JP2009041044A - Reaction cell, its production method, and reaction system - Google Patents

Reaction cell, its production method, and reaction system Download PDF

Info

Publication number
JP2009041044A
JP2009041044A JP2007204477A JP2007204477A JP2009041044A JP 2009041044 A JP2009041044 A JP 2009041044A JP 2007204477 A JP2007204477 A JP 2007204477A JP 2007204477 A JP2007204477 A JP 2007204477A JP 2009041044 A JP2009041044 A JP 2009041044A
Authority
JP
Japan
Prior art keywords
electrode
reaction
hydrogen electrode
oxygen
reaction cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007204477A
Other languages
Japanese (ja)
Inventor
Kentaro Matsunaga
健太郎 松永
Masato Yoshino
正人 吉野
Tsuneji Kameda
常治 亀田
Hakaru Ogawa
斗 小川
Seiji Fujiwara
斉二 藤原
Hiroyuki Yamauchi
博之 山内
Shinichi Makino
新一 牧野
Shigeo Kasai
重夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007204477A priority Critical patent/JP2009041044A/en
Publication of JP2009041044A publication Critical patent/JP2009041044A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide satisfactory cell characteristics while suppressing a gas leakage and securing suitable joining strength under the driving conditions of a high temperature steam electrolytic cell or a solid oxide type fuel battery cell. <P>SOLUTION: The reaction cell such as the high temperature steam electrolytic cell 20 supported by a supporting body 10 with a perforated part 12 formed at the end part 14 of the perforated part 12 comprises: an edge part 32 densely formed of a material having electronic insulating properties and ion conductivity and engaged with the end part 14; an electrolytic membrane 30 provided with an intermediate part 34 integrally molded with the edge part 32; a hydrogen pole 40 provided at the face of the intermediate part 34 on the side facing to the inside 16 of the supporting body 10; and an oxygen pole 50 provided at the face on the side opposite to the hydrogen pole 40 in the intermediate part 34. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水蒸気を電気分解する反応、または、水蒸気を排出する電池反応を起こさせる反応セル、および、その製造方法、並びに、反応システムに関する。   The present invention relates to a reaction cell for causing a reaction for electrolyzing water vapor or a battery reaction for discharging water vapor, a method for producing the same, and a reaction system.

固体電解質燃料電池(SOFC)は、通常600〜900℃前後の運転条件において酸素イオン導伝性を有する電解質膜を介して、還元剤(水素もしくは炭化水素など)と酸化剤(酸素など)を反応させ、そのエネルギーを電気として取り出す装置である。一方、高温水蒸気電解法は、高温の水蒸気を電気分解することにより水素と酸素とを得る方法で、その動作原理は固体電解質燃料電池の逆反応である。これを実用化するにあたっては、約600〜900℃の作動温度および酸化/還元雰囲気という動作条件下で、電池もしくは電解反応を行うセル電極に均一に電流を供給する構造が必要である。また、セルへの供給ガスもしくは生成ガス(特に高温水蒸気電解法における生成水素)などを外に漏らさないためのシール構造なども必要である。   A solid electrolyte fuel cell (SOFC) reacts with a reducing agent (hydrogen or hydrocarbon, etc.) and an oxidizing agent (oxygen, etc.) through an electrolyte membrane having oxygen ion conductivity, usually under operating conditions of about 600 to 900 ° C. It is a device that takes out the energy as electricity. On the other hand, the high-temperature steam electrolysis method is a method of obtaining hydrogen and oxygen by electrolyzing high-temperature steam, and its operation principle is a reverse reaction of a solid electrolyte fuel cell. In order to put this to practical use, it is necessary to have a structure for supplying a current uniformly to a battery or a cell electrode that performs an electrolytic reaction under an operating condition of an operating temperature of about 600 to 900 ° C. and an oxidizing / reducing atmosphere. In addition, a sealing structure for preventing the gas supplied to the cell or the generated gas (particularly the generated hydrogen in the high-temperature steam electrolysis method) from leaking out is also required.

一般に高温水蒸気電解セルは、たとえば特許文献1に開示されているように水素極と酸素極とを有する。水素極は、供給される水蒸気分子と電子とを水素分子と酸素イオンに変化させる。酸素極は、供給される酸素イオンを酸素分子と電子とに変化させる。水蒸気分子は、電子に対しては絶縁性、酸素イオンに対しては導伝性を有する電解質膜を介して水素極に供給される。また、酸素イオンは、電解質膜を介して酸素極に供給される。   Generally, a high temperature steam electrolysis cell has a hydrogen electrode and an oxygen electrode as disclosed in Patent Document 1, for example. The hydrogen electrode changes the supplied water vapor molecules and electrons into hydrogen molecules and oxygen ions. The oxygen electrode changes supplied oxygen ions into oxygen molecules and electrons. The water vapor molecules are supplied to the hydrogen electrode through an electrolyte membrane that is insulative to electrons and conductive to oxygen ions. Also, oxygen ions are supplied to the oxygen electrode through the electrolyte membrane.

高温水蒸気電解反応における水蒸気は、水素極の外側から供給される。一方、酸素は、酸素極の表面から外部へ放出される。円筒型セルでは、基材と称される円筒型構造を形成する構造材料の上に、上述のセル構成材料を様々なコーティング手法により積層して高温水蒸気電解セルを形成することが多い。たとえば、水素極と同じ材料からなる多孔質基材の上に、電解質層、酸素極層をディップ法などにより、さらに積層して焼成し、円筒型セルとして使用する。   Water vapor in the high temperature steam electrolysis reaction is supplied from the outside of the hydrogen electrode. On the other hand, oxygen is released from the surface of the oxygen electrode to the outside. In a cylindrical cell, a high-temperature steam electrolysis cell is often formed by laminating the above-described cell constituent materials on a structural material forming a cylindrical structure called a base material by various coating techniques. For example, an electrolyte layer and an oxygen electrode layer are further laminated by a dipping method or the like on a porous substrate made of the same material as the hydrogen electrode, and used as a cylindrical cell.

電解装置筐体側の接続部と、多層のセラミックスからなる高温水蒸気電解セルとの接合に際しては、膨張率の調整、シール性および接合強度の確保が求められる。特にシール性および接合強度を確保するために、たとえば接合面に運転温度(たとえば800℃)以上で軟化・溶融する性質を有するガラス製パッキンを介在させて、溶融点以上に温めて溶かすことで両者を接合する方法がある。円筒型セルの接合に関する技術は、たとえば特許文献2に開示されている。
特開2006−83428号公報 特開2005−100868号公報
When joining the connection part on the electrolyzer housing side to the high-temperature steam electrolysis cell made of multilayer ceramics, it is required to adjust the expansion coefficient, to ensure the sealing property and the joining strength. In particular, in order to ensure sealability and bonding strength, for example, a glass packing having a property of softening and melting at an operating temperature (for example, 800 ° C.) or higher is interposed on the bonding surface, and both are melted by heating above the melting point. There is a method of joining. A technique relating to joining of cylindrical cells is disclosed in, for example, Patent Document 2.
JP 2006-83428 A Japanese Patent Laid-Open No. 2005-1000086

高温水蒸気電解反応における円筒型セルにおいて、円筒型セルおよび接続部を、それぞれ軸方向に垂直な断面について突き合せて接合する場合は、その強度に問題があり、製造・据付時やメンテナンスの際に、水平方向の衝撃に弱い。   In a cylindrical cell in a high-temperature steam electrolysis reaction, there is a problem in strength when the cylindrical cell and the connection part are joined to each other with respect to a cross section perpendicular to the axial direction, during manufacturing, installation and maintenance. Sensitive to horizontal impact.

接合部の強度を向上させるためには、セル及び電解装置筐体側の接続部の接合面に、ある程度の角度を持たせて嵌め合せ接合とする方法がある。しかしこの方法では、多孔質基体上に電極・電解質を設ける高温水蒸気電解セルにおいては、基材の強度が、断面に角度を持たせる削り出し加工に耐えることができず、厚みが薄いエッジ部でひび割れを生じやすい。また、運転中にセル(基材)強度の強度が低下し、接合面の周辺、すなわち基材の厚みが薄い部分でセルが破損するなどの現象により、シール性を確保することができないという問題が生じる場合がある。   In order to improve the strength of the joint portion, there is a method of fitting and joining the joint surfaces of the connection portion on the cell and electrolyzer housing side with a certain angle. However, in this method, in a high-temperature steam electrolysis cell in which an electrode / electrolyte is provided on a porous substrate, the strength of the base material cannot withstand a cutting process that gives an angle to the cross section, and the edge portion is thin. Prone to cracking. In addition, the strength of the cell (base material) decreases during operation, and the sealing property cannot be secured due to a phenomenon such as the cell being damaged at the periphery of the joint surface, that is, at the portion where the base material is thin. May occur.

接合部の強度およびシール性確保については、たとえば基材を稠密な電解質層とすることで対応することもできる。しかし、十分な強度を付与するために必要な厚みを電解質層に与えると、この部分のオーム抵抗が高くなり、水素製造効率が低下するという難点がある。   Ensuring the strength and sealing performance of the joint portion can be dealt with, for example, by making the base material a dense electrolyte layer. However, if the electrolyte layer is provided with a thickness necessary for imparting sufficient strength, the ohmic resistance of this portion is increased, and the hydrogen production efficiency is lowered.

このように、高温水蒸気電解装置または固体酸化物型燃料電池による発電装置の実用化に際しては、セルと装置筐体側の接続部との接合面におけるガスリークを防止し、接合強度を確保すること、また良好なセル特性を維持することが技術課題となっている。   As described above, in practical use of a power generator using a high-temperature steam electrolyzer or a solid oxide fuel cell, it is possible to prevent gas leakage at the joint surface between the cell and the connection portion on the device housing side, and to ensure joint strength. Maintaining good cell characteristics is a technical challenge.

そこで、本発明は、高温水蒸気電解セルまたは固体酸化物型燃料電池セルの運転条件下で、ガスリークを抑制し、適切な接合強度を確保しつつ、良好なセル特性を得ることを目的とする。   Accordingly, an object of the present invention is to obtain good cell characteristics while suppressing gas leakage and ensuring appropriate joint strength under the operating conditions of a high-temperature steam electrolysis cell or a solid oxide fuel cell.

上述の目的を達成するため、本発明は、支持体の貫通部に形成された縁部で支持されて水蒸気を電気分解する反応および水蒸気を排出する電池反応のいずれかの反応を起こさせる反応セルにおいて、電子絶縁性と酸素イオン導伝性を持つ材料で稠密に形成されて前記縁部に係合する端部およびこの端部と一体成型された中間部を備える電解質膜と、前記中間部に設けられた水素極と、前記中間部の前記水素極と反対側の面に設けられた酸素極と、を有することを特徴とする。   In order to achieve the above-described object, the present invention provides a reaction cell that is supported by an edge formed in a penetrating portion of a support to cause either a reaction for electrolyzing water vapor or a battery reaction for discharging water vapor. An electrolyte membrane having an end portion that is densely formed of a material having electronic insulating properties and oxygen ion conductivity and that engages with the edge portion, and an intermediate portion that is integrally formed with the end portion; and It has the provided hydrogen electrode and the oxygen electrode provided in the surface on the opposite side to the said hydrogen electrode of the said intermediate part, It is characterized by the above-mentioned.

また、本発明は、水蒸気を電気分解する反応および水蒸気を排出する電池反応のいずれかの反応を起こさせるを反応システムにおいて、空間を2つの領域に仕切り、これらの領域に連通する縁部で囲まれた貫通部が形成された支持体と、電子絶縁性と酸素イオン導伝性を持つ材料で稠密に形成されて前記縁部に係合する端部およびこの端部と一体成型された中間部を備える電解質膜と、前記支持体の内部に面する側の前記中間部の面に設けられた水素極と、前記中間部の前記水素極と反対側の面に設けられた酸素極と、を有することを特徴とする。   The present invention also provides a reaction system that causes either a reaction for electrolyzing water vapor or a battery reaction for discharging water vapor. The reaction system partitions a space into two regions and is surrounded by an edge that communicates with these regions. A support formed with a penetrating portion, an end portion formed densely with a material having electronic insulating properties and oxygen ion conductivity, and an intermediate portion integrally formed with the end portion engaged with the edge portion An electrolyte membrane comprising: a hydrogen electrode provided on the surface of the intermediate portion facing the inside of the support; and an oxygen electrode provided on a surface of the intermediate portion opposite to the hydrogen electrode. It is characterized by having.

また、本発明は、支持体の貫通部に形成された縁部で支持されて水蒸気を電気分解する反応および水蒸気を排出する電池反応のいずれかの反応を起こさせる反応セルの製造方法において、前記縁部に係合する端部およびこの端部と一体成型された中間部を備える電解質膜を電子絶縁性と酸素イオン導伝性を持つ材料で稠密に形成する電解質膜形成工程と、前記中間部に水素極を設ける水素極形成工程と、前記中間部の前記水素極と反対側の面に酸素極を設ける酸素極形成工程と、を有することを特徴とする。   Further, the present invention provides a method for producing a reaction cell, which is supported by an edge formed in a penetrating portion of a support and causes any one of a reaction for electrolyzing water vapor and a battery reaction for discharging water vapor. An electrolyte membrane forming step for densely forming an electrolyte membrane having an end engaging with the edge and an intermediate portion integrally formed with the end with a material having electronic insulation and oxygen ion conductivity; and the intermediate portion And a hydrogen electrode forming step of providing an oxygen electrode on a surface of the intermediate portion opposite to the hydrogen electrode.

本発明によれば、高温水蒸気電解セルまたは固体酸化物型燃料電池セルの運転条件下で、ガスリークを抑制し、適切な接合強度を確保しつつ、良好なセル特性が得られる。   ADVANTAGE OF THE INVENTION According to this invention, a favorable cell characteristic is acquired, suppressing a gas leak and ensuring appropriate joining strength on the driving | running conditions of a high temperature steam electrolysis cell or a solid oxide fuel cell.

本発明に係る反応セルの実施の形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。   Embodiments of a reaction cell according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or similar structure, and the overlapping description is abbreviate | omitted.

[第1の実施の形態]
本発明に係る反応セルの実施の形態を、図面を参照して説明する。なお、本発明に係る反応セルは、高温水蒸気電解セルもしくは固体燃料電池セルに適用できるが、本実施の形態では、高温水蒸気電解セルに適用した場合を説明する。
[First Embodiment]
Embodiments of a reaction cell according to the present invention will be described with reference to the drawings. The reaction cell according to the present invention can be applied to a high-temperature steam electrolysis cell or a solid fuel cell, but in this embodiment, a case where the reaction cell is applied to a high-temperature steam electrolysis cell will be described.

図1は、本発明による高温水蒸気電解セルの一実施形態における断面図である。   FIG. 1 is a cross-sectional view of an embodiment of a high-temperature steam electrolysis cell according to the present invention.

まず、本発明による高温水蒸気電解セルの概要から説明する。   First, the outline of the high-temperature steam electrolysis cell according to the present invention will be described.

20は、本発明による高温水蒸気電解セルであって、電気分解反応またはその逆の電池反応を行う反応部20−1と、この反応部20−1を支持体10に支持させるための接続部20−2とから構成される。   Reference numeral 20 denotes a high-temperature steam electrolysis cell according to the present invention, which includes a reaction section 20-1 that performs an electrolysis reaction or a reverse battery reaction, and a connection section 20 for supporting the reaction section 20-1 on the support 10. -2.

高温水蒸気電解セル20の反応部20−1は、片端を閉じた円筒形に形成されるとともに、電子に対して絶縁性を有し且つ酸素イオンに対して導伝性を有する電解質膜30と、この円筒形の電解質膜30の内周面側に形成された水素極40と、円筒形の電解質膜30の外周面に形成された酸素極50とを有している。   The reaction part 20-1 of the high-temperature steam electrolysis cell 20 is formed in a cylindrical shape with one end closed, and has an electrolyte membrane 30 having an insulation property for electrons and a conductivity property for oxygen ions, A hydrogen electrode 40 formed on the inner peripheral surface side of the cylindrical electrolyte membrane 30 and an oxygen electrode 50 formed on the outer peripheral surface of the cylindrical electrolyte membrane 30 are provided.

これら、水素極40、酸素極50には、給電線を介して図示しない直流電源の負極、正極をそれぞれ接続するようになっている。   A negative electrode and a positive electrode of a DC power source (not shown) are connected to the hydrogen electrode 40 and the oxygen electrode 50, respectively, through a power supply line.

さらに、高温水蒸気電解セル20の内部には水素極40と同心状に水蒸気導入管17を設けるようにしており、この水蒸気導入管17には、矢印18で示す方向に図示しない水蒸気供給室から高温水蒸気が供給されるようになっている。   Further, a steam introduction pipe 17 is provided inside the high temperature steam electrolysis cell 20 so as to be concentric with the hydrogen electrode 40, and this steam introduction pipe 17 has a high temperature from a steam supply chamber (not shown) in a direction indicated by an arrow 18. Water vapor is supplied.

このように高温水蒸気電解セル20の反応部20−1に水蒸気を供給した状態で、水素極40、酸素極50に直流電圧を印加すると、水蒸気の電気分解反応によって水素極40に水素が、酸素極50に酸素が生成される。水素極40において生成された水素は矢印19のように水蒸気導入管17と水素極40との間を通って図示しない生成水素排出室に排出され、最終的には系外に取り出される。一方、酸素極50において生成された酸素は系外に取り出される。   When a direct current voltage is applied to the hydrogen electrode 40 and the oxygen electrode 50 in a state where water vapor is supplied to the reaction unit 20-1 of the high-temperature steam electrolysis cell 20, hydrogen is added to the hydrogen electrode 40 by an electrolysis reaction of water vapor. Oxygen is generated at the pole 50. Hydrogen generated in the hydrogen electrode 40 passes between the water vapor introduction pipe 17 and the hydrogen electrode 40 as shown by an arrow 19 and is discharged into a generated hydrogen discharge chamber (not shown) and finally taken out of the system. On the other hand, oxygen generated at the oxygen electrode 50 is taken out of the system.

次に、反応部20−1および接続部20−2の詳細について説明する。   Next, the detail of the reaction part 20-1 and the connection part 20-2 is demonstrated.

前記円筒形に形成された電解質膜30は、支持体10の貫通部12の周りに形成した突起状の縁部14に係合する厚みの厚い円筒形の端部32と、この円筒形の端部32と一体成型された厚みの薄い円筒形の中間部34とから構成されている。   The electrolyte membrane 30 formed in the cylindrical shape includes a thick cylindrical end portion 32 that engages with the protruding edge portion 14 formed around the through portion 12 of the support 10, and the cylindrical end portion. A thin cylindrical intermediate portion 34 formed integrally with the portion 32 is formed.

電解質膜30は、電子絶縁性と酸素イオン導伝性を持つ材料で稠密に形成されている。この材料は、たとえばイットリア安定化ジルコニア(YSZ)である。また、ここで稠密とは、電解質膜30でのガスリークが実質的に無視できる程度の稠密度であればよい。   The electrolyte membrane 30 is densely formed of a material having electronic insulating properties and oxygen ion conductivity. This material is, for example, yttria stabilized zirconia (YSZ). Further, here, the term “dense” may be any density that allows gas leakage in the electrolyte membrane 30 to be substantially ignored.

水素極40は、たとえばニッケルとYSZのサーメットによって多孔質体として形成する。酸素極50は、中間部34の水素極40と反対側の面に設けられる。酸素極50は、たとえばランタン・ストロンチウム・マンガン系ペロブスカイト型酸化物(LSM)によって形成する。   The hydrogen electrode 40 is formed as a porous body by cermet of nickel and YSZ, for example. The oxygen electrode 50 is provided on the surface of the intermediate portion 34 opposite to the hydrogen electrode 40. The oxygen electrode 50 is formed of, for example, a lanthanum / strontium / manganese-based perovskite oxide (LSM).

酸素極50は、前述したように供給される酸素イオンを酸素分子と電子とに変化させる。高温水蒸気電解反応における水蒸気は、水素極40の外側、すなわち、支持体10の内部16から供給される。一方、酸素は、酸素極50の表面から外部へ放出される。   The oxygen electrode 50 changes the supplied oxygen ions into oxygen molecules and electrons as described above. Water vapor in the high temperature steam electrolysis reaction is supplied from the outside of the hydrogen electrode 40, that is, from the inside 16 of the support 10. On the other hand, oxygen is released from the surface of the oxygen electrode 50 to the outside.

このような高温水蒸気電解セル20を用いると、支持体10の貫通部12は、稠密な材料で形成された電解質膜30によって全体が覆われている。このため、支持体10の内部16と外部との間のガスリークが抑制される。また、支持体10に係合している電解質膜30の端部32は中間部34と一体成型されているため、高温水蒸気電解セル20と支持体10との接合強度は高い。   When such a high-temperature steam electrolysis cell 20 is used, the entire penetration portion 12 of the support 10 is covered with an electrolyte membrane 30 formed of a dense material. For this reason, the gas leak between the inside 16 of the support body 10 and the exterior is suppressed. Further, since the end portion 32 of the electrolyte membrane 30 engaged with the support 10 is integrally formed with the intermediate portion 34, the bonding strength between the high temperature steam electrolysis cell 20 and the support 10 is high.

電解質膜30の水素極40および酸素極50で挟まれる部分が薄いほど、この部分のオーム抵抗を小さくできるため好ましい。そこで、電解質膜30の水素極40および酸素極50で挟まれる部分の厚さを薄くして、端部32に適切な厚みを持たせることにより、高温水蒸気電解セル20と支持体10との接合強度を高めることができる。高温水蒸気電解セル20の各部の厚さは、たとえば、電解質膜30の中間部34が10μm程度、水素極40が1mm程度、酸素極50が20μm程度である。電解質膜30の端部32は、たとえば水素極40と同程度の厚さに形成する。   It is preferable that the portion sandwiched between the hydrogen electrode 40 and the oxygen electrode 50 of the electrolyte membrane 30 is thinner because the ohmic resistance of this portion can be reduced. Therefore, by reducing the thickness of the portion sandwiched between the hydrogen electrode 40 and the oxygen electrode 50 of the electrolyte membrane 30 and giving the end portion 32 an appropriate thickness, the high temperature steam electrolysis cell 20 and the support 10 are joined. Strength can be increased. The thickness of each part of the high-temperature steam electrolysis cell 20 is, for example, about 10 μm for the intermediate part 34 of the electrolyte membrane 30, about 1 mm for the hydrogen electrode 40, and about 20 μm for the oxygen electrode 50. The end portion 32 of the electrolyte membrane 30 is formed to have the same thickness as the hydrogen electrode 40, for example.

さらに、電解質膜30の端部32と支持体10の縁部14の係合面と縁部14が延びる方向に対して傾くように、端部32および縁部14を形成している。これにより電解質膜30の端部32は、この端部32が延びる方向で、支持体10の縁部14と重なりあう部分を有することになる。端部32を多孔質体で形成した場合には、強度が低いためこのような形状に削り出し加工することは困難である。しかし、本実施の形態では、端部32は、中間部34と同様に稠密の材料で形成されているため、このような形状への削り出し加工も容易である。   Further, the end portion 32 and the edge portion 14 are formed so as to be inclined with respect to the direction in which the end portion 32 of the electrolyte membrane 30 and the engagement surface of the edge portion 14 of the support 10 and the edge portion 14 extend. Thus, the end portion 32 of the electrolyte membrane 30 has a portion that overlaps the edge portion 14 of the support 10 in the direction in which the end portion 32 extends. When the end portion 32 is formed of a porous body, it is difficult to cut into such a shape because the strength is low. However, in the present embodiment, since the end portion 32 is formed of a dense material like the intermediate portion 34, it is easy to cut into such a shape.

電解質膜30の端部32および支持体10の縁部14の係合面と、縁部14が延びる方向との間の角度が小さいほど、端部32と縁部14との係合面積は大きくなるため、接合強度を高めることができる。しかし、この角度が小さいほど端部32と縁部14のそれぞれの先端部分の強度が小さくなってしまう。そこで、本実施の形態では、接合強度と、端部32と縁部14のそれぞれの先端部分の強度のバランスが適当になるように、この角度が25度ないし65度の角度を持つように形成している。   The smaller the angle between the engagement surface of the end portion 32 of the electrolyte membrane 30 and the edge portion 14 of the support 10 and the direction in which the edge portion 14 extends, the greater the engagement area between the end portion 32 and the edge portion 14. Therefore, the bonding strength can be increased. However, the smaller the angle, the lower the strength of the tip portions of the end portion 32 and the edge portion 14. Therefore, in the present embodiment, this angle is formed to have an angle of 25 degrees to 65 degrees so that the balance between the bonding strength and the strength of the tip portions of the end portion 32 and the edge portion 14 is appropriate. is doing.

また、電解質膜30の端部32と支持体10の縁部14の係合部には、ガラス製パッキン60を介在させてもよい。これにより、ガスシール性および接合強度を高めることができる。さらに、この係合部に、溝あるいは凹凸を設けることにより、係合部での接触面積を大きくして、接合強度を高めることもできる。   Further, a glass packing 60 may be interposed between the end portion 32 of the electrolyte membrane 30 and the engaging portion of the edge portion 14 of the support 10. Thereby, gas-sealing property and joint strength can be improved. Furthermore, by providing grooves or irregularities in the engaging portion, it is possible to increase the contact area at the engaging portion and increase the bonding strength.

次に、本実施の形態における高温水蒸気電解セル20の製造方法を説明する。   Next, the manufacturing method of the high temperature steam electrolysis cell 20 in this Embodiment is demonstrated.

まず、YSZ基材を片端閉じの円筒形に成型し、その後、必要に応じて水素極40と酸素極50とに挟まれる部分を機械加工あるいは酸による化学処理などによって薄膜化して、電解質膜30を形成する。また、水素極40と酸素極50とに挟まれる部分は、この基材を貫通する連通孔が形成されないように、一方の面から他方の面に向けた多孔質化処理を施してもよい。   First, the YSZ base material is formed into a cylindrical shape with one end closed, and then the portion sandwiched between the hydrogen electrode 40 and the oxygen electrode 50 is thinned by machining or chemical treatment with an acid, if necessary. Form. In addition, the portion sandwiched between the hydrogen electrode 40 and the oxygen electrode 50 may be subjected to a porous treatment from one surface to the other surface so that a communication hole penetrating the base material is not formed.

この電解質膜30の中間部34の内周面に、水素極40を形成し、外周面に酸素極50を形成することにより、高温水蒸気電解セル20が製造される。水素極40および酸素極50は、それぞれ、水素極40および酸素極50のいずれかの成分を有する少なくとも1種類の粒子と、電子導電性を持つ少なくとも1種類の粒子とを混合して形成してもよい。   The high temperature steam electrolysis cell 20 is manufactured by forming the hydrogen electrode 40 on the inner peripheral surface of the intermediate portion 34 of the electrolyte membrane 30 and forming the oxygen electrode 50 on the outer peripheral surface. The hydrogen electrode 40 and the oxygen electrode 50 are formed by mixing at least one kind of particle having any of the components of the hydrogen electrode 40 and the oxygen electrode 50 and at least one kind of particle having electronic conductivity. Also good.

また、基材として電解質膜30と同じ材料または酸素イオン導伝性を有するセラミック材料と、水素極40または酸素極50のいずれかを形成する成分との混合物を用いてもよい。この場合、基材は水素極40または酸素極50のいずれかの電極として機能することとなる。なお、水素イオン導伝性は、この高温水蒸気電解セル20の運転条件において有していればよい。   Further, a mixture of the same material as the electrolyte membrane 30 or a ceramic material having oxygen ion conductivity and a component forming either the hydrogen electrode 40 or the oxygen electrode 50 may be used as the base material. In this case, the base material functions as an electrode of either the hydrogen electrode 40 or the oxygen electrode 50. In addition, what is necessary is just to have hydrogen ion conductivity in the operating conditions of this high temperature steam electrolysis cell 20. FIG.

このような基材としては、たとえば水素極触媒材料であるニッケルと、酸素イオン導伝性材料であるYSZを混合したものがある。この基材を方端閉じの円筒形に成型した後に、ディップ法あるいはスプレー法などによって、電解質膜30および酸素極50を順次形成する。   As such a base material, there is, for example, a mixture of nickel, which is a hydrogen electrode catalyst material, and YSZ, which is an oxygen ion conductive material. After this base material is molded into a cylindrical shape closed at one end, the electrolyte membrane 30 and the oxygen electrode 50 are sequentially formed by dipping or spraying.

基材の酸素極50と対向する部分以外の気孔率を、酸素極50と対向する部分よりも高めてもよい。これにより、反応に寄与する部分の気孔率を高くして反応効率の低下を抑制したまま、ガスリークの発生を抑制することもできる。また、高温水蒸気電解セル20の全体としての強度を高めることもできる。   The porosity of the substrate other than the portion facing the oxygen electrode 50 may be higher than that of the portion facing the oxygen electrode 50. Thereby, generation | occurrence | production of a gas leak can also be suppressed, raising the porosity of the part which contributes to reaction, and suppressing the fall of reaction efficiency. Moreover, the intensity | strength as the whole high temperature steam electrolysis cell 20 can also be raised.

この気孔率が場所によって異なる基材は、たとえば気孔率が異なる材料をガラスなどで接合することにより形成することができる。あるいは、稠密な材料を成型した後に、反応に寄与する部分を機械加工または酸による化学処理などによって、複数の穴を開けた後に多孔質性を付与してもよい。また、気孔率が高い材料を成型した後に、反応に寄与する部分以外にスラリー状の材料を充填して焼成することで、支持体10との接合部近傍の稠密度を高めてもよい。   The base material having different porosity depending on the location can be formed by, for example, bonding materials having different porosity with glass or the like. Alternatively, after forming a dense material, a portion that contributes to the reaction may be provided with porosity after forming a plurality of holes by machining or chemical treatment with an acid. In addition, after molding a material having a high porosity, the dense density in the vicinity of the joint with the support 10 may be increased by filling and baking the slurry-like material in addition to the portion contributing to the reaction.

このように、本実施の形態の高温水蒸気電解セル、あるいは同じ形態の固体酸化物型燃料電池セルを用いると、運転条件下で、ガスリークを抑制し、適切な接合強度を確保しつつ、良好なセル特性が得られる。   As described above, when the high-temperature steam electrolysis cell of the present embodiment or the solid oxide fuel cell of the same form is used, gas leakage is suppressed under operating conditions, and an appropriate bonding strength is ensured and good. Cell characteristics are obtained.

[第2の実施の形態]
図2は、本発明に係る燃料電池セルの第2の実施の形態における縦断面図である。
[Second Embodiment]
FIG. 2 is a longitudinal sectional view of a fuel cell according to a second embodiment of the present invention.

本実施の形態の反応セルは、両端が開放された円筒形のセルであり、貫通部12が形成された一対の支持体10間に、縁部14で支持されるように構成されている。貫通部12は、対向する2箇所に、たとえば円形に形成されている。また、縁部14は、たとえば貫通部12の周辺から支持体10の外部に向かって延びた円筒形に形成されている。燃料電池セル21は、電解質膜30、水素極40および酸素極50を有している。   The reaction cell according to the present embodiment is a cylindrical cell having both ends opened, and is configured to be supported by the edge portion 14 between a pair of support bodies 10 in which the through portions 12 are formed. The penetrating part 12 is formed in, for example, a circular shape at two opposing positions. The edge portion 14 is formed in a cylindrical shape extending from the periphery of the penetrating portion 12 toward the outside of the support body 10, for example. The fuel battery cell 21 has an electrolyte membrane 30, a hydrogen electrode 40, and an oxygen electrode 50.

この燃料電池セル21は、支持体10の内部16の水素と接して、この水素を用いた電池反応を起こさせる。燃料電池セル21で発生した電流は、水素極40および酸素極50に接続された配電線配電線を介して外部に供給される。   The fuel battery cell 21 is in contact with hydrogen in the interior 16 of the support 10 to cause a battery reaction using this hydrogen. The electric current generated in the fuel battery cell 21 is supplied to the outside through a distribution line distribution line connected to the hydrogen electrode 40 and the oxygen electrode 50.

燃料電池セル21は、補強部材70を基材として形成される。本実施の形態の補強部材70は、両端開放の円筒状に形成される。この補強部材70の外側には、水素極40、電解質膜30および酸素極50が積層されている。電解質膜30は、貫通部12の縁部14に係合する端部32、および、この端部32と一体成型された中間部34を備える。燃料電池セル21の各部の厚さは、たとえば、補強部材70が1mm程度、電解質膜30の水素極40および酸素極50で挟まれた部分が10μm程度、水素極40および酸素極50が20μm程度である。   The fuel cell 21 is formed using the reinforcing member 70 as a base material. The reinforcing member 70 of the present embodiment is formed in a cylindrical shape with both ends open. On the outside of the reinforcing member 70, a hydrogen electrode 40, an electrolyte membrane 30, and an oxygen electrode 50 are stacked. The electrolyte membrane 30 includes an end portion 32 that engages with the edge portion 14 of the penetrating portion 12, and an intermediate portion 34 that is integrally molded with the end portion 32. The thickness of each part of the fuel cell 21 is, for example, about 1 mm for the reinforcing member 70, about 10 μm between the hydrogen electrode 40 and the oxygen electrode 50 of the electrolyte membrane 30, and about 20 μm for the hydrogen electrode 40 and the oxygen electrode 50. It is.

補強部材70には、すくなくとも水素極40と接する部分に、内面から連通する孔が形成されている。支持体10の内部16の水素は、補強部材70に形成された孔を通って水素極40に到達できるようになっている。なお、補強部材70の孔は、水素極40と接する部分だけでなく、補強部材70の全体に形成されていてもよい。補強部材70は、たとえば金属発泡体である。   In the reinforcing member 70, a hole communicating from the inner surface is formed at least in a portion in contact with the hydrogen electrode 40. Hydrogen in the inside 16 of the support 10 can reach the hydrogen electrode 40 through a hole formed in the reinforcing member 70. The hole of the reinforcing member 70 may be formed not only in the portion in contact with the hydrogen electrode 40 but in the entire reinforcing member 70. The reinforcing member 70 is, for example, a metal foam.

この燃料電池セル21は、たとえば金属発泡体で補強部材70を両端開放の円筒状に形成した後に、補強部材70の外側に、水素極40、電解質膜30および酸素極50を、順次、ディップ法あるいはスプレー法などによって、積層していくことにより製造することができる。   The fuel cell 21 is formed by, for example, forming a reinforcing member 70 in a cylindrical shape with both ends open with a metal foam, and then sequentially placing a hydrogen electrode 40, an electrolyte membrane 30 and an oxygen electrode 50 on the outside of the reinforcing member 70. Or it can manufacture by laminating | stacking by the spray method etc.

このような燃料電池セル21を用いると、支持体10の貫通部12は、稠密な材料で形成された電解質膜30によって全体が覆われている。このため、支持体10の内部16と外部との間のガスリークが抑制される。また、支持体10に係合している電解質膜30の端部32は中間部34と一体成型されているため、燃料電池セル21と支持体10との接合強度は高い。   When such a fuel cell 21 is used, the entire through portion 12 of the support 10 is covered with an electrolyte membrane 30 formed of a dense material. For this reason, the gas leak between the inside 16 of the support body 10 and the exterior is suppressed. Further, since the end portion 32 of the electrolyte membrane 30 engaged with the support 10 is integrally formed with the intermediate portion 34, the bonding strength between the fuel cell 21 and the support 10 is high.

また、本実施の形態の燃料電池セル21は、補強部材70を基材として形成されているため、補強部材70の材質などを適切に選択することによって所定の強度を容易に得ることができる。さらに、補強部材70で十分な強度を得ることにより、電解質膜30、酸素極および水素極50を薄くすることができるため、オーム抵抗を小さくすることが容易である。補強部材70は、電解質膜30によって支持体10や酸素極50とは電気的に絶縁されているため、本実施の形態のように金属材料を用いることもできる。   In addition, since the fuel battery cell 21 of the present embodiment is formed using the reinforcing member 70 as a base material, a predetermined strength can be easily obtained by appropriately selecting the material of the reinforcing member 70 and the like. Furthermore, by obtaining sufficient strength with the reinforcing member 70, the electrolyte membrane 30, the oxygen electrode, and the hydrogen electrode 50 can be thinned, so that it is easy to reduce the ohmic resistance. Since the reinforcing member 70 is electrically insulated from the support 10 and the oxygen electrode 50 by the electrolyte membrane 30, a metal material can be used as in the present embodiment.

このように、本実施の形態の固体酸化物型燃料電池セル、あるいは同じ形態の高温水蒸気電解セルを用いると、運転条件下で、ガスリークを抑制し、適切な接合強度を確保しつつ、良好なセル特性が得られる。   As described above, when the solid oxide fuel cell of the present embodiment or the high temperature steam electrolysis cell of the same form is used, gas leakage is suppressed under operating conditions, and an appropriate bonding strength is ensured. Cell characteristics are obtained.

[第3の実施の形態]
図3は、本発明に係る燃料電池セルの第3の実施の形態における縦断面図である。
[Third Embodiment]
FIG. 3 is a longitudinal sectional view of a fuel cell according to a third embodiment of the present invention.

本実施の形態の反応セルは、たとえば長方形の貫通部が形成された支持体10に、この貫通部の縁部14で支持されるように構成されている。燃料電池セル21は、全体として平板上に形成されていて、電解質膜30、水素極40および酸素極50を有している。この燃料電池セル21は、たとえば複数をこの燃料電池セル21に垂直な方向に所定の間隔を置いて積層され、隣り合う燃料電池セル21の間に水素または酸素を通す流路を形成した燃料電池スタックとして用いられる。   The reaction cell of the present embodiment is configured to be supported by an edge portion 14 of the through portion on a support body 10 in which, for example, a rectangular through portion is formed. The fuel cell 21 is formed on a flat plate as a whole, and has an electrolyte membrane 30, a hydrogen electrode 40, and an oxygen electrode 50. For example, a plurality of fuel cells 21 are stacked at a predetermined interval in a direction perpendicular to the fuel cells 21, and a fuel cell in which a flow path for passing hydrogen or oxygen is formed between adjacent fuel cells 21. Used as a stack.

この燃料電池セル21は、平板状の補強部材70を基材として形成される。補強部材70の一方の面には、酸素極50、電解質膜30および水素極40が順次積層されている。電解質膜30は、貫通部12の縁部14に係合する端部32、および、この端部32と一体成型された中間部34を備える。燃料電池セル21の各部の厚さは、たとえば、補強部材70が1mm程度、電解質膜30の水素極40および酸素極50で挟まれた部分が10μm程度、水素極40および酸素極50が20μm程度である。   The fuel cell 21 is formed using a flat reinforcing member 70 as a base material. On one surface of the reinforcing member 70, the oxygen electrode 50, the electrolyte membrane 30 and the hydrogen electrode 40 are sequentially laminated. The electrolyte membrane 30 includes an end portion 32 that engages with the edge portion 14 of the penetrating portion 12, and an intermediate portion 34 that is integrally molded with the end portion 32. The thickness of each part of the fuel cell 21 is, for example, about 1 mm for the reinforcing member 70, about 10 μm between the hydrogen electrode 40 and the oxygen electrode 50 of the electrolyte membrane 30, and about 20 μm for the hydrogen electrode 40 and the oxygen electrode 50. It is.

補強部材70には、すくなくとも酸素極50と接する部分に、酸素極50と反対側の面から連通する孔が形成されている。燃料電池セル21の一方の面から供給される酸素は、補強部材70に形成された孔を通って酸素極50に到達できるようになっている。なお、補強部材70の孔は、酸素極50と接する部分だけでなく、補強部材70の全体に形成されていてもよい。補強部材70は、たとえば金属発泡体である。   In the reinforcing member 70, a hole communicating with the surface opposite to the oxygen electrode 50 is formed at least in a portion in contact with the oxygen electrode 50. Oxygen supplied from one surface of the fuel battery cell 21 can reach the oxygen electrode 50 through a hole formed in the reinforcing member 70. The hole of the reinforcing member 70 may be formed not only in the portion in contact with the oxygen electrode 50 but in the entire reinforcing member 70. The reinforcing member 70 is, for example, a metal foam.

この燃料電池セル21は、たとえば金属発泡体で補強部材70を長方形の平板に形成した後に、補強部材70の一方の表面に、酸素極50、電解質膜30および水素極40を、順次、ディップ法あるいはスプレー法などによって、積層していくことにより製造することができる。   In this fuel cell 21, for example, a reinforcing member 70 is formed into a rectangular flat plate with a metal foam, and then an oxygen electrode 50, an electrolyte membrane 30 and a hydrogen electrode 40 are sequentially formed on one surface of the reinforcing member 70 by a dipping method. Or it can manufacture by laminating | stacking by the spray method etc.

このような燃料電池セル21を用いると、支持体10の貫通部は、稠密な材料で形成された電解質膜30によって全体が覆われている。このため、支持体10および燃料電池セル21で仕切られた2つの空間の間のガスリークが抑制される。また、支持体10に係合している電解質膜30の端部32は中間部34と一体成型されているため、燃料電池セル21と支持体10との接合強度は高い。   When such a fuel cell 21 is used, the entire penetration portion of the support 10 is covered with an electrolyte membrane 30 formed of a dense material. For this reason, the gas leak between the two spaces partitioned by the support 10 and the fuel cells 21 is suppressed. Further, since the end portion 32 of the electrolyte membrane 30 engaged with the support 10 is integrally formed with the intermediate portion 34, the bonding strength between the fuel cell 21 and the support 10 is high.

また、本実施の形態の燃料電池セル21は、補強部材70を基材として形成されているため、補強部材70の材質などを適切に選択することによって所定の強度を容易に得ることができる。さらに、補強部材70で十分な強度を得ることにより、電解質膜30、酸素極50および水素極40を薄くすることができるため、オーム抵抗を小さくすることが容易である。補強部材70は、電解質膜30によって支持体10や酸素極50とは電気的に絶縁されているため、本実施の形態のように金属材料を用いることもできる。   In addition, since the fuel battery cell 21 of the present embodiment is formed using the reinforcing member 70 as a base material, a predetermined strength can be easily obtained by appropriately selecting the material of the reinforcing member 70 and the like. Furthermore, by obtaining a sufficient strength with the reinforcing member 70, the electrolyte membrane 30, the oxygen electrode 50, and the hydrogen electrode 40 can be thinned, so that it is easy to reduce the ohmic resistance. Since the reinforcing member 70 is electrically insulated from the support 10 and the oxygen electrode 50 by the electrolyte membrane 30, a metal material can be used as in the present embodiment.

このように、本実施の形態の固体酸化物型燃料電池セル、あるいは同じ形態の高温水蒸気電解セルを用いると、運転条件下で、ガスリークを抑制し、適切な接合強度を確保しつつ、良好なセル特性が得られる。   As described above, when the solid oxide fuel cell of the present embodiment or the high temperature steam electrolysis cell of the same form is used, gas leakage is suppressed under operating conditions, and an appropriate bonding strength is ensured. Cell characteristics are obtained.

[他の実施の形態]
上述の各実施の形態は単なる例示であり、本発明はこれらに限定されない。また、各実施の形態の特徴を組み合わせて実施することもできる。
[Other embodiments]
The above-described embodiments are merely examples, and the present invention is not limited to these. Moreover, it can also implement combining the characteristic of each embodiment.

本発明に係る高温水蒸気電解セルの第1の実施の形態における縦断面図である。It is a longitudinal section in a 1st embodiment of a high temperature steam electrolysis cell concerning the present invention. 本発明に係る燃料電池セルの第2の実施の形態における縦断面図である。It is a longitudinal cross-sectional view in 2nd Embodiment of the fuel cell concerning this invention. 本発明に係る燃料電池セルの第3の実施の形態における縦断面図である。It is a longitudinal cross-sectional view in 3rd Embodiment of the fuel battery cell which concerns on this invention.

符号の説明Explanation of symbols

10…支持体、12…貫通部、14…縁部、16…支持体の内部、20…高温水蒸気電解セル、21…燃料電池セル、30…電解質膜、32…端部、34…中間部、40…水素極、50…酸素極、60…ガラス製パッキン、70…補強部材 DESCRIPTION OF SYMBOLS 10 ... Support body, 12 ... Through part, 14 ... Edge part, 16 ... Inside of support body, 20 ... High temperature steam electrolysis cell, 21 ... Fuel cell, 30 ... Electrolyte membrane, 32 ... End part, 34 ... Middle part, 40 ... Hydrogen electrode, 50 ... Oxygen electrode, 60 ... Glass packing, 70 ... Reinforcing member

Claims (15)

支持体の貫通部に形成された縁部で支持されて水蒸気を電気分解する反応および水蒸気を排出する電池反応のいずれかの反応を起こさせる反応セルにおいて、
電子絶縁性と酸素イオン導伝性を持つ材料で稠密に形成されて前記縁部に係合する端部およびこの端部と一体成型された中間部を備える電解質膜と、
前記中間部に設けられた水素極と、
前記中間部の前記水素極と反対側の面に設けられた酸素極と、
を有することを特徴とする反応セル。
In the reaction cell that is supported by the edge formed in the penetration part of the support and causes any one of the reaction to electrolyze water vapor and the battery reaction to discharge water vapor,
An electrolyte membrane comprising an end portion that is densely formed of a material having electronic insulating properties and oxygen ion conductivity and engages with the edge portion, and an intermediate portion integrally formed with the end portion;
A hydrogen electrode provided in the intermediate portion;
An oxygen electrode provided on a surface of the intermediate portion opposite to the hydrogen electrode;
A reaction cell characterized by comprising:
前記端部は、前記中間部よりも厚さが厚いことを特徴とする請求項1に記載の反応セル。   The reaction cell according to claim 1, wherein the end portion is thicker than the intermediate portion. 前記水素極および前記酸素極の少なくとも一方は、前記水素極および前記酸素極のいずれかと向かい合う対向部およびこの対向部よりも気孔率が小さい部分を有することを特徴とする請求項1または請求項2に記載の反応セル。   The at least one of the hydrogen electrode and the oxygen electrode has a facing portion facing either the hydrogen electrode or the oxygen electrode and a portion having a smaller porosity than the facing portion. A reaction cell according to 1. 前記水素極および前記酸素極の少なくとも一方は、前記電解質膜と同じ材料で前記電解質膜と一体成型された多孔質の基材に触媒成分を担持させたものであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の反応セル。   The at least one of the hydrogen electrode and the oxygen electrode is formed by supporting a catalyst component on a porous base material integrally formed with the electrolyte membrane using the same material as the electrolyte membrane. The reaction cell according to any one of claims 3 to 3. 前記水素極および前記酸素極の少なくとも一方は、前記水素極および前記酸素極のいずれかの成分を備えた少なくとも1種類の材料と、電子伝導性を備えた少なくとも1種類の材料とを混合した材料で形成されることを特徴とする請求項1ないし請求項3のいずれか1項に記載の反応セル。   At least one of the hydrogen electrode and the oxygen electrode is a material obtained by mixing at least one material having any of the components of the hydrogen electrode and the oxygen electrode and at least one material having electron conductivity. The reaction cell according to claim 1, wherein the reaction cell is formed by: 前記端部は、当該端部が延びる方向で前記縁部と重なり合う部分を有することを特徴とする請求項1ないし請求項5のいずれか1項に記載の反応セル。   The reaction cell according to any one of claims 1 to 5, wherein the end portion has a portion that overlaps with the edge portion in a direction in which the end portion extends. 前記端部と前記縁部との間に形成された係合部にガラス製パッキンを有することを特徴とする請求項1ないし請求項6のいずれか1項に記載の反応セル。   The reaction cell according to any one of claims 1 to 6, wherein a glass packing is provided at an engaging portion formed between the end portion and the edge portion. 前記縁部に対向する前記端部の面には、溝および凹凸の少なくとも一方が形成されていることを特徴とする請求項1ないし請求項7のいずれか1項に記載の反応セル。   The reaction cell according to any one of claims 1 to 7, wherein at least one of a groove and an unevenness is formed on a surface of the end portion facing the edge portion. 前記水素極および前記酸素極のいずれかの電極と接してこの電極と接する面とこの面の反対側の面との間に連通する孔が形成された板状の補強部材を有することを特徴とする請求項1ないし請求項8のいずれか1項に記載の反応セル。   It has a plate-like reinforcing member in contact with either one of the hydrogen electrode and the oxygen electrode and having a hole formed between a surface in contact with the electrode and a surface opposite to the surface. The reaction cell according to any one of claims 1 to 8. 水蒸気を電気分解する反応および水蒸気を排出する電池反応のいずれかの反応を起こさせるを反応システムにおいて、
空間を2つの領域に仕切り、これらの領域に連通する縁部で囲まれた貫通部が形成された支持体と、
電子絶縁性と酸素イオン導伝性を持つ材料で稠密に形成されて前記縁部に係合する端部およびこの端部と一体成型された中間部を備える電解質膜と、
前記支持体の内部に面する側の前記中間部の面に設けられた水素極と、
前記中間部の前記水素極と反対側の面に設けられた酸素極と、
を有することを特徴とする反応システム。
In the reaction system, one of a reaction for electrolyzing water vapor and a battery reaction for discharging water vapor is caused.
A support body in which a space is divided into two regions and a penetrating portion surrounded by an edge communicating with these regions is formed;
An electrolyte membrane comprising an end portion that is densely formed of a material having electronic insulating properties and oxygen ion conductivity and engages with the edge portion, and an intermediate portion integrally formed with the end portion;
A hydrogen electrode provided on the surface of the intermediate portion on the side facing the inside of the support,
An oxygen electrode provided on a surface of the intermediate portion opposite to the hydrogen electrode;
A reaction system comprising:
支持体の貫通部に形成された縁部で支持されて水蒸気を電気分解する反応および水蒸気を排出する電池反応のいずれかの反応を起こさせる反応セルの製造方法において、
前記縁部に係合する端部およびこの端部と一体成型された中間部を備える電解質膜を電子絶縁性と酸素イオン導伝性を持つ材料で稠密に形成する電解質膜形成工程と、
前記中間部に水素極を設ける水素極形成工程と、
前記中間部の前記水素極と反対側の面に酸素極を設ける酸素極形成工程と、
を有することを特徴とする反応セルの製造方法。
In the method for producing a reaction cell in which one of a reaction for electrolyzing water vapor and a battery reaction for discharging water vapor is supported by an edge formed in a through portion of the support,
An electrolyte membrane forming step of densely forming an electrolyte membrane having an end portion engaging with the edge portion and an intermediate portion integrally formed with the end portion by a material having electronic insulating properties and oxygen ion conductivity;
A hydrogen electrode forming step of providing a hydrogen electrode in the intermediate portion;
An oxygen electrode forming step of providing an oxygen electrode on the surface of the intermediate portion opposite to the hydrogen electrode;
A process for producing a reaction cell, comprising:
前記電解質膜形成工程は、前記中間部を前記端部よりも薄くなるように削る工程を有することを特徴とする請求項11に記載の反応セルの製造方法。   The method for producing a reaction cell according to claim 11, wherein the electrolyte membrane forming step includes a step of cutting the intermediate portion so as to be thinner than the end portion. 前記水素極形成工程および前記酸素極形成工程の少なくとも一方は、気孔率が一様の基材を成型した後に、この基材の前記水素極および前記酸素極のいずれかと向かい合う対向部をこの対向部以外の部分よりも気孔率を高める工程を有することを特徴とする請求項11または請求項12に記載の反応セルの製造方法。   In at least one of the hydrogen electrode forming step and the oxygen electrode forming step, after forming a base material having a uniform porosity, an opposing portion of the base material facing either the hydrogen electrode or the oxygen electrode is formed as the opposing portion. The method for producing a reaction cell according to claim 11, further comprising a step of increasing the porosity as compared with other portions. 前記水素極形成工程および前記酸素極形成工程の少なくとも一方は、気孔率が一様の基材を成型した後に、この基材の前記水素極および前記酸素極のいずれかと向かい合う対向部以外の部分の気孔率を高める工程を有することを特徴とする請求項11または請求項12に記載の反応セルの製造方法。   At least one of the hydrogen electrode forming step and the oxygen electrode forming step is a step of forming a base material having a uniform porosity and then forming a portion of the base material other than the facing portion facing either the hydrogen electrode or the oxygen electrode. The method for producing a reaction cell according to claim 11, further comprising a step of increasing porosity. 多孔質性を有する基材を成型する基材工程を有し、前記電解質膜形成工程は前記基材成型工程で成型された基材の表面に電解質膜を形成する工程であることを特徴とする請求項11ないし請求項14のいずれか1項に記載の反応セルの製造方法。   A base material step of forming a porous base material, wherein the electrolyte membrane forming step is a step of forming an electrolyte membrane on the surface of the base material molded in the base material molding step. The method for producing a reaction cell according to any one of claims 11 to 14.
JP2007204477A 2007-08-06 2007-08-06 Reaction cell, its production method, and reaction system Withdrawn JP2009041044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204477A JP2009041044A (en) 2007-08-06 2007-08-06 Reaction cell, its production method, and reaction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204477A JP2009041044A (en) 2007-08-06 2007-08-06 Reaction cell, its production method, and reaction system

Publications (1)

Publication Number Publication Date
JP2009041044A true JP2009041044A (en) 2009-02-26

Family

ID=40442101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204477A Withdrawn JP2009041044A (en) 2007-08-06 2007-08-06 Reaction cell, its production method, and reaction system

Country Status (1)

Country Link
JP (1) JP2009041044A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017055A (en) * 2009-07-09 2011-01-27 Toshiba Corp Electrochemical cell
KR101353662B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Unit cell for solid oxide electrolysis cell and stack for solid oxide electrolysis cell comprising the same
JP2017078204A (en) * 2015-10-20 2017-04-27 東京瓦斯株式会社 High temperature steam electrolytic cell and high temperature steam electrolytic system
WO2018199095A1 (en) * 2017-04-25 2018-11-01 京セラ株式会社 Solid oxide fuel cell
WO2023171297A1 (en) * 2022-03-08 2023-09-14 日本碍子株式会社 Electrochemical cell
JP7394189B1 (en) 2022-09-21 2023-12-07 日本碍子株式会社 electrochemical cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017055A (en) * 2009-07-09 2011-01-27 Toshiba Corp Electrochemical cell
KR101353662B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Unit cell for solid oxide electrolysis cell and stack for solid oxide electrolysis cell comprising the same
JP2017078204A (en) * 2015-10-20 2017-04-27 東京瓦斯株式会社 High temperature steam electrolytic cell and high temperature steam electrolytic system
WO2018199095A1 (en) * 2017-04-25 2018-11-01 京セラ株式会社 Solid oxide fuel cell
JPWO2018199095A1 (en) * 2017-04-25 2020-01-23 京セラ株式会社 Solid oxide fuel cell
WO2023171297A1 (en) * 2022-03-08 2023-09-14 日本碍子株式会社 Electrochemical cell
JP7394189B1 (en) 2022-09-21 2023-12-07 日本碍子株式会社 electrochemical cell

Similar Documents

Publication Publication Date Title
JP4794178B2 (en) Solid electrolyte fuel cell
US20040209147A1 (en) Sealing structure for a fuel cell, as well as a method for producing it, and a fuel cell with the sealing structure
WO2018096971A1 (en) Method for manufacturing fuel cell and fuel cell
US8993195B2 (en) Fuel cell and method of manufacturing the same
CA2577596C (en) Solid oxide fuel cell with a metal bearing structure
JP2009041044A (en) Reaction cell, its production method, and reaction system
JP6781188B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
WO2018154656A1 (en) Flat plate type electrochemical cell stack
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
KR102030981B1 (en) Metal-supported solid oxide fuel cell and manufacturing method
JP6835768B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6118230B2 (en) Fuel cell stack
JP7368402B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP2014506721A (en) Flat tube type solid oxide fuel cell and flat tube type solid oxide water electrolyzer
JP2003263996A (en) Solid oxide fuel cell
JP2018088392A (en) Manufacturing method of fuel cell, and fuel cell
CN110710038B (en) Electrochemical reaction battery, interconnector-electrochemical reaction single cell composite body, and method for producing electrochemical reaction battery
JP2018041569A (en) Electrochemical reaction unit, and electrochemical reaction cell stack
US20140178787A1 (en) Solid oxide fuel cell assembly and method for forming seal
JP2009129851A (en) Horizontally striped fuel battery cell, cell stack, and fuel battery
US20140178793A1 (en) Solid oxide fuel cell
JPH02168568A (en) Fuel battery with solid electrolyte
WO2018173134A1 (en) Electrochemical cell stack
WO2018167845A1 (en) Planar electrochemical cell stack
KR101606161B1 (en) Manufacturing method of a tubular metal supported solid oxide fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102