JP2003263996A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP2003263996A
JP2003263996A JP2002065127A JP2002065127A JP2003263996A JP 2003263996 A JP2003263996 A JP 2003263996A JP 2002065127 A JP2002065127 A JP 2002065127A JP 2002065127 A JP2002065127 A JP 2002065127A JP 2003263996 A JP2003263996 A JP 2003263996A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte layer
layer
fuel cell
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002065127A
Other languages
Japanese (ja)
Inventor
Takashi Yamada
喬 山田
Koji Hoshino
孝二 星野
Toru Inagaki
亨 稲垣
Hiroyuki Yoshida
洋之 吉田
Tsunehisa Sasaki
常久 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2002065127A priority Critical patent/JP2003263996A/en
Publication of JP2003263996A publication Critical patent/JP2003263996A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability of a solid oxide fuel cell. <P>SOLUTION: The solid oxide fuel cell includes a power generating cell 1 with a fuel electrode layer 4 and an air electrode layer 2 disposed on both faces of a solid electrolyte layer 3, wherein intermediate layers 5, 5 comprising an oxide ion conductor or an electron - oxide ion mixed conductor are formed on both faces of the solid electrolyte layer 3. Through such a structure of the solid electrolyte layer 3, a uniform compressive stress is applied to both faces of the solid electrolyte layer 3 at baking, by contraction of the intermediate layers 5, 5, by which the solid electrolyte layer 3 is reinforced to prevent cracks of the power generating cell 1, and separation resistance of the solid electrolyte layer 3 and the fuel electrode layer 4 is improved and durability of the solid oxide fuel cell is enhanced. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質層の両
面に燃料極層と空気極層を配して構成した固体酸化物型
燃料電池に関し、特に、固体酸化物型燃料電池の耐久性
向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell in which a fuel electrode layer and an air electrode layer are arranged on both sides of a solid electrolyte layer, and more particularly, the durability of the solid oxide fuel cell is improved. It is about.

【0002】[0002]

【従来の技術】酸化物イオン伝導体からなる固体電解質
層を空気極層(酸化剤極層)と燃料極層との間に挟んだ
積層構造を持つ固体電解質型燃料電池は、第三世代の発
電用燃料電池として開発が進んでいる。固体電解質型燃
料電池では、空気極側に酸素(空気)が、燃料極側には
燃料ガス(H2 、CO等)が供給される。空気極と燃料
極は、ガスが固体電解質との界面に到達することができ
るように、いずれも多孔質とされている。
2. Description of the Related Art A solid oxide fuel cell having a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer (oxidant electrode layer) and a fuel electrode layer is a third generation type. Development is progressing as a fuel cell for power generation. In the solid oxide fuel cell, oxygen (air) is supplied to the air electrode side and fuel gas (H 2 , CO, etc.) is supplied to the fuel electrode side. Both the air electrode and the fuel electrode are made porous so that the gas can reach the interface with the solid electrolyte.

【0003】空気極側に供給された酸素は、空気極層内
の気孔を通って固体電解質層との界面近傍に到達し、こ
の部分で、空気極から電子を受け取って酸化物イオン
(O2-)にイオン化される。この酸化物イオンは、燃料
極の方向に向かって固体電解質層内を拡散移動する。燃
料極との界面近傍に到達した酸化物イオンは、この部分
で、燃料ガスと反応して反応生成物(H2 O、CO2
等)を生じ、燃料極に電子を放出する。
Oxygen supplied to the air electrode reaches the vicinity of the interface with the solid electrolyte layer through the pores in the air electrode layer, and at this portion, electrons are received from the air electrode and an oxide ion (O 2 - ) Is ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas and react with the reaction products (H 2 O, CO 2) in this portion.
Etc.) and emit electrons to the fuel electrode.

【0004】燃料に水素を用いた場合の電極反応は次の
ようになる。 空気極: 1/2 O2 + 2e- → O2- 燃料極: H2 + O2- → H2 O+2e- 全体 : H2 + 1/2 O2 → H2
The electrode reaction when hydrogen is used as the fuel is as follows. Air electrode: 1/2 O 2 + 2e → O 2 Fuel electrode: H 2 + O 2 → → H 2 O + 2e Overall: H 2 + 1/2 O 2 → H 2 O

【0005】固体電解質層は、酸化物イオンの移動媒体
であると同時に、燃料ガスと空気を直接接触させないた
めの隔壁としても機能するので、ガス不透過性の緻密な
構造となっている。この固体電解質層は、酸化物イオン
伝導性が高く、空気極側の酸化性雰囲気から燃料極側の
還元性雰囲気までの条件下で化学的に安定で、熱衝撃に
強い材料から構成する必要があり、かかる要件を満たす
材料として、イットリアを添加した安定化ジルコニア
(YSZ)が一般的に使用されている。
The solid electrolyte layer is a moving medium for oxide ions and at the same time functions as a partition wall for preventing direct contact between the fuel gas and air, so that the solid electrolyte layer has a gas impermeable and dense structure. This solid electrolyte layer must have a high oxide ion conductivity, be chemically stable under conditions from an oxidizing atmosphere on the air electrode side to a reducing atmosphere on the fuel electrode side, and be composed of a material that is resistant to thermal shock. As a material that meets such requirements, stabilized zirconia (YSZ) added with yttria is generally used.

【0006】一方、電極である空気極(カソード)層と
燃料極(アノード)層はいずれも電子伝導性の高い材料
から構成する必要がある。空気極材料は、700℃前後
の高温の酸化性雰囲気中で化学的に安定でなければなら
ないため、金属は不適当であり、電子伝導性を持つペロ
ブスカイト型酸化物材料、具体的にはLaMnO3 もし
くはLaCoO3 、または、これらのLaの一部をS
r、Ca等に置換した固溶体が一般に使用されている。
また、燃料極材料は、Ni、Coなどの金属、或いはN
i−YSZ、Co−YSZ等のサーメットが一般的であ
る。
On the other hand, both the air electrode (cathode) layer and the fuel electrode (anode) layer, which are electrodes, must be made of a material having a high electron conductivity. Since the air electrode material must be chemically stable in an oxidizing atmosphere at a high temperature of around 700 ° C., the metal is not suitable, and a perovskite type oxide material having electronic conductivity, specifically, LaMnO 3 is used. Alternatively, LaCoO 3 or a part of these La is S
Solid solutions substituted with r, Ca, etc. are generally used.
The fuel electrode material is a metal such as Ni or Co, or N.
Cermets such as i-YSZ and Co-YSZ are common.

【0007】固体酸化物型燃料電池には、1000℃前
後の高温で動作させる高温作動型のものと、700℃前
後の低温で動作させる低温作動型のものとがある。低温
作動型の固体酸化物型燃料電池は、例えば電解質である
イットリアを添加した安定化ジルコニア(YSZ)の厚
さを極力薄くすることにより、電解質の抵抗を低くし
て、低温でも燃料電池として発電するように改良された
発電セルを使用する。
There are two types of solid oxide fuel cells, a high temperature type which operates at a high temperature of around 1000 ° C. and a low temperature type which operates at a low temperature around 700 ° C. A low-temperature operation type solid oxide fuel cell is, for example, a stabilized zirconia (YSZ) added with yttria which is an electrolyte to reduce the thickness of the electrolyte as much as possible, thereby lowering the resistance of the electrolyte and generating a fuel cell at a low temperature. Using a power generation cell that has been improved.

【0008】このように、上記固体電解質層の素材等に
ついては従来より多くの研究が成され、発電セルについ
ても様々な改良が成されながら現在に至っている。
As described above, much research has been made on the material of the solid electrolyte layer and the like, and various improvements have been made to the power generation cell until now.

【0009】図2は、従来の固体酸化物型燃料電池にお
ける発電セルの内部構造を示しており、図中、符号2は
空気極層、符号3は固体電解質層、符号4は燃料極層で
ある。従来では、本図に示すように固体電解質層3上に
直接空気極層2と燃料極層4を形成した三層構造の発電
セル1が一般的である。
FIG. 2 shows the internal structure of a power generation cell in a conventional solid oxide fuel cell. In the figure, reference numeral 2 is an air electrode layer, reference numeral 3 is a solid electrolyte layer, and reference numeral 4 is a fuel electrode layer. is there. Conventionally, a power generation cell 1 having a three-layer structure in which an air electrode layer 2 and a fuel electrode layer 4 are directly formed on a solid electrolyte layer 3 as shown in the figure is generally used.

【0010】[0010]

【発明が解決しようとする課題】ところで、上記構造の
発電セル1にあっては、短期発電試験において優れた発
電特性(電流−電圧−電力特性)が得られているが、発
電時の発電セルの耐割れ性(クラック)や長期発電試験
における発電性能の低下等が問題となっている。発電セ
ルのクラックは、発電の際(昇温時)のセル内の温度分
布で生ずる熱応力によるところが大きく、固体電解質層
として厚さが約200μm程度の極めて薄いセラミック
ス材を使用することに起因していると考えられる。ま
た、発電特性の劣化については、固体電解質層3と各々
電極層(特に燃料極層4)の剥離現象や、固体電解質層
3と電極層間における金属元素の相互拡散等が主な原因
と考えられている。
The power generation cell 1 having the above structure has excellent power generation characteristics (current-voltage-power characteristics) in a short-term power generation test. The cracking resistance (crack) and the deterioration of power generation performance in a long-term power generation test are problems. The crack of the power generation cell is largely due to the thermal stress generated by the temperature distribution in the cell during power generation (at the time of temperature rise), and is caused by using an extremely thin ceramic material with a thickness of about 200 μm as the solid electrolyte layer. It is thought that The main causes of the deterioration of the power generation characteristics are the separation phenomenon between the solid electrolyte layer 3 and the electrode layers (particularly the fuel electrode layer 4), the mutual diffusion of metal elements between the solid electrolyte layer 3 and the electrode layers, and the like. ing.

【0011】固体酸化物型燃料電池の場合、実用に供す
る発電セルでは、少なくとも4〜5万時間の耐久性を有
することが必要とされているが、図2に示す従来構造の
発電セル1の場合は長くても100時間程度の耐久試験
で発電特性の劣化が認められ、実用化にはまだまだ克服
すべき問題が多数残されている。
In the case of a solid oxide fuel cell, a power generation cell for practical use is required to have durability of at least 40,000 to 50,000 hours, but the power generation cell 1 of the conventional structure shown in FIG. In this case, deterioration of power generation characteristics was recognized in a durability test for about 100 hours at the longest, and many problems still remain to be overcome for practical use.

【0012】本発明は、上記した従来の問題点に鑑み、
発電セルの耐割れ性の向上や固体電解質層と燃料極層の
耐剥離性の向上を図った耐久性の高い固体酸化物型燃料
電池を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems.
An object of the present invention is to provide a solid oxide fuel cell having high durability, which has improved cracking resistance of a power generation cell and improved peeling resistance between a solid electrolyte layer and a fuel electrode layer.

【0013】[0013]

【課題を解決するための手段】すなわち、請求項1に記
載の本発明は、固体電解質層(3)の両面に燃料極層
(4)と空気極層(2)を配して構成した発電セル
(1)を備える固体酸化物型燃料電池において、前記固
体電解質層(3)の両面に酸化物イオン伝導体または電
子−酸化物イオン混合伝導体で成る中間層(5、5)を
形成し、当該固体電解質層(3)の両面より予め圧縮応
力を加えておく構造とすることを特徴としている。
That is, the present invention as set forth in claim 1 is a power generation system in which a fuel electrode layer (4) and an air electrode layer (2) are arranged on both sides of a solid electrolyte layer (3). In a solid oxide fuel cell comprising a cell (1), an intermediate layer (5, 5) made of an oxide ion conductor or an electron-oxide ion mixed conductor is formed on both surfaces of the solid electrolyte layer (3). The structure is characterized in that a compressive stress is applied in advance from both sides of the solid electrolyte layer (3).

【0014】また、請求項2に記載の本発明は、請求項
1に記載の固体酸化物型燃料電池において、前記中間層
(5、5)は、CeSmO2 (サマリウム添加セリア)
で成ることを特徴としている。
The present invention according to claim 2 provides the solid oxide fuel cell according to claim 1, wherein the intermediate layer (5, 5) is made of CeSmO 2 (samarium-added ceria).
It is characterized by consisting of.

【0015】また、請求項3に記載の本発明は、請求項
1または請求項2に記載の固体酸化物型燃料電池におい
て、前記固体電解質層(3)の両面に中間層を形成した
後、前記空気極層(2)および前記燃料極層(4)が形
成されることを特徴としている。
Further, the present invention according to claim 3 is the solid oxide fuel cell according to claim 1 or 2, wherein after forming an intermediate layer on both surfaces of the solid electrolyte layer (3), The air electrode layer (2) and the fuel electrode layer (4) are formed.

【0016】上記構成では、電解質層焼成時の中間層
(5)の収縮作用により、固体電解質層(3)の両面に
均等に圧縮応力が加わるため、固体電解質層(3)が強
化されて発電セル(1)の割れが防止されると共に、中
間層(5)の存在により固体電解質層(3)と各極層と
の接触性が向上し、特に、固体電解質層(3)と燃料極
層(4)との耐剥離性が改善される。
In the above structure, the contraction of the intermediate layer (5) during firing of the electrolyte layer uniformly applies compressive stress to both surfaces of the solid electrolyte layer (3), so that the solid electrolyte layer (3) is reinforced and power is generated. The cracking of the cell (1) is prevented, and the presence of the intermediate layer (5) improves the contact between the solid electrolyte layer (3) and each electrode layer, and in particular, the solid electrolyte layer (3) and the fuel electrode layer. The peel resistance with (4) is improved.

【0017】[0017]

【発明の実施の形態】以下、図1に基づいて本発明の一
実施形態を説明する。図1は本発明が適用された発電セ
ルの構造を示す断面図である。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a sectional view showing the structure of a power generation cell to which the present invention is applied.

【0018】図1に示すように、本実施形態の発電セル
1は、空気極層2と固体電解質層3と燃料極層4で構成
されており、固体電解質層3を挟み込むようにその両面
に前記空気極層2と前記燃料極層4がそれぞれ配設され
ている。
As shown in FIG. 1, the power generation cell 1 of this embodiment is composed of an air electrode layer 2, a solid electrolyte layer 3, and a fuel electrode layer 4, and the solid electrolyte layer 3 is sandwiched between the two surfaces. The air electrode layer 2 and the fuel electrode layer 4 are respectively arranged.

【0019】ここで、空気極層2はLaMnO3 、La
CoO3 等で構成され、固体電解質層3はイットリアを
添加した安定化ジルコニア(YSZ)等で構成され、燃
料極層4はNi、Co等の金属あるいはNi−YSZ、
Co−YSZ等のサーメット等で構成されている。ま
た、この固体電解質層4の構造は図2に示す従来型と相
違し、その両面、即ち、固体電解質層4の空気極層側の
界面および燃料極層側の界面に所定厚の中間層5、5が
形成されている。この中間層5、5の材料としては、酸
化物イオン伝導体または電子−酸化物イオン混合伝導体
が好適であり、本実施形態ではCeSmO2 (サマリウ
ム添加セリア)が使用されている。
Here, the air electrode layer 2 is made of LaMnO 3 , La.
It is composed of CoO 3 or the like, the solid electrolyte layer 3 is composed of stabilized zirconia added with yttria (YSZ), etc., the fuel electrode layer 4 is Ni, a metal such as Co or Ni-YSZ,
It is composed of a cermet or the like such as Co-YSZ. Further, the structure of the solid electrolyte layer 4 is different from that of the conventional type shown in FIG. 2, and an intermediate layer 5 having a predetermined thickness is formed on both surfaces thereof, that is, on the air electrode layer side interface and the fuel electrode layer side interface of the solid electrolyte layer 4. 5 are formed. As the material of the intermediate layers 5 and 5, an oxide ion conductor or an electron-oxide ion mixed conductor is suitable, and CeSmO 2 (samarium-added ceria) is used in this embodiment.

【0020】いわゆる、固定電解質型の燃料電池では、
起動時(発電開始時)に電池モジュール内部を所定の温
度まで昇温する必要がある。既述したように、高温作動
型の運転温度は1000℃前後、低温作動型でも700
℃前後となり、何れの場合も発電セル自体が高温環境下
に晒されることになる。このため、時として発電セル面
内に温度分布が生じ、その際の熱応力で発電セル(固体
電解質層4)にヒビ割れ(クラック)が生じる。
In a so-called fixed electrolyte fuel cell,
It is necessary to raise the temperature inside the battery module to a predetermined temperature at the time of start-up (at the start of power generation). As described above, the operating temperature of the high temperature type is around 1000 ° C, and the operating temperature of the low temperature type is 700.
The temperature is around ℃, and in any case, the power generation cell itself is exposed to a high temperature environment. Therefore, a temperature distribution sometimes occurs in the surface of the power generation cell, and thermal stress at that time causes cracks in the power generation cell (solid electrolyte layer 4).

【0021】ところで、一般的にセラミックス材料は表
面に引っ張り力が加わった時に割れが生じ易い性質が有
る。従って、特に耐久性を要するようなセラミックス部
材では、予めその表面に圧縮応力を加えた状態を作って
おくことにより、材料の強度を数倍向上することができ
る。
By the way, generally, a ceramic material has a property that cracks easily occur when a tensile force is applied to the surface. Therefore, in the case of a ceramic member that requires particularly durability, it is possible to improve the strength of the material several times by making a state in which a compressive stress is applied to the surface thereof in advance.

【0022】本発明は、このようなセラミックス材の強
化構造に着目したもので、上記したように固体電解質層
3の両面に中間層5、5を形成し、当該固体電解質3に
予め圧縮応力を加えておくようにして、固体電解質層3
の強化を図るものである。
The present invention focuses on such a reinforced structure of the ceramic material. As described above, the intermediate layers 5 and 5 are formed on both surfaces of the solid electrolyte layer 3, and a compressive stress is applied to the solid electrolyte 3 in advance. The solid electrolyte layer 3 is added in advance.
It is intended to strengthen.

【0023】本実施形態では、発電セル1の製造過程に
おいて、電解質層3を形成する際、例えば、ドクターブ
レード法等によって薄板状に成形されたグリーンシート
の両面にスクリーン印刷法等によりCeSmO2 が塗布
され、その後、焼成が行われる。この焼成時の固体電解
質層3と中間層5の熱収縮率の差によって両面に外側か
ら均等に圧縮応力が加えられた状態の固体電解質層3を
成形することができ、これにより、固定電解質層3の強
度が大幅に向上し、発電時の昇温等による発電セル1の
クラックを防止することができるようになる。尚、収縮
率はCeSmO 2 >電解質層とされる。固体電解質層の
焼成後、スクリーン印刷法等による燃料極材料の塗布・
焼成行程、および空気極材料の塗布・焼成行程を経て両
面に中間層5、5を形成した固体電解質層3を挟み込む
ように、前記空気極層2と前記燃料極層4が形成される
ことになる。
In this embodiment, the manufacturing process of the power generation cell 1 is performed.
In forming the electrolyte layer 3, for example, a doctor
A green sheet formed into a thin plate by the lade method, etc.
CeSmO on both sides by screen printing2 Applied
After that, firing is performed. Solid electrolysis during this firing
Depending on the difference in heat shrinkage between the quality layer 3 and the intermediate layer 5, it may be
The solid electrolyte layer 3 in a state where compressive stress is evenly applied.
It can be molded, and as a result, the strength of the fixed electrolyte layer 3 is increased.
Of the power generation cell 1 due to temperature rise during power generation, etc.
It becomes possible to prevent cracks. Incidentally, contraction
The rate is CeSmO 2 > It is used as an electrolyte layer. Of solid electrolyte layer
After firing, apply the fuel electrode material by screen printing, etc.
After the firing process and the coating and firing process of the air electrode material, both
The solid electrolyte layer 3 having the intermediate layers 5 and 5 formed on its surface is sandwiched.
Thus, the air electrode layer 2 and the fuel electrode layer 4 are formed.
It will be.

【0024】また、上記構成では、固体電解質層3の強
度向上効果に加え、中間層5、5の持つ緻密構造によっ
て固体電解質層3と空気極層2や燃料極層4との接触性
が向上し、固体電解質層3と各極層との耐剥離性が改善
される。加えて、CeSmO 2 を使用して中間層5に電
子伝導性を持たせることにより、界面部分の接触抵抗を
低減し、発電セル1の発電効率を向上することができ
る。
Further, in the above structure, the strength of the solid electrolyte layer 3 is increased.
In addition to the effect of improving the degree of strength, the dense structure of the intermediate layers 5, 5
Contact between the solid electrolyte layer 3 and the air electrode layer 2 or the fuel electrode layer 4
And the peeling resistance between the solid electrolyte layer 3 and each electrode layer is improved.
To be done. In addition, CeSmO 2 To the intermediate layer 5 using
By providing child conductivity, the contact resistance at the interface can be increased.
Can be reduced and the power generation efficiency of the power generation cell 1 can be improved.
It

【0025】また、中間層5は、薄すぎると圧縮応力が
少なくなり充分な強度向上が得られず、反対に厚すぎる
と中間層での抵抗損が増大することになる。従って、中
間層5の厚さは強度向上の面と抵抗損の両面を考慮して
設定する必要がある。
If the intermediate layer 5 is too thin, the compressive stress is reduced and sufficient strength cannot be obtained. On the contrary, if it is too thick, the resistance loss in the intermediate layer increases. Therefore, it is necessary to set the thickness of the intermediate layer 5 in consideration of both strength improvement and resistance loss.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
固体電解質層の両面に中間層を形成する構造としたの
で、固体電解質層の両面に均等に圧縮応力が加わること
となり、これにより発電セルの耐割れ性が向上すると共
に、固体電解質層と燃料極層の耐剥離性も改善され、よ
って、固体酸化物型燃料電池の耐久性が向上する。
As described above, according to the present invention,
Since the intermediate layer is formed on both sides of the solid electrolyte layer, compressive stress is evenly applied to both sides of the solid electrolyte layer, which improves the crack resistance of the power generation cell and improves the solid electrolyte layer and the fuel electrode. The peel resistance of the layers is also improved, thus improving the durability of the solid oxide fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用された発電セルの構造を示す断面
図。
FIG. 1 is a sectional view showing a structure of a power generation cell to which the present invention is applied.

【図2】従来の発電セルの構造を示す断面図。FIG. 2 is a cross-sectional view showing the structure of a conventional power generation cell.

【符号の説明】[Explanation of symbols]

1 発電セル 2 空気極層 3 固体電解質層 4 燃料極層 5 中間層 1 power generation cell 2 Air electrode layer 3 Solid electrolyte layer 4 Fuel pole layer 5 Middle class

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 孝二 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 (72)発明者 稲垣 亨 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 吉田 洋之 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 佐々木 常久 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5H026 AA06 BB01 BB04 EE13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koji Hoshino             1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki Prefecture             Terari Co., Ltd.             Inside (72) Inventor Toru Inagaki             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. (72) Inventor Hiroyuki Yoshida             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. (72) Inventor Tsunehisa Sasaki             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F-term (reference) 5H026 AA06 BB01 BB04 EE13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質層(3)の両面に燃料極層
(4)と空気極層(2)を配して構成した発電セル
(1)を備える固体酸化物型燃料電池において、 前記固体電解質層(3)の両面に酸化物イオン伝導体ま
たは電子−酸化物イオン混合伝導体で成る中間層(5、
5)を形成し、当該固体電解質層(3)の両面より予め
圧縮応力を加えておく構造とすることを特徴とする固体
酸化物型燃料電池。
1. A solid oxide fuel cell comprising a power generation cell (1) having a fuel electrode layer (4) and an air electrode layer (2) disposed on both sides of a solid electrolyte layer (3). An intermediate layer (5, composed of an oxide ion conductor or an electron-oxide ion mixed conductor) on both surfaces of the electrolyte layer (3).
The solid oxide fuel cell is characterized in that 5) is formed and a compressive stress is applied from both sides of the solid electrolyte layer (3) in advance.
【請求項2】 前記中間層(5、5)は、(Ce、S
m)O2(サマリウム添加セリア)で成ることを特徴と
する請求項1に記載の固体酸化物型燃料電池。
2. The intermediate layer (5, 5) comprises (Ce, S
m) The solid oxide fuel cell according to claim 1, wherein the solid oxide fuel cell comprises O 2 (samarium-added ceria).
【請求項3】 前記固体電解質層(3)の両面に中間層
を形成した後、前記空気極層(2)および前記燃料極層
(4)が形成されることを特徴とする請求項1または請
求項2の何れかに記載の固体酸化物型燃料電池。
3. The air electrode layer (2) and the fuel electrode layer (4) are formed after forming an intermediate layer on both surfaces of the solid electrolyte layer (3). The solid oxide fuel cell according to claim 2.
JP2002065127A 2002-03-11 2002-03-11 Solid oxide fuel cell Pending JP2003263996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065127A JP2003263996A (en) 2002-03-11 2002-03-11 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002065127A JP2003263996A (en) 2002-03-11 2002-03-11 Solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2003263996A true JP2003263996A (en) 2003-09-19

Family

ID=29197587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065127A Pending JP2003263996A (en) 2002-03-11 2002-03-11 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2003263996A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327637A (en) * 2004-05-14 2005-11-24 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2006236820A (en) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2007141492A (en) * 2005-11-15 2007-06-07 Kyocera Corp Fuel battery cell
WO2011074445A1 (en) * 2009-12-16 2011-06-23 日本碍子株式会社 Fuel cell and solid oxide fuel cell
CN102496399A (en) * 2011-12-19 2012-06-13 中国工程物理研究院核物理与化学研究所 Samarium isotope minisize cell and manufacturing method thereof
WO2014081177A1 (en) * 2012-11-20 2014-05-30 지브이퓨얼셀 주식회사 Thin film-type sofc stack for reducing agglomeration
EP2960977A1 (en) * 2014-06-27 2015-12-30 Haldor Topsøe A/S Anode support creep
KR20160011472A (en) * 2014-07-22 2016-02-01 한국과학기술연구원 Anode Supported Solid Oxide Fuel Cell by using low temperature co-firing and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567473A (en) * 1991-09-09 1993-03-19 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JPH07320754A (en) * 1994-05-23 1995-12-08 Toto Ltd Connecting structure between solid electrolytic film and electrode film, and its manufacture
JPH1125995A (en) * 1997-07-04 1999-01-29 Nippon Shokubai Co Ltd Solid electrolyte electrolyte cell and its manufacture
JPH1173982A (en) * 1997-08-28 1999-03-16 Toto Ltd Solid electrolyte fuel cell and its manufacture
JPH11354139A (en) * 1998-06-04 1999-12-24 Murata Mfg Co Ltd Solid electrolyte type fuel cell
JP2001307750A (en) * 2000-04-25 2001-11-02 Tokyo Gas Co Ltd Solid electrolyte fuel battery and its manufacturing method
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567473A (en) * 1991-09-09 1993-03-19 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JPH07320754A (en) * 1994-05-23 1995-12-08 Toto Ltd Connecting structure between solid electrolytic film and electrode film, and its manufacture
JPH1125995A (en) * 1997-07-04 1999-01-29 Nippon Shokubai Co Ltd Solid electrolyte electrolyte cell and its manufacture
JPH1173982A (en) * 1997-08-28 1999-03-16 Toto Ltd Solid electrolyte fuel cell and its manufacture
JPH11354139A (en) * 1998-06-04 1999-12-24 Murata Mfg Co Ltd Solid electrolyte type fuel cell
JP2001307750A (en) * 2000-04-25 2001-11-02 Tokyo Gas Co Ltd Solid electrolyte fuel battery and its manufacturing method
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327637A (en) * 2004-05-14 2005-11-24 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2006236820A (en) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2007141492A (en) * 2005-11-15 2007-06-07 Kyocera Corp Fuel battery cell
WO2011074445A1 (en) * 2009-12-16 2011-06-23 日本碍子株式会社 Fuel cell and solid oxide fuel cell
JP4820463B2 (en) * 2009-12-16 2011-11-24 日本碍子株式会社 Fuel cell and solid oxide fuel cell
CN102496399A (en) * 2011-12-19 2012-06-13 中国工程物理研究院核物理与化学研究所 Samarium isotope minisize cell and manufacturing method thereof
WO2014081177A1 (en) * 2012-11-20 2014-05-30 지브이퓨얼셀 주식회사 Thin film-type sofc stack for reducing agglomeration
EP2960977A1 (en) * 2014-06-27 2015-12-30 Haldor Topsøe A/S Anode support creep
WO2015197767A1 (en) * 2014-06-27 2015-12-30 Haldor Topsøe A/S Anode support creep
KR20160011472A (en) * 2014-07-22 2016-02-01 한국과학기술연구원 Anode Supported Solid Oxide Fuel Cell by using low temperature co-firing and manufacturing method thereof
KR101685386B1 (en) * 2014-07-22 2016-12-13 한국과학기술연구원 Anode Supported Solid Oxide Fuel Cell by using low temperature co-firing and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20060024547A1 (en) Anode supported sofc with an electrode multifunctional layer
US20040209147A1 (en) Sealing structure for a fuel cell, as well as a method for producing it, and a fuel cell with the sealing structure
US6896989B2 (en) Solid electrolyte fuel cell and related manufacturing method
US10347930B2 (en) Perimeter electrolyte reinforcement layer composition for solid oxide fuel cell electrolytes
US8697313B2 (en) Method for making a fuel cell from a solid oxide monolithic framework
JP2003263996A (en) Solid oxide fuel cell
JP2003263994A (en) Solid electrolyte fuel cell
JP2009041044A (en) Reaction cell, its production method, and reaction system
JPH0567473A (en) Solid electrolyte fuel cell
JP7245036B2 (en) Fuel cell stack and manufacturing method thereof
JP4512911B2 (en) Solid oxide fuel cell
JP2004507876A (en) Electrode pattern for solid ion device
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
KR102114627B1 (en) Fuel cell power generation unit and fuel cell stack
JP2948399B2 (en) Support member for solid oxide fuel cell
JP7330689B2 (en) Fuel cells and fuel cell stacks
JP2006024371A (en) Flat-plate solid oxide fuel cell and its production method
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JPH06103988A (en) Solid electrolyte type fuel cell
JP2002358976A (en) Solid electrolyte fuel cell
US20050003262A1 (en) Solid-state fuel cell and related method of manufacture
JP7324983B2 (en) INTERCONNECTOR MEMBER AND METHOD FOR MANUFACTURING INTERCONNECTOR MEMBER
JP2003263997A (en) Solid oxide fuel cell
JP2008066002A (en) Power generation film, its manufacturing method, and solid oxide fuel cell
JP4484481B2 (en) Fuel cell, cell stack and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002