-14 2008-02-21 Toyo Seikan Kaisha, Ltd. Stainless steel member for fuel cell
US8075991B2 (en) 2006-08-14 2011-12-13 Toyo Seikan Kaisha, Ltd. Stainless steel member for a fuel cell
JP2010037614A (en) * 2008-08-06 2010-02-18 Sumitomo Metal Ind Ltd Stainless steel for fuel cell separator and fuel cell separator
WO2014021298A1 (en) 2012-07-31 2014-02-06 新日鐵住金株式会社 Titanium or titanium alloy for fuel cell separator having improved contact conductivity with carbon and durability, fuel cell separator using same, and production method therefor
US10074857B2 (en) 2012-07-31 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Titanium or titanium alloy material for fuel cell separator having high contact conductivity with carbon and high durability, fuel cell separator including the same, and manufacturing method therefor
WO2014119730A1 (en) 2013-02-01 2014-08-07 新日鐵住金株式会社 Titanium or titanium alloy used for fuel cell separator excellent in contact conductivity to carbon and durability, fuel cell separator using same, and fuel cell
WO2014119734A1 (en) 2013-02-01 2014-08-07 新日鐵住金株式会社 Titanium material or titanium alloy material used for fuel cell separator excellent in contact conductivity to carbon and durability, fuel cell separator using same, and fuel cell
US9947942B2 (en) 2013-02-01 2018-04-17 Nippon Steel & Sumitomo Metal Corporation Titanium material or titanium alloy material for fuel cell separator having high contact conductivity with carbon and high durability, fuel cell separator including the same, and fuel cell
US10033052B2 (en) 2014-01-22 2018-07-24 Nippon Steel & Sumitomo Metal Corporation Titanium material or titanium alloy material having surface electrical conductivity, and fuel cell separator and fuel cell using the same
WO2015111653A1 (en) 2014-01-22 2015-07-30 新日鐵住金株式会社 Titanium material or titanium alloy material having surface conductivity, production method therefor, fuel cell separator using same, and fuel cell
KR20160098367A (en) 2014-01-22 2016-08-18 신닛테츠스미킨 카부시키카이샤 Titanium material or titanium alloy material having surface conductivity, production method therefor, fuel cell separator using same, and fuel cell
KR20160098396A (en) 2014-01-22 2016-08-18 신닛테츠스미킨 카부시키카이샤 Titanium material or titanium alloy material that have surface conductivity, fuel cell separator using same, and fuel cell
WO2015111652A1 (en) 2014-01-22 2015-07-30 新日鐵住金株式会社 Titanium material or titanium alloy material that have surface conductivity, fuel cell separator using same, and fuel cell
US10305119B2 (en) 2014-01-22 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Titanium material or titanium alloy material having surface electrical conductivity and method for producing the same, and fuel cell separator and fuel cell using the same
KR20160122843A (en) 2014-04-03 2016-10-24 신닛테츠스미킨 카부시키카이샤 Composite metal foil for fuel cell separator, fuel cell separator, fuel cell, and method for producing composite metal foil for fuel cell separator
WO2016140128A1 (en) * 2015-03-03 2016-09-09 新日鐵住金株式会社 Thin stainless steel sheet for solid polymer fuel cell separator
EP3266895A4 (en) * 2015-03-03 2018-07-25 Nippon Steel & Sumitomo Metal Corporation Thin stainless steel sheet for solid polymer fuel cell separator
JPWO2016140128A1 (en) * 2015-03-03 2017-04-27 新日鐵住金株式会社 Stainless steel sheet for polymer electrolyte fuel cell separator
WO2017212905A1 (en) 2016-06-10 2017-12-14 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators, and production method therefor
KR20190009812A (en) 2016-06-10 2019-01-29 제이에프이 스틸 가부시키가이샤 Stainless steel sheet for separator of fuel cell and manufacturing method thereof
KR20190012222A (en) 2016-06-10 2019-02-08 제이에프이 스틸 가부시키가이샤 Stainless steel sheet for separator of fuel cell and manufacturing method thereof
US10763517B2 (en) 2016-06-10 2020-09-01 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
US10930940B2 (en) 2016-06-10 2021-02-23 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
WO2019224287A1 (en) * 2018-05-23 2019-11-28 Ab Sandvik Materials Technology New austenitic alloy

Similar Documents

Publication Publication Date Title
JP4078966B2 (en) Stainless steel for separator of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP3365385B2 (en) Method for producing stainless steel material for separator of polymer electrolyte fuel cell
JP2000328200A (en) Austenitic stainless steel for conductive electric parts and fuel battery
KR100361548B1 (en) Stainless steel product for producing polymer electrode fuel cell
JP6315158B1 (en) Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2001032056A (en) Stainless steel for conductive parts and solid high polymer type fuel battery
KR100858572B1 (en) Metal material for fuel cell, fuel cell using the same and method for producing the material
US20170298488A1 (en) Ferritic stainless steel material, and, separator for solid polymer fuel cell and solid polymer fuel cell which uses the same
US20170301929A1 (en) Ferritic stainless steel material, and, separator for solid polymer fuel cell and solid polymer fuel cell which uses the same
JP2011047043A (en) Stainless steel for fuel cell separator having excellent electrical conductivity and ductility, and method for producing the same
KR20130121930A (en) Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
JP3097690B1 (en) Polymer electrolyte fuel cell
WO2016129599A1 (en) Separator for solid polymer fuel cell and method for producing same
JP3097689B1 (en) Polymer electrolyte fuel cell
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP3397169B2 (en) Austenitic stainless steel and polymer electrolyte fuel cell for polymer electrolyte fuel cell separator
JP3269479B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
JP6057033B1 (en) Ferritic stainless steel material, separator, polymer electrolyte fuel cell, and separator manufacturing method
JPWO2018147087A1 (en) Base material stainless steel plate for steel plate for fuel cell separator and method for producing the same
JP3397168B2 (en) Ferritic stainless steel and polymer electrolyte fuel cell for polymer electrolyte fuel cell separator
JP2004232074A (en) Ferritic stainless steel for fuel battery separator, and production method therefor
JP2000328205A (en) Ferritic stainless steel for conductive electric parts and fuel cell
JP7257794B2 (en) Stainless steel plate and its manufacturing method, fuel cell separator, fuel cell, and fuel cell stack
JP2000265248A (en) Ferritic stainless steel for solid high polymer type fuel battery separator
JP7257793B2 (en) Stainless steel plate, fuel cell separator, fuel cell, and fuel cell stack