WO2023171297A1 - Electrochemical cell - Google Patents

Electrochemical cell Download PDF

Info

Publication number
WO2023171297A1
WO2023171297A1 PCT/JP2023/005517 JP2023005517W WO2023171297A1 WO 2023171297 A1 WO2023171297 A1 WO 2023171297A1 JP 2023005517 W JP2023005517 W JP 2023005517W WO 2023171297 A1 WO2023171297 A1 WO 2023171297A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
electrode layer
metal support
electrolyte layer
layer
Prior art date
Application number
PCT/JP2023/005517
Other languages
French (fr)
Japanese (ja)
Inventor
春香 千葉
俊之 中村
玄太 寺澤
誠 大森
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2023171297A1 publication Critical patent/WO2023171297A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrochemical cell.
  • the electrochemical cell described in Patent Document 1 includes a cell main body in which a first electrode layer, an electrolyte layer, and a second electrode layer are laminated in this order on the main surface of a metal support.
  • the electrolyte layer covers the first electrode layer, and its ends are connected to the main surface of the cell body.
  • An object of the present invention is to provide an electrochemical cell that can suppress damage to an electrolyte layer.
  • An electrochemical cell includes a cell main body and a metal support.
  • the cell body includes a first electrode layer, a second electrode layer, and an electrolyte layer disposed between the first electrode layer and the second electrode layer.
  • the metal support has a main surface that supports the cell body and a plurality of supply holes.
  • the electrolyte layer has a first end that covers the first side of the main surface. The first end becomes thinner as it approaches the first side in a direction parallel to the main surface.
  • FIG. 1 is a plan view of an electrolysis cell according to an embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 4 is a partially enlarged view of FIG. 2.
  • FIG. 5 is a cross-sectional view of an electrolyte layer according to modification example 4.
  • FIG. 1 is a plan view of an electrolytic cell 1 according to an embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • the electrolytic cell 1 is an example of an "electrochemical cell" according to the present invention.
  • the electrolytic cell 1 is formed into a plate shape.
  • the electrolytic cell 1 is formed into a rectangle extending in the longitudinal direction (Y-axis direction) in plan view.
  • the electrolytic cell 1 includes a cell main body 10, a metal support 20, and a channel member 30.
  • the cell main body 10 includes a hydrogen electrode layer 6 (cathode), an electrolyte layer 7, a reaction prevention layer 8, and an oxygen electrode layer 9 (anode).
  • the hydrogen electrode layer 6, the electrolyte layer 7, the reaction prevention layer 8, and the oxygen electrode layer 9 are laminated in this order from the metal support 20 side.
  • the hydrogen electrode layer 6, the electrolyte layer 7, and the oxygen electrode layer 9 are essential structures, and the reaction prevention layer 8 is an optional structure.
  • Hydrogen electrode layer 6 is arranged between metal support 20 and electrolyte layer 7. Hydrogen electrode layer 6 is supported by metal support 20 . Specifically, the hydrogen electrode layer 6 is arranged on the first main surface 20S of the metal support 20. The hydrogen electrode layer 6 covers a region of the first main surface 20S of the metal support 20 where the plurality of supply holes 21 are provided. The hydrogen electrode layer 6 may enter into each supply hole 21 .
  • the hydrogen electrode layer 6 is an example of the "first electrode layer" according to the present invention.
  • Raw material gas is supplied to the hydrogen electrode 6 through each supply hole 21 .
  • the source gas contains at least H 2 O.
  • the hydrogen electrode 6 When the source gas contains only H 2 O, the hydrogen electrode 6 generates H 2 from the source gas according to the electrochemical reaction of water electrolysis shown in equation (1) below.
  • ⁇ Hydrogen electrode 6 H 2 O + 2e - ⁇ H 2 + O 2 - (1)
  • the hydrogen electrode 6 extracts H 2 and CO from the raw material gas according to the electrochemical reaction of co-electrolysis shown in the following equations (2), (3), and (4). and O 2- is produced.
  • ⁇ Hydrogen electrode 6 CO 2 +H 2 O+4e - ⁇ CO+H 2 +2O 2-...
  • ⁇ Electrochemical reaction of H 2 O H 2 O + 2e - ⁇ H 2 + O 2 - (3)
  • ⁇ Electrochemical reaction of CO 2 CO 2 +2e - ⁇ CO + O 2 -... (4)
  • the hydrogen electrode layer 6 is made of a porous material having electron conductivity.
  • the hydrogen electrode layer 6 may have oxide ion conductivity.
  • the hydrogen electrode layer 6 is made of, for example, 8 mol% yttria-stabilized zirconia (8YSZ), calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ), gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), (La ,Sr)(Cr, Mn)O3, (La,Sr)TiO3, Sr2(Fe,Mo)2O6 , ( La , Sr) VO3 , (La,Sr) FeO3 , and among these It can be composed of a mixed material combining two or more of them, or a composite of one or more of these and NiO.
  • the porosity of the hydrogen electrode layer 6 is not particularly limited, but can be, for example, 5% or more and 70% or less.
  • the thickness of the hydrogen electrode layer 6 is not particularly limited, but may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the method for forming the hydrogen electrode layer 6 is not particularly limited, and may include a baking method, a spray coating method (thermal spray method, aerosol deposition method, aerosol gas deposition method, powder jet deposition method, particle jet deposition method, cold spray method, etc.) ), PVD method (sputtering method, pulsed laser deposition method, etc.), CVD method, etc. can be used.
  • a baking method a spray coating method (thermal spray method, aerosol deposition method, aerosol gas deposition method, powder jet deposition method, particle jet deposition method, cold spray method, etc.)
  • PVD method sputtering method, pulsed laser deposition method, etc.
  • CVD method etc.
  • Electrolyte layer 7 is arranged between hydrogen electrode layer 6 and oxygen electrode layer 9. Electrolyte layer 7 covers the entire hydrogen electrode layer 6 . In this embodiment, the electrolyte layer 7 is disposed between the hydrogen electrode layer 6 and the reaction prevention layer 8, and is connected to the hydrogen electrode layer 6 and the reaction prevention layer 8, respectively.
  • the outer peripheral portion of the electrolyte layer 7 is joined to the first main surface 20S of the metal support 20. This ensures airtightness between the hydrogen electrode layer 6 side and the oxygen electrode layer 9 side, so there is no need to separately seal between the metal support 20 and the electrolyte layer 7. Note that the outer peripheral portion of the electrolyte layer 7 is a portion of the electrolyte layer 7 that is connected to the first main surface 20S of the metal support 20.
  • the electrolyte layer 7 has a first end 71 and a second end 72.
  • the first and second ends 71 and 72 are both ends of the electrolyte layer 7 in the transverse direction (X-axis direction).
  • Each of the first and second ends 71 and 72 extends along the longitudinal direction.
  • the first end portion 71 is a portion of the outer peripheral portion of the electrolyte layer 7 that extends along the first side L1 of the first main surface 20S.
  • the second end portion 72 is a portion of the outer peripheral portion of the electrolyte layer 7 that extends along the second side L2 of the first main surface 20S.
  • the configurations of the first and second end portions 71 and 72 will be described later.
  • the electrolyte layer 7 transmits O 2 ⁇ generated in the hydrogen electrode layer 6 to the oxygen electrode layer 9.
  • the electrolyte layer 7 is made of a dense material having oxide ion conductivity.
  • the electrolyte layer 7 can be made of, for example, 8YSZ, LSGM (lanthanum gallate), GDC (gadolinium doped ceria), or the like.
  • the electrolyte layer 7 is made of a dense material that has ionic conductivity and no electronic conductivity.
  • the electrolyte layer 7 can be made of, for example, YSZ (8YSZ), GDC, ScSZ, SDC, LSGM (lanthanum gallate), or the like.
  • the porosity of the electrolyte layer 7 is not particularly limited, but can be, for example, 0.1% or more and 7% or less.
  • the thickness of the electrolyte layer 7 is not particularly limited, but may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the method for forming the electrolyte layer 7 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
  • Reaction prevention layer 8 is arranged between electrolyte layer 7 and oxygen electrode layer 9.
  • the reaction prevention layer 8 is arranged on the opposite side of the hydrogen electrode layer 6 with the electrolyte layer 7 in between.
  • the reaction prevention layer 8 is connected to the electrolyte layer 7.
  • the reaction prevention layer 8 has a function of suppressing the formation of a reaction layer with high electrical resistance due to reaction between the electrolyte layer 7 and the oxygen electrode layer 9.
  • the reaction prevention layer 8 is made of an oxide ion conductive material.
  • the reaction prevention layer 8 can be made of GDC, SDC, or the like.
  • the porosity of the reaction prevention layer 8 is not particularly limited, but may be, for example, 0.1% or more and 50% or less.
  • the thickness of the reaction prevention layer 8 is not particularly limited, but may be, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the method for forming the reaction prevention layer 8 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
  • the oxygen electrode layer 9 is arranged on the opposite side of the hydrogen electrode layer 6 with respect to the electrolyte layer 7. In this embodiment, since the electrolytic cell 1 includes the reaction prevention layer 8, the oxygen electrode layer 9 is connected to the reaction prevention layer 8. If the electrolytic cell 1 does not include the reaction prevention layer 8, the oxygen electrode layer 9 is connected onto the electrolyte layer 7.
  • the oxygen electrode layer 9 is an example of the "second electrode layer” according to the present invention.
  • the oxygen electrode layer 9 generates O 2 from O 2 ⁇ transmitted from the hydrogen electrode layer 6 through the electrolyte layer 7 according to the chemical reaction of equation (2) below.
  • ⁇ Oxygen electrode layer 9 2O 2- ⁇ O 2 +4e - (2)
  • the oxygen electrode layer 9 is made of a porous material having oxide ion conductivity and electron conductivity.
  • the oxygen electrode layer 9 is made of, for example, (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr). ) CoO 3 and an oxide ion conductive material (GDC, etc.).
  • the porosity of the oxygen electrode layer 9 is not particularly limited, but can be, for example, 20% or more and 60% or less.
  • the thickness of the oxygen electrode layer 9 is not particularly limited, but may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the method of forming the oxygen electrode layer 9 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
  • the metal support 20 supports the cell main body 10 .
  • the metal support 20 is formed into a plate shape.
  • the metal support 20 may have a flat plate shape or a curved plate shape.
  • the thickness of the metal support 20 is not particularly limited as long as it can maintain the strength of the electrolytic cell 1, and may be, for example, 0.1 mm or more and 2.0 mm or less.
  • the metal support 20 has a plurality of supply holes 21, a first main surface 20S, and a second main surface 20T.
  • the first main surface 20S is an example of the "main surface” according to the present invention.
  • Each supply hole 21 penetrates the metal support 20 from the first main surface 20S to the second main surface 20T. Each supply hole 21 opens to the first main surface 20S and the second main surface 20T. Each supply hole 21 is formed in a region of the first main surface 20S that is joined to the hydrogen electrode layer 6. Each supply hole 21 is connected to a flow path 30a formed between the metal support 20 and the flow path member 30.
  • Each supply hole 21 can be formed by mechanical processing (for example, punching process), laser processing, chemical processing (for example, etching process), or the like.
  • each supply hole 21 may be a pore within the porous metal. Therefore, each supply hole 21 does not need to be formed perpendicular to the first main surface 20S and the second main surface 20T.
  • the cell main body portion 10 is joined to the first main surface 20S.
  • the flow path member 30 is joined to the second main surface 20T.
  • the first main surface 20S is provided on the opposite side of the second main surface 20T.
  • FIG. 1 shows four sides defining the first main surface 20S.
  • the first main surface 20S is defined by a first side L1, a second side L2, a third side L3, and a fourth side L4.
  • the first main surface 20S is a region of the outer surface of the metal support 20 surrounded by the first side L1, the second side L2, the third side L3, and the fourth side L4.
  • the planar shape of the first main surface 20S is a rectangle extending in the longitudinal direction.
  • the first side L1 and the second side L2 are parallel to each other.
  • Each of the first and second sides L1 and L2 is a long side of the first main surface 20S.
  • Each of the first and second sides L1 and L2 is parallel to the longitudinal direction.
  • the third side L3 and the fourth side L4 are parallel to each other.
  • Each of the third and fourth sides L3 and L4 is a short side of the first main surface 20S.
  • Each of the third and fourth sides L3 and L4 is parallel to the lateral direction. Note that in this specification, "parallel" is a concept that includes not only parallel in the strict sense but also substantially parallel (with an inclination of 10 degrees or less).
  • the metal support 20 is made of a metal material.
  • the metal support 20 is made of an alloy material containing Cr (chromium).
  • Examples of such metal materials include Fe--Cr alloy steel (such as stainless steel) and Ni--Cr alloy steel.
  • the content of Cr in the metal support 20 is not particularly limited, but can be 4% by mass or more and 30% by mass or less.
  • the metal support 20 may contain Ti (titanium) or Zr (zirconium).
  • the content of Ti in the metal support 20 is not particularly limited, but can be set to 0.01 mol% or more and 1.0 mol% or less.
  • the content of Zr in the metal support 20 is not particularly limited, but can be set to 0.01 mol% or more and 0.4 mol% or less.
  • the metal support 20 may contain Ti as TiO 2 (titania) or Zr as ZrO 2 (zirconia).
  • the metal support 20 may have an oxide film formed by oxidation of the constituent elements of the metal support 20 on its surface.
  • a typical example of the oxide film is a chromium oxide film.
  • the oxide film partially or completely covers the surface of the metal support 20. Further, the oxide film may partially or entirely cover the inner wall surface of each supply hole 21.
  • the flow path member 30 is joined to the second main surface 20T of the metal support 20.
  • the channel member 30 forms a channel 30a between it and the metal support 20.
  • a raw material gas is supplied to the flow path 30a.
  • the raw material gas supplied to the flow path 30a is supplied to the hydrogen electrode layer 6 of the cell main body 10 via each supply hole 21 of the metal support 20.
  • the flow path member 30 can be made of an alloy material, for example.
  • the flow path member 30 may be formed of the same material as the metal support 20.
  • the channel member 30 may be substantially integral with the metal support 20.
  • the flow path member 30 has a frame 31 and an interconnector 32.
  • the frame body 31 is an annular member that surrounds the sides of the flow path 30a.
  • the frame 31 is joined to the second main surface 20T of the metal support 20.
  • the interconnector 32 is a plate-like member for electrically connecting the electrolytic cell 1 to an external power source or other electrolytic cells in series.
  • the interconnector 32 is joined to the frame 31.
  • the frame 31 and the interconnector 32 are separate members, but the frame 31 and the interconnector 32 may be integrated.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • the first end 71 is connected to the first main surface 20S of the metal support 20.
  • the first end portion 71 covers the first side L1 of the first main surface 20S. That is, the first end portion 71 covers the region of the first main surface 20S exposed from the hydrogen electrode layer 6 to the end. Thereby, heat radiation from the metal support 20 can be suppressed, so that the heat retention of the electrolytic cell 1 can be improved.
  • the first end portion 71 becomes thinner as it approaches the first side L1 in the lateral direction parallel to the first main surface 20S.
  • the first end 71 has a tip 71a that covers the first side L1, and the thickness of the tip 71a gradually decreases as it approaches the first side L1 in the lateral direction. . This can prevent damage (corner cracks, cracks, etc.) from occurring on the outer edge of the tip portion 71a.
  • the electrolytic cell 1 which has a rectangular planar shape, thermally expands and contracts more in the longitudinal direction than in the transverse direction. Therefore, a larger thermal stress is likely to be applied to a portion along the longitudinal direction of the outer peripheral portion of the electrolyte layer 7 than to a portion along the transverse direction. Therefore, by making the thickness of the first end portion 71 thinner as it approaches the first side L1, the portion of the electrolyte layer 7 that is particularly easily damaged can be effectively protected.
  • the tip portion 71a is a portion of the electrolyte layer 7 between the first reference line P1 and the second reference line P2.
  • the first reference line P1 is a straight line that passes through the first side L1 and is perpendicular to the first main surface 20S.
  • the second reference line P2 is a straight line located 4 ⁇ m inside from the first reference line P1 and parallel to the first reference line P1.
  • the thickness of the tip 71a means the height of the tip 71a in the direction perpendicular to the first main surface 20S (Z-axis direction).
  • the thickness of the tip portion 71a has a maximum value at a position where it intersects with the second reference line P2, and a minimum value at a position where it intersects with the first reference line P1.
  • the thickness of the tip portion 71a may be continuously reduced as it approaches the first side L1, or may be reduced in stages as it approaches the first side L1.
  • the outer surface of the tip portion 71a is curved convexly toward the side opposite to the first major surface 20S, but is curved convexly toward the first major surface 20S. It may be generally straight or wholly or partially curved.
  • the thickness of the portion of the first end 71 other than the tip 71a is not particularly limited.
  • the thickness of the portion other than the tip 71a may be substantially uniform, and may become smaller as it approaches the tip 71a, or may increase as it approaches the tip 71a.
  • the thickness of the tip portion 71a gradually decreases as it approaches the first side L1.
  • the configuration shown in FIG. 3 is preferably observed in all cross sections of the tip 71a, but it is sufficient if it can be observed in at least one cross section of the tip 71a. If the configuration shown in FIG. 3 can be observed even in one cross section, the heat retention of the electrolytic cell 1 can be improved at least in that portion, and damage to the outer edge of the portion can be suppressed.
  • FIG. 4 is a partially enlarged view of FIG. 2.
  • the second end 72 is connected to the first main surface 20S of the metal support 20.
  • the second end portion 72 covers the second side L2 of the first main surface 20S. That is, the second end portion 72 covers the region of the first main surface 20S exposed from the hydrogen electrode layer 6 to the end. Thereby, heat radiation from the metal support 20 can be suppressed, so that the heat retention of the electrolytic cell 1 can be improved.
  • the second end portion 72 becomes thinner as it approaches the second side L2 in the lateral direction parallel to the first main surface 20S.
  • the second end 72 has a tip 72a that covers the second side L2, and the thickness of the tip 72a gradually decreases as it approaches the second side L2 in the lateral direction. .
  • This can prevent damage (corner breaks, cracks, etc.) from occurring on the outer edge of the tip portion 72a.
  • large thermal stress is easily applied to the second end 72. Therefore, by making the thickness of the second end 72 thinner as it approaches the second side L2, part of the electrolyte layer 7 is Particularly vulnerable parts can be effectively protected.
  • the tip portion 72a is a portion of the electrolyte layer 7 between the third reference line P3 and the fourth reference line P4.
  • the third reference line P3 is a straight line that passes through the second side L2 and is perpendicular to the first main surface 20S.
  • the fourth reference line P4 is a straight line located 4 ⁇ m inside from the third reference line P3 and parallel to the third reference line P3.
  • the thickness of the tip 72a means the height of the tip 72a in the direction perpendicular to the first main surface 20S.
  • the thickness of the tip portion 72a has a maximum value at a position where it intersects with the fourth reference line P4, and a minimum value at a position where it intersects with the third reference line P3.
  • the thickness of the tip portion 72a may be continuously reduced as it approaches the second side L2, or may be reduced in stages as it approaches the second side L2.
  • the outer surface of the tip portion 72a is curved convexly toward the opposite side of the first major surface 20S; It may be generally straight or wholly or partially curved.
  • the thickness of the portion of the second end 72 other than the tip 72a is not particularly limited.
  • the thickness of the portion other than the tip 72a may be substantially uniform, and may become smaller as it approaches the tip 72a, or may increase as it approaches the tip 72a.
  • the thickness of the tip portion 72a gradually decreases as it approaches the second side L2.
  • the configuration shown in FIG. 4 is preferably observed in all cross sections of the tip 72a, but it is sufficient if it can be observed in at least one cross section of the tip 72a. If the structure shown in FIG. 4 can be observed even in one cross section, the heat retention of the electrolytic cell 1 can be improved at least in that part, and damage to the outer edge of the part can be suppressed.
  • the electrolytic cell 1 is formed into a rectangular shape extending in the longitudinal direction in plan view, but the electrolytic cell 1 is not limited to this.
  • the electrolytic cell 1 may be formed in a square shape when viewed from above, or may be formed into a rectangular shape extending in the lateral direction when viewed from above.
  • the planar shape of the first main surface 20S of the metal support 20 is a rectangle extending in the longitudinal direction, but it is not limited to this.
  • the planar shape of the first main surface 20S of the metal support 20 may be a square or a rectangle extending in the lateral direction.
  • the third and fourth ends 73 and 74 (see FIG. 1) extending along the transverse direction of the outer circumference of the electrolyte layer 7 may have the same configuration as the first and second ends 71 and 72, Alternatively, the first and second ends 71 and 72 may have different configurations.
  • the third and fourth ends 73 and 74 have the same configuration as the first and second ends 71 and 72, the heat retention of the electrolytic cell 1 can be further improved, and the electrolyte layer 7 Damage to the outer edge can be further suppressed.
  • the first end 71 of the electrolyte layer 7 may have a protrusion 71b.
  • the protrusion 71b is a portion of the first end 71 that protrudes outside the first main surface 20S of the metal support 20. That is, the protruding portion 71b is a portion of the first end portion 71 located outside the first reference line P1 (on the opposite side of the second reference line P2).
  • the protruding portion 71b is continuous with the tip portion 71a.
  • the protrusion 71b is integral with the tip 71a.
  • the protruding portion 71b covers at least a portion of the side surface 20U of the metal support 20. Thereby, the side surface 20U can be covered with the protruding portion 71b, so that heat radiation from the metal support 20 can be further suppressed.
  • the tip 71a of the first end 71 is defined by the first and second reference lines P1 and P2.
  • the second end 72 of the electrolyte layer 7 may also have a protrusion.
  • the hydrogen electrode layer 6 functions as a cathode and the oxygen electrode layer 9 functions as an anode, but even if the hydrogen electrode layer 6 functions as an anode and the oxygen electrode layer 9 functions as a cathode, good.
  • the constituent materials of the hydrogen electrode layer 6 and the oxygen electrode layer 9 are exchanged, and the raw material gas is caused to flow over the outer surface of the hydrogen electrode layer 6.
  • the electrolytic cell 1 has been described as an example of an electrochemical cell, but the electrochemical cell is not limited to an electrolytic cell.
  • An electrochemical cell consists of an element with a pair of electrodes arranged so that an electromotive force is generated from the overall redox reaction, and an element that converts chemical energy into electrical energy. It is a generic term. Therefore, electrochemical cells include, for example, fuel cells that use oxide ions or protons as carriers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

An electrochemical cell (1) comprises a cell body (10) and a metal support (20). The metal support (20) has a first main surface (20S) that supports the cell body (10). An electrolyte layer (7) has a first end section (71) that covers a first edge (L1) of the first main surface (20S). The first end section (71) becomes thinner towards the first edge (L1) in a direction parallel to the first main surface (20S).

Description

電気化学セルelectrochemical cell
 本発明は、電気化学セルに関する。 The present invention relates to an electrochemical cell.
 電気化学セル(電解セル、燃料電池など)において、金属支持体によってセル本体部を支持する構造が知られている。例えば、特許文献1に記載された電気化学セルは、第1電極層、電解質層、及び第2電極層がこの順で金属支持体の主面上に積層されたセル本体部を備える。電解質層は第1電極層を覆っており、その端部はセル本体部の主面に接続されている。 In electrochemical cells (electrolytic cells, fuel cells, etc.), a structure in which the cell body is supported by a metal support is known. For example, the electrochemical cell described in Patent Document 1 includes a cell main body in which a first electrode layer, an electrolyte layer, and a second electrode layer are laminated in this order on the main surface of a metal support. The electrolyte layer covers the first electrode layer, and its ends are connected to the main surface of the cell body.
特開2020-155337号JP2020-155337
 電気化学セルの保温性を向上させるには、金属支持体の主面を電解質層の端部で覆うことによって金属支持体からの放熱を抑制することが有効である。しかしながら、電解質層の端部を金属支持体の主面の端まで形成すると、電解質層の端部に損傷(角割れ、クラックなど)が生じやすい。 In order to improve the heat retention of an electrochemical cell, it is effective to suppress heat radiation from the metal support by covering the main surface of the metal support with the end of the electrolyte layer. However, if the end of the electrolyte layer is formed up to the end of the main surface of the metal support, damage (corner cracks, cracks, etc.) is likely to occur at the end of the electrolyte layer.
 本発明の課題は、電解質層の損傷を抑制可能な電気化学セルを提供することにある。 An object of the present invention is to provide an electrochemical cell that can suppress damage to an electrolyte layer.
 本発明の一側面に係る電気化学セルは、セル本体部と、金属支持体とを備える。セル本体部は、第1電極層、第2電極層、及び第1電極層と第2電極層との間に配置される電解質層を有する。金属支持体は、セル本体部を支持する主面、及び複数の供給孔を有する。電解質層は、主面の第1辺を覆う第1端部を有する。第1端部は、主面と平行な方向において第1辺に近づくほど薄くなっている。 An electrochemical cell according to one aspect of the present invention includes a cell main body and a metal support. The cell body includes a first electrode layer, a second electrode layer, and an electrolyte layer disposed between the first electrode layer and the second electrode layer. The metal support has a main surface that supports the cell body and a plurality of supply holes. The electrolyte layer has a first end that covers the first side of the main surface. The first end becomes thinner as it approaches the first side in a direction parallel to the main surface.
 本発明によれば、電解質層の損傷を抑制可能な電気化学セルを提供することができる。 According to the present invention, it is possible to provide an electrochemical cell that can suppress damage to an electrolyte layer.
図1は、実施形態に係る電解セルの平面図である。FIG. 1 is a plan view of an electrolysis cell according to an embodiment. 図2は、図1のA-A断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 図3は、図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図4は、図2の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 2. 図5は、変形例4に係る電解質層の断面図である。FIG. 5 is a cross-sectional view of an electrolyte layer according to modification example 4.
 (電解セル1)
 図1は、実施形態に係る電解セル1の平面図である。図2は、図1のA-A断面図である。電解セル1は、本発明に係る「電気化学セル」の一例である。
(Electrolysis cell 1)
FIG. 1 is a plan view of an electrolytic cell 1 according to an embodiment. FIG. 2 is a sectional view taken along line AA in FIG. The electrolytic cell 1 is an example of an "electrochemical cell" according to the present invention.
 電解セル1は、板状に形成される。電解セル1は、平面視において長手方向(Y軸方向)に延びる長方形に形成される。 The electrolytic cell 1 is formed into a plate shape. The electrolytic cell 1 is formed into a rectangle extending in the longitudinal direction (Y-axis direction) in plan view.
 図2に示すように、電解セル1は、セル本体部10、金属支持体20、及び流路部材30を備える。 As shown in FIG. 2, the electrolytic cell 1 includes a cell main body 10, a metal support 20, and a channel member 30.
 [セル本体部10]
 セル本体部10は、水素極層6(カソード)、電解質層7、反応防止層8、及び酸素極層9(アノード)を有する。水素極層6、電解質層7、反応防止層8、及び酸素極層9は、この順で金属支持体20側から積層されている。水素極層6、電解質層7、及び酸素極層9は必須の構成であり、反応防止層8は任意の構成である。
[Cell body part 10]
The cell main body 10 includes a hydrogen electrode layer 6 (cathode), an electrolyte layer 7, a reaction prevention layer 8, and an oxygen electrode layer 9 (anode). The hydrogen electrode layer 6, the electrolyte layer 7, the reaction prevention layer 8, and the oxygen electrode layer 9 are laminated in this order from the metal support 20 side. The hydrogen electrode layer 6, the electrolyte layer 7, and the oxygen electrode layer 9 are essential structures, and the reaction prevention layer 8 is an optional structure.
 [水素極層6]
 水素極層6は、金属支持体20と電解質層7との間に配置される。水素極層6は、金属支持体20によって支持される。詳細には、水素極層6は、金属支持体20の第1主面20S上に配置される。水素極層6は、金属支持体20の第1主面20Sのうち複数の供給孔21が設けられた領域を覆う。水素極層6は、各供給孔21内に入り込んでいてよい。水素極層6は、本発明に係る「第1電極層」の一例である。
[Hydrogen pole layer 6]
Hydrogen electrode layer 6 is arranged between metal support 20 and electrolyte layer 7. Hydrogen electrode layer 6 is supported by metal support 20 . Specifically, the hydrogen electrode layer 6 is arranged on the first main surface 20S of the metal support 20. The hydrogen electrode layer 6 covers a region of the first main surface 20S of the metal support 20 where the plurality of supply holes 21 are provided. The hydrogen electrode layer 6 may enter into each supply hole 21 . The hydrogen electrode layer 6 is an example of the "first electrode layer" according to the present invention.
 水素極6には、各供給孔21を介して原料ガスが供給される。原料ガスは、少なくともHOを含む。 Raw material gas is supplied to the hydrogen electrode 6 through each supply hole 21 . The source gas contains at least H 2 O.
 原料ガスがHOのみを含む場合、水素極6は、下記(1)式に示す水電解の電気化学反応に従って、原料ガスからHを生成する。
 ・水素極6:HO+2e→H+O2-・・・(1)
When the source gas contains only H 2 O, the hydrogen electrode 6 generates H 2 from the source gas according to the electrochemical reaction of water electrolysis shown in equation (1) below.
・Hydrogen electrode 6: H 2 O + 2e - → H 2 + O 2 - (1)
 原料ガスがHOに加えてCOを含む場合、水素極6は、下記(2)、(3)、(4)式に示す共電解の電気化学反応に従って、原料ガスからH、CO及びO2-を生成する。
 ・水素極6:CO+HO+4e→CO+H+2O2-・・・(2)
 ・HOの電気化学反応:HO+2e→H+O2-・・・(3)
 ・COの電気化学反応:CO+2e→CO+O2-・・・(4)
When the raw material gas contains CO 2 in addition to H 2 O, the hydrogen electrode 6 extracts H 2 and CO from the raw material gas according to the electrochemical reaction of co-electrolysis shown in the following equations (2), (3), and (4). and O 2- is produced.
・Hydrogen electrode 6: CO 2 +H 2 O+4e - →CO+H 2 +2O 2-... (2)
・Electrochemical reaction of H 2 O: H 2 O + 2e - → H 2 + O 2 - (3)
・Electrochemical reaction of CO 2 : CO 2 +2e - → CO + O 2 -... (4)
 水素極層6は、電子伝導性を有する多孔質材料によって構成される。水素極層6は、酸化物イオン伝導性を有していてよい。水素極層6は、例えば、8mol%イットリア安定化ジルコニア(8YSZ)、カルシア安定化ジルコニア(CSZ)、スカンジア安定化ジルコニア(ScSZ)、ガドリニウムドープセリア(GDC)、サマリウムドープセリア(SDC)、(La,Sr)(Cr,Mn)O、(La,Sr)TiO、Sr(Fe,Mo)、(La,Sr)VO、(La,Sr)FeO、及びこれらのうち2つ以上を組み合わせた混合材料、或いは、これらのうち1つ以上とNiOとの複合物によって構成することができる。 The hydrogen electrode layer 6 is made of a porous material having electron conductivity. The hydrogen electrode layer 6 may have oxide ion conductivity. The hydrogen electrode layer 6 is made of, for example, 8 mol% yttria-stabilized zirconia (8YSZ), calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ), gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), (La ,Sr)(Cr, Mn)O3, (La,Sr)TiO3, Sr2(Fe,Mo)2O6 , ( La , Sr) VO3 , (La,Sr) FeO3 , and among these It can be composed of a mixed material combining two or more of them, or a composite of one or more of these and NiO.
 水素極層6の気孔率は特に制限されないが、例えば5%以上70%以下とすることができる。水素極層6の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。 The porosity of the hydrogen electrode layer 6 is not particularly limited, but can be, for example, 5% or more and 70% or less. The thickness of the hydrogen electrode layer 6 is not particularly limited, but may be, for example, 1 μm or more and 100 μm or less.
 水素極層6の形成方法は特に制限されず、焼成法、スプレーコーティング法(溶射法、エアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法など)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを用いることができる。 The method for forming the hydrogen electrode layer 6 is not particularly limited, and may include a baking method, a spray coating method (thermal spray method, aerosol deposition method, aerosol gas deposition method, powder jet deposition method, particle jet deposition method, cold spray method, etc.) ), PVD method (sputtering method, pulsed laser deposition method, etc.), CVD method, etc. can be used.
 [電解質層7]
 電解質層7は、水素極層6及び酸素極層9の間に配置される。電解質層7は、水素極層6の全体を覆う。本実施形態において、電解質層7は、水素極層6及び反応防止層8の間に配置され、水素極層6及び反応防止層8それぞれに接続される。
[Electrolyte layer 7]
Electrolyte layer 7 is arranged between hydrogen electrode layer 6 and oxygen electrode layer 9. Electrolyte layer 7 covers the entire hydrogen electrode layer 6 . In this embodiment, the electrolyte layer 7 is disposed between the hydrogen electrode layer 6 and the reaction prevention layer 8, and is connected to the hydrogen electrode layer 6 and the reaction prevention layer 8, respectively.
 電解質層7の外周部は、金属支持体20の第1主面20Sに接合される。これによって、水素極層6側と酸素極層9側との間の気密性を確保できるため、金属支持体20と電解質層7との間を別途封止する必要がない。なお、電解質層7の外周部とは、電解質層7のうち、金属支持体20の第1主面20Sに接続される部分である。 The outer peripheral portion of the electrolyte layer 7 is joined to the first main surface 20S of the metal support 20. This ensures airtightness between the hydrogen electrode layer 6 side and the oxygen electrode layer 9 side, so there is no need to separately seal between the metal support 20 and the electrolyte layer 7. Note that the outer peripheral portion of the electrolyte layer 7 is a portion of the electrolyte layer 7 that is connected to the first main surface 20S of the metal support 20.
 図1に示すように、電解質層7は、第1端部71及び第2端部72を有する。第1及び第2端部71,72は、短手方向(X軸方向)における電解質層7の両端部である。第1及び第2端部71,72それぞれは、長手方向に沿って延びる。 As shown in FIG. 1, the electrolyte layer 7 has a first end 71 and a second end 72. The first and second ends 71 and 72 are both ends of the electrolyte layer 7 in the transverse direction (X-axis direction). Each of the first and second ends 71 and 72 extends along the longitudinal direction.
 第1端部71は、電解質層7の外周部のうち、第1主面20Sの第1辺L1に沿って延びる部分である。第2端部72は、電解質層7の外周部のうち、第1主面20Sの第2辺L2に沿って延びる部分である。第1及び第2端部71,72の構成については後述する。 The first end portion 71 is a portion of the outer peripheral portion of the electrolyte layer 7 that extends along the first side L1 of the first main surface 20S. The second end portion 72 is a portion of the outer peripheral portion of the electrolyte layer 7 that extends along the second side L2 of the first main surface 20S. The configurations of the first and second end portions 71 and 72 will be described later.
 電解質層7は、水素極層6において生成されたO2-を酸素極層9に伝達させる。電解質層7は酸化物イオン伝導性を有する緻密質材料によって構成される。電解質層7は、例えば、8YSZ、LSGM(ランタンガレート)、GDC(ガドリニウムドープセリア)などによって構成することができる。 The electrolyte layer 7 transmits O 2− generated in the hydrogen electrode layer 6 to the oxygen electrode layer 9. The electrolyte layer 7 is made of a dense material having oxide ion conductivity. The electrolyte layer 7 can be made of, for example, 8YSZ, LSGM (lanthanum gallate), GDC (gadolinium doped ceria), or the like.
 電解質層7は、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料によって構成される。電解質層7は、例えば、YSZ(8YSZ)、GDC、ScSZ、SDC、LSGM(ランタンガレート)などによって構成することができる。 The electrolyte layer 7 is made of a dense material that has ionic conductivity and no electronic conductivity. The electrolyte layer 7 can be made of, for example, YSZ (8YSZ), GDC, ScSZ, SDC, LSGM (lanthanum gallate), or the like.
 電解質層7の気孔率は特に制限されないが、例えば0.1%以上7%以下とすることができる。電解質層7の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。 The porosity of the electrolyte layer 7 is not particularly limited, but can be, for example, 0.1% or more and 7% or less. The thickness of the electrolyte layer 7 is not particularly limited, but may be, for example, 1 μm or more and 100 μm or less.
 電解質層7の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などを用いることができる。 The method for forming the electrolyte layer 7 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
 [反応防止層8]
 反応防止層8は、電解質層7及び酸素極層9の間に配置される。反応防止層8は、電解質層7を介して水素極層6の反対側に配置される。本実施形態において、反応防止層8は、電解質層7に接続される。反応防止層8は、電解質層7と酸素極層9とが反応して電気抵抗の大きい反応層が形成されることを抑制する機能を有する。
[Reaction prevention layer 8]
Reaction prevention layer 8 is arranged between electrolyte layer 7 and oxygen electrode layer 9. The reaction prevention layer 8 is arranged on the opposite side of the hydrogen electrode layer 6 with the electrolyte layer 7 in between. In this embodiment, the reaction prevention layer 8 is connected to the electrolyte layer 7. The reaction prevention layer 8 has a function of suppressing the formation of a reaction layer with high electrical resistance due to reaction between the electrolyte layer 7 and the oxygen electrode layer 9.
 反応防止層8は、酸化物イオン伝導性材料によって構成される。反応防止層8は、GDC、SDCなどによって構成することができる。 The reaction prevention layer 8 is made of an oxide ion conductive material. The reaction prevention layer 8 can be made of GDC, SDC, or the like.
 反応防止層8の気孔率は特に制限されないが、例えば0.1%以上50%以下とすることができる。反応防止層8の厚みは特に制限されないが、例えば1μm以上50μm以下とすることができる。 The porosity of the reaction prevention layer 8 is not particularly limited, but may be, for example, 0.1% or more and 50% or less. The thickness of the reaction prevention layer 8 is not particularly limited, but may be, for example, 1 μm or more and 50 μm or less.
 反応防止層8の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などを用いることができる。 The method for forming the reaction prevention layer 8 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
 [酸素極層9]
 酸素極層9は、電解質層7を基準として水素極層6の反対側に配置される。本実施形態では、電解セル1が反応防止層8を備えているため、酸素極層9は反応防止層8に接続される。電解セル1が反応防止層8を備えていない場合、酸素極層9は電解質層7上に接続される。酸素極層9は、本発明に係る「第2電極層」の一例である。
[Oxygen electrode layer 9]
The oxygen electrode layer 9 is arranged on the opposite side of the hydrogen electrode layer 6 with respect to the electrolyte layer 7. In this embodiment, since the electrolytic cell 1 includes the reaction prevention layer 8, the oxygen electrode layer 9 is connected to the reaction prevention layer 8. If the electrolytic cell 1 does not include the reaction prevention layer 8, the oxygen electrode layer 9 is connected onto the electrolyte layer 7. The oxygen electrode layer 9 is an example of the "second electrode layer" according to the present invention.
 酸素極層9は、下記(2)式の化学反応に従って、水素極層6から電解質層7を介して伝達されるO2-からOを生成する。
 ・酸素極層9:2O2-→O+4e・・・(2)
The oxygen electrode layer 9 generates O 2 from O 2− transmitted from the hydrogen electrode layer 6 through the electrolyte layer 7 according to the chemical reaction of equation (2) below.
・Oxygen electrode layer 9: 2O 2- →O 2 +4e - (2)
 酸素極層9は、酸化物イオン伝導性及び電子伝導性を有する多孔質材料によって構成される。酸素極層9は、例えば(La,Sr)(Co,Fe)O、(La,Sr)FeO、La(Ni,Fe)O、(La,Sr)CoO、及び(Sm,Sr)CoOのうち1つ以上と酸化物イオン伝導材料(GDCなど)との複合物によって構成することができる。 The oxygen electrode layer 9 is made of a porous material having oxide ion conductivity and electron conductivity. The oxygen electrode layer 9 is made of, for example, (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr). ) CoO 3 and an oxide ion conductive material (GDC, etc.).
 酸素極層9の気孔率は特に制限されないが、例えば20%以上60%以下とすることができる。酸素極層9の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。 The porosity of the oxygen electrode layer 9 is not particularly limited, but can be, for example, 20% or more and 60% or less. The thickness of the oxygen electrode layer 9 is not particularly limited, but may be, for example, 1 μm or more and 100 μm or less.
 酸素極層9の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などを用いることができる。 The method of forming the oxygen electrode layer 9 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
 [金属支持体20]
 金属支持体20は、セル本体部10を支持する。金属支持体20は、板状に形成される。金属支持体20は、平板状であってもよいし、曲板状であってもよい。金属支持体20は電解セル1の強度を保つことができればよく、その厚みは特に制限されないが、例えば0.1mm以上2.0mm以下とすることができる。
[Metal support 20]
The metal support 20 supports the cell main body 10 . The metal support 20 is formed into a plate shape. The metal support 20 may have a flat plate shape or a curved plate shape. The thickness of the metal support 20 is not particularly limited as long as it can maintain the strength of the electrolytic cell 1, and may be, for example, 0.1 mm or more and 2.0 mm or less.
 金属支持体20は、複数の供給孔21、第1主面20S、及び第2主面20Tを有する。第1主面20Sは、本発明に係る「主面」の一例である。 The metal support 20 has a plurality of supply holes 21, a first main surface 20S, and a second main surface 20T. The first main surface 20S is an example of the "main surface" according to the present invention.
 各供給孔21は、第1主面20Sから第2主面20Tまで金属支持体20を貫通する。各供給孔21は、第1主面20S及び第2主面20Tに開口する。各供給孔21は、第1主面20Sのうち水素極層6に接合される領域に形成される。各供給孔21は、金属支持体20と流路部材30との間に形成される流路30aに繋がる。 Each supply hole 21 penetrates the metal support 20 from the first main surface 20S to the second main surface 20T. Each supply hole 21 opens to the first main surface 20S and the second main surface 20T. Each supply hole 21 is formed in a region of the first main surface 20S that is joined to the hydrogen electrode layer 6. Each supply hole 21 is connected to a flow path 30a formed between the metal support 20 and the flow path member 30.
 各供給孔21は、機械加工(例えば、パンチング加工)、レーザ加工、或いは、化学加工(例えば、エッチング加工)などによって形成することができる。或いは、金属支持体20が多孔質金属によって構成される場合、各供給孔21は多孔質金属内の気孔であってよい。従って、各供給孔21は、第1主面20S及び第2主面20Tに垂直に形成されていなくてよい。 Each supply hole 21 can be formed by mechanical processing (for example, punching process), laser processing, chemical processing (for example, etching process), or the like. Alternatively, if the metal support 20 is made of porous metal, each supply hole 21 may be a pore within the porous metal. Therefore, each supply hole 21 does not need to be formed perpendicular to the first main surface 20S and the second main surface 20T.
 第1主面20Sには、セル本体部10が接合される。第2主面20Tには、流路部材30が接合される。第1主面20Sは、第2主面20Tの反対側に設けられる。 The cell main body portion 10 is joined to the first main surface 20S. The flow path member 30 is joined to the second main surface 20T. The first main surface 20S is provided on the opposite side of the second main surface 20T.
 ここで、図1には、第1主面20Sを規定する4辺が図示されている。第1主面20Sは、第1辺L1、第2辺L2、第3辺L3、及び第4辺L4によって規定される。第1主面20Sは、金属支持体20の外表面のうち、第1辺L1、第2辺L2、第3辺L3、及び第4辺L4によって囲まれた領域である。 Here, FIG. 1 shows four sides defining the first main surface 20S. The first main surface 20S is defined by a first side L1, a second side L2, a third side L3, and a fourth side L4. The first main surface 20S is a region of the outer surface of the metal support 20 surrounded by the first side L1, the second side L2, the third side L3, and the fourth side L4.
 第1主面20Sの平面形状は、長手方向に延びる長方形である。第1辺L1と第2辺L2は、互いに平行である。第1及び第2辺L1,L2それぞれは、第1主面20Sの長辺である。第1及び第2辺L1,L2それぞれは、長手方向と平行である。第3辺L3と第4辺L4は、互いに平行である。第3及び第4辺L3,L4それぞれは、第1主面20Sの短辺である。第3及び第4辺L3,L4それぞれは、短手方向と平行である。なお、本明細書において、「平行」とは、厳密な意味で平行な場合だけでなく、実質的に平行(傾きが10度以内)といえる場合をも含む概念である。 The planar shape of the first main surface 20S is a rectangle extending in the longitudinal direction. The first side L1 and the second side L2 are parallel to each other. Each of the first and second sides L1 and L2 is a long side of the first main surface 20S. Each of the first and second sides L1 and L2 is parallel to the longitudinal direction. The third side L3 and the fourth side L4 are parallel to each other. Each of the third and fourth sides L3 and L4 is a short side of the first main surface 20S. Each of the third and fourth sides L3 and L4 is parallel to the lateral direction. Note that in this specification, "parallel" is a concept that includes not only parallel in the strict sense but also substantially parallel (with an inclination of 10 degrees or less).
 金属支持体20は、金属材料によって構成される。例えば、金属支持体20は、Cr(クロム)を含有する合金材料によって構成される。このような金属材料としては、Fe-Cr系合金鋼(ステンレス鋼など)やNi-Cr系合金鋼などが挙げられる。金属支持体20におけるCrの含有率は特に制限されないが、4質量%以上30質量%以下とすることができる。 The metal support 20 is made of a metal material. For example, the metal support 20 is made of an alloy material containing Cr (chromium). Examples of such metal materials include Fe--Cr alloy steel (such as stainless steel) and Ni--Cr alloy steel. The content of Cr in the metal support 20 is not particularly limited, but can be 4% by mass or more and 30% by mass or less.
 金属支持体20は、Ti(チタン)やZr(ジルコニウム)を含有していてもよい。金属支持体20におけるTiの含有率は特に制限されないが、0.01mol%以上1.0mol%以下とすることができる。金属支持体20におけるZrの含有率は特に制限されないが、0.01mol%以上0.4mol%以下とすることができる。金属支持体20は、TiをTiO(チタニア)として含有していてもよいし、ZrをZrO(ジルコニア)として含有していてもよい。 The metal support 20 may contain Ti (titanium) or Zr (zirconium). The content of Ti in the metal support 20 is not particularly limited, but can be set to 0.01 mol% or more and 1.0 mol% or less. The content of Zr in the metal support 20 is not particularly limited, but can be set to 0.01 mol% or more and 0.4 mol% or less. The metal support 20 may contain Ti as TiO 2 (titania) or Zr as ZrO 2 (zirconia).
 金属支持体20は、金属支持体20の構成元素が酸化することによって形成される酸化皮膜を表面に有していてよい。酸化皮膜としては、例えば酸化クロム膜が代表的である。酸化皮膜は、金属支持体20の表面を部分的又は全体的に覆う。また、酸化皮膜は、各供給孔21の内壁面を部分的又は全体的に覆っていてもよい。 The metal support 20 may have an oxide film formed by oxidation of the constituent elements of the metal support 20 on its surface. A typical example of the oxide film is a chromium oxide film. The oxide film partially or completely covers the surface of the metal support 20. Further, the oxide film may partially or entirely cover the inner wall surface of each supply hole 21.
 [流路部材30]
 流路部材30は、金属支持体20の第2主面20Tに接合される。流路部材30は、金属支持体20との間に流路30aを形成する。流路30aには、原料ガスが供給される。流路30aに供給された原料ガスは、金属支持体20の各供給孔21を介して、セル本体部10の水素極層6に供給される。
[Flow path member 30]
The flow path member 30 is joined to the second main surface 20T of the metal support 20. The channel member 30 forms a channel 30a between it and the metal support 20. A raw material gas is supplied to the flow path 30a. The raw material gas supplied to the flow path 30a is supplied to the hydrogen electrode layer 6 of the cell main body 10 via each supply hole 21 of the metal support 20.
 流路部材30は、例えば、合金材料によって構成することができる。流路部材30は、金属支持体20と同様の材料によって形成されていてよい。この場合、流路部材30は、金属支持体20と実質的に一体であってよい。 The flow path member 30 can be made of an alloy material, for example. The flow path member 30 may be formed of the same material as the metal support 20. In this case, the channel member 30 may be substantially integral with the metal support 20.
 流路部材30は、枠体31及びインターコネクタ32を有する。枠体31は、流路30aの側方を取り囲む環状部材である。枠体31は、金属支持体20の第2主面20Tに接合される。インターコネクタ32は、電解セル1を外部電源又は他の電解セルと電気的に直列に接続するための板状部材である。インターコネクタ32は、枠体31に接合される。 The flow path member 30 has a frame 31 and an interconnector 32. The frame body 31 is an annular member that surrounds the sides of the flow path 30a. The frame 31 is joined to the second main surface 20T of the metal support 20. The interconnector 32 is a plate-like member for electrically connecting the electrolytic cell 1 to an external power source or other electrolytic cells in series. The interconnector 32 is joined to the frame 31.
 このように、本実施形態に係る流路部材30では、枠体31及びインターコネクタ32が別部材となっているが、枠体31及びインターコネクタ32は一体であってよい。 In this way, in the flow path member 30 according to the present embodiment, the frame 31 and the interconnector 32 are separate members, but the frame 31 and the interconnector 32 may be integrated.
 [電解質層7の第1端部71の構成]
 次に、電解質層7の第1端部71の構成について説明する。図3は、図2の部分拡大図である。
[Configuration of first end 71 of electrolyte layer 7]
Next, the configuration of the first end portion 71 of the electrolyte layer 7 will be explained. FIG. 3 is a partially enlarged view of FIG. 2.
 図3に示すように、第1端部71は、金属支持体20の第1主面20Sに接続される。第1端部71は、第1主面20Sの第1辺L1を覆う。すなわち、第1端部71は、第1主面20Sのうち水素極層6から露出した領域を端まで覆っている。これによって、金属支持体20からの放熱を抑制できるため、電解セル1の保温性を向上させることができる。 As shown in FIG. 3, the first end 71 is connected to the first main surface 20S of the metal support 20. The first end portion 71 covers the first side L1 of the first main surface 20S. That is, the first end portion 71 covers the region of the first main surface 20S exposed from the hydrogen electrode layer 6 to the end. Thereby, heat radiation from the metal support 20 can be suppressed, so that the heat retention of the electrolytic cell 1 can be improved.
 図3に示すように、第1端部71は、第1主面20Sと平行な短手方向において第1辺L1に近づくほど薄くなっている。詳細には、第1端部71は、第1辺L1を覆う先端部71aを有しており、先端部71aの厚みは、短手方向において第1辺L1に近づくに従って徐々に小さくなっている。これによって、先端部71aの外縁に損傷(角割れ、クラックなど)が生じることを抑制できる。 As shown in FIG. 3, the first end portion 71 becomes thinner as it approaches the first side L1 in the lateral direction parallel to the first main surface 20S. Specifically, the first end 71 has a tip 71a that covers the first side L1, and the thickness of the tip 71a gradually decreases as it approaches the first side L1 in the lateral direction. . This can prevent damage (corner cracks, cracks, etc.) from occurring on the outer edge of the tip portion 71a.
 ここで、平面形状が長方形である電解セル1は、短手方向に比べて長手方向において大きく熱伸縮する。そのため、電解質層7の外周部のうち長手方向に沿った部分には短手方向に沿った部分に比べて大きな熱応力がかかりやすい。従って、第1端部71の厚みを第1辺L1に近づくほど薄くすることによって、電解質層7のうち特に損傷しやすい部分を効果的に保護することができる。 Here, the electrolytic cell 1, which has a rectangular planar shape, thermally expands and contracts more in the longitudinal direction than in the transverse direction. Therefore, a larger thermal stress is likely to be applied to a portion along the longitudinal direction of the outer peripheral portion of the electrolyte layer 7 than to a portion along the transverse direction. Therefore, by making the thickness of the first end portion 71 thinner as it approaches the first side L1, the portion of the electrolyte layer 7 that is particularly easily damaged can be effectively protected.
 先端部71aは、電解質層7のうち第1基準線P1と第2基準線P2との間の部分である。第1基準線P1は、第1辺L1を通り、かつ、第1主面20Sに垂直な直線である。第2基準線P2は、第1基準線P1から4μm内側に位置し、かつ、第1基準線P1と平行な直線である。 The tip portion 71a is a portion of the electrolyte layer 7 between the first reference line P1 and the second reference line P2. The first reference line P1 is a straight line that passes through the first side L1 and is perpendicular to the first main surface 20S. The second reference line P2 is a straight line located 4 μm inside from the first reference line P1 and parallel to the first reference line P1.
 先端部71aの厚みとは、第1主面20Sに垂直な方向(Z軸方向)における先端部71aの高さを意味する。先端部71aの厚みは、第2基準線P2と交差する位置で最大値となり、第1基準線P1と交差する位置で最小値となる。先端部71aの厚みは、第1辺L1に近づくに従って連続的に小さくなっていてよく、或いは、第1辺L1に近づくに従って段階的に小さくなっていてよい。 The thickness of the tip 71a means the height of the tip 71a in the direction perpendicular to the first main surface 20S (Z-axis direction). The thickness of the tip portion 71a has a maximum value at a position where it intersects with the second reference line P2, and a minimum value at a position where it intersects with the first reference line P1. The thickness of the tip portion 71a may be continuously reduced as it approaches the first side L1, or may be reduced in stages as it approaches the first side L1.
 従って、図3において、先端部71aの外表面は、第1主面20Sの反対側に向かって凸状に湾曲しているが、第1主面20S側に向かって凸状に湾曲していてよく、直線状であってよく、或いは、全体的又は部分的に屈曲していてよい。 Therefore, in FIG. 3, the outer surface of the tip portion 71a is curved convexly toward the side opposite to the first major surface 20S, but is curved convexly toward the first major surface 20S. It may be generally straight or wholly or partially curved.
 先端部71aの厚みが第1辺L1に近づくに従って徐々に小さくなっている限り、第1端部71のうち先端部71a以外の部分の厚みは特に限られない。先端部71a以外の部分の厚みは、実質的に均一であってよく、先端部71aに近づくほど小さくなっていてよく、或いは、先端部71aに近づくほど大きくなっていてよい。 As long as the thickness of the tip 71a gradually decreases as it approaches the first side L1, the thickness of the portion of the first end 71 other than the tip 71a is not particularly limited. The thickness of the portion other than the tip 71a may be substantially uniform, and may become smaller as it approaches the tip 71a, or may increase as it approaches the tip 71a.
 以上、図3に示した一断面において、先端部71aの厚みが第1辺L1に近づくに従って徐々に小さくなっていることを説明した。図3に示した構成は、先端部71aの全ての断面において観察されることが好ましいが、先端部71aの少なくとも一断面において観察できればよい。図3に示した構成が一断面でも観察されるのであれば、少なくとも当該部分では電解セル1の保温性を向上させることができるとともに、当該部分の外縁に損傷が生じることを抑制できる。 It has been explained above that in the cross section shown in FIG. 3, the thickness of the tip portion 71a gradually decreases as it approaches the first side L1. The configuration shown in FIG. 3 is preferably observed in all cross sections of the tip 71a, but it is sufficient if it can be observed in at least one cross section of the tip 71a. If the configuration shown in FIG. 3 can be observed even in one cross section, the heat retention of the electrolytic cell 1 can be improved at least in that portion, and damage to the outer edge of the portion can be suppressed.
 [電解質層7の第2端部72の構成]
 次に、電解質層7の第2端部72の構成について説明する。図4は、図2の部分拡大図である。
[Configuration of second end 72 of electrolyte layer 7]
Next, the configuration of the second end portion 72 of the electrolyte layer 7 will be described. FIG. 4 is a partially enlarged view of FIG. 2.
 図4に示すように、第2端部72は、金属支持体20の第1主面20Sに接続される。第2端部72は、第1主面20Sの第2辺L2を覆う。すなわち、第2端部72は、第1主面20Sのうち水素極層6から露出した領域を端まで覆っている。これによって、金属支持体20からの放熱を抑制できるため、電解セル1の保温性を向上させることができる。 As shown in FIG. 4, the second end 72 is connected to the first main surface 20S of the metal support 20. The second end portion 72 covers the second side L2 of the first main surface 20S. That is, the second end portion 72 covers the region of the first main surface 20S exposed from the hydrogen electrode layer 6 to the end. Thereby, heat radiation from the metal support 20 can be suppressed, so that the heat retention of the electrolytic cell 1 can be improved.
 図4に示すように、第2端部72は、第1主面20Sと平行な短手方向において第2辺L2に近づくほど薄くなっている。詳細には、第2端部72は、第2辺L2を覆う先端部72aを有しており、先端部72aの厚みは、短手方向において第2辺L2に近づくに従って徐々に小さくなっている。これによって、先端部72aの外縁に損傷(角割れ、クラックなど)が生じることを抑制できる。上述した第1端部71と同様、第2端部72には大きな熱応力がかかりやすいため、第2端部72の厚みを第2辺L2に近づくほど薄くすることによって、電解質層7のうち特に損傷しやすい部分を効果的に保護することができる。 As shown in FIG. 4, the second end portion 72 becomes thinner as it approaches the second side L2 in the lateral direction parallel to the first main surface 20S. Specifically, the second end 72 has a tip 72a that covers the second side L2, and the thickness of the tip 72a gradually decreases as it approaches the second side L2 in the lateral direction. . This can prevent damage (corner breaks, cracks, etc.) from occurring on the outer edge of the tip portion 72a. Similar to the first end 71 described above, large thermal stress is easily applied to the second end 72. Therefore, by making the thickness of the second end 72 thinner as it approaches the second side L2, part of the electrolyte layer 7 is Particularly vulnerable parts can be effectively protected.
 先端部72aは、電解質層7のうち第3基準線P3と第4基準線P4との間の部分である。第3基準線P3は、第2辺L2を通り、かつ、第1主面20Sに垂直な直線である。第4基準線P4は、第3基準線P3から4μm内側に位置し、かつ、第3基準線P3と平行な直線である。 The tip portion 72a is a portion of the electrolyte layer 7 between the third reference line P3 and the fourth reference line P4. The third reference line P3 is a straight line that passes through the second side L2 and is perpendicular to the first main surface 20S. The fourth reference line P4 is a straight line located 4 μm inside from the third reference line P3 and parallel to the third reference line P3.
 先端部72aの厚みとは、第1主面20Sに垂直な方向における先端部72aの高さを意味する。先端部72aの厚みは、第4基準線P4と交差する位置で最大値となり、第3基準線P3と交差する位置で最小値となる。先端部72aの厚みは、第2辺L2に近づくに従って連続的に小さくなっていてよく、或いは、第2辺L2に近づくに従って段階的に小さくなっていてよい。 The thickness of the tip 72a means the height of the tip 72a in the direction perpendicular to the first main surface 20S. The thickness of the tip portion 72a has a maximum value at a position where it intersects with the fourth reference line P4, and a minimum value at a position where it intersects with the third reference line P3. The thickness of the tip portion 72a may be continuously reduced as it approaches the second side L2, or may be reduced in stages as it approaches the second side L2.
 従って、図4において、先端部72aの外表面は、第1主面20Sの反対側に向かって凸状に湾曲しているが、第1主面20S側に向かって凸状に湾曲していてよく、直線状であってよく、或いは、全体的又は部分的に屈曲していてよい。 Therefore, in FIG. 4, the outer surface of the tip portion 72a is curved convexly toward the opposite side of the first major surface 20S; It may be generally straight or wholly or partially curved.
 先端部72aの厚みが第2辺L2に近づくに従って徐々に小さくなっている限り、第2端部72のうち先端部72a以外の部分の厚みは特に限られない。先端部72a以外の部分の厚みは、実質的に均一であってよく、先端部72aに近づくほど小さくなっていてよく、或いは、先端部72aに近づくほど大きくなっていてよい。 As long as the thickness of the tip 72a gradually decreases as it approaches the second side L2, the thickness of the portion of the second end 72 other than the tip 72a is not particularly limited. The thickness of the portion other than the tip 72a may be substantially uniform, and may become smaller as it approaches the tip 72a, or may increase as it approaches the tip 72a.
 以上、図4に示した一断面において、先端部72aの厚みが第2辺L2に近づくに従って徐々に小さくなっていることを説明した。図4に示した構成は、先端部72aの全ての断面において観察されることが好ましいが、先端部72aの少なくとも一断面において観察できればよい。図4に示した構成が一断面でも観察されるのであれば、少なくとも当該部分では電解セル1の保温性を向上させることができるとともに、当該部分の外縁に損傷が生じることを抑制できる。 It has been explained above that in the cross section shown in FIG. 4, the thickness of the tip portion 72a gradually decreases as it approaches the second side L2. The configuration shown in FIG. 4 is preferably observed in all cross sections of the tip 72a, but it is sufficient if it can be observed in at least one cross section of the tip 72a. If the structure shown in FIG. 4 can be observed even in one cross section, the heat retention of the electrolytic cell 1 can be improved at least in that part, and damage to the outer edge of the part can be suppressed.
 (実施形態の変形例)
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
(Modified example of embodiment)
Although the embodiments of the present invention have been described above, the present invention is not limited to these, and various changes can be made without departing from the spirit of the present invention.
 [変形例1]
 上記実施形態において、電解セル1は、平面視において長手方向に延びる長方形に形成されることとしたが、これに限られない。電解セル1は、平面視において正方形に形成されていてよく、或いは、平面視において短手方向に延びる長方形に形成されていてよい。
[Modification 1]
In the embodiment described above, the electrolytic cell 1 is formed into a rectangular shape extending in the longitudinal direction in plan view, but the electrolytic cell 1 is not limited to this. The electrolytic cell 1 may be formed in a square shape when viewed from above, or may be formed into a rectangular shape extending in the lateral direction when viewed from above.
 [変形例2]
 上記実施形態において、金属支持体20の第1主面20Sの平面形状は、長手方向に延びる長方形であることとしたが、これに限られない。金属支持体20の第1主面20Sの平面形状は、正方形であってよく、或いは、短手方向に延びる長方形であってよい。
[Modification 2]
In the above embodiment, the planar shape of the first main surface 20S of the metal support 20 is a rectangle extending in the longitudinal direction, but it is not limited to this. The planar shape of the first main surface 20S of the metal support 20 may be a square or a rectangle extending in the lateral direction.
 [変形例3]
 電解質層7の外周部のうち短手方向に沿って延びる第3及び第4端部73,74(図1参照)は、第1及び第2端部71,72と同じ構成であってよく、或いは、第1及び第2端部71,72と異なる構成であってよい。第3及び第4端部73,74それぞれが第1及び第2端部71,72と同じ構成である場合には、電解セル1の保温性を更に向上させることができるとともに、電解質層7の外縁に損傷が生じることを更に抑制できる。
[Modification 3]
The third and fourth ends 73 and 74 (see FIG. 1) extending along the transverse direction of the outer circumference of the electrolyte layer 7 may have the same configuration as the first and second ends 71 and 72, Alternatively, the first and second ends 71 and 72 may have different configurations. When the third and fourth ends 73 and 74 have the same configuration as the first and second ends 71 and 72, the heat retention of the electrolytic cell 1 can be further improved, and the electrolyte layer 7 Damage to the outer edge can be further suppressed.
 [変形例4]
 図5に示すように、電解質層7の第1端部71は、突出部71bを有していてもよい。突出部71bは、第1端部71のうち金属支持体20の第1主面20Sの外側にはみ出た部分である。すなわち、突出部71bは、第1端部71のうち第1基準線P1より外側(第2基準線P2の反対側)に位置する部分である。突出部71bは、先端部71aに連なる。突出部71bは、先端部71aと一体である。
[Modification 4]
As shown in FIG. 5, the first end 71 of the electrolyte layer 7 may have a protrusion 71b. The protrusion 71b is a portion of the first end 71 that protrudes outside the first main surface 20S of the metal support 20. That is, the protruding portion 71b is a portion of the first end portion 71 located outside the first reference line P1 (on the opposite side of the second reference line P2). The protruding portion 71b is continuous with the tip portion 71a. The protrusion 71b is integral with the tip 71a.
 また、図5に示すように、突出部71bは、金属支持体20の側面20Uのうち少なくとも一部を覆っていることが好ましい。これによって、側面20Uを突出部71bで被覆できるため、金属支持体20からの放熱をさらに抑制することができる。 Further, as shown in FIG. 5, it is preferable that the protruding portion 71b covers at least a portion of the side surface 20U of the metal support 20. Thereby, the side surface 20U can be covered with the protruding portion 71b, so that heat radiation from the metal support 20 can be further suppressed.
 なお、第1端部71が突出部71bを有する場合であっても、第1端部71の先端部71aは、第1及び第2基準線P1,P2によって規定される。また、図示しないが、電解質層7の第2端部72も突出部を有していてもよい。 Note that even if the first end 71 has the protrusion 71b, the tip 71a of the first end 71 is defined by the first and second reference lines P1 and P2. Although not shown, the second end 72 of the electrolyte layer 7 may also have a protrusion.
 [変形例5]
 上記実施形態において、水素極層6はカソードとして機能し、酸素極層9はアノードとして機能することとしたが、水素極層6がアノードとして機能し、酸素極層9がカソードとして機能してもよい。この場合、水素極層6と酸素極層9の構成材料を入れ替えるとともに、水素極層6の外表面に原料ガスを流す。
[Modification 5]
In the above embodiment, the hydrogen electrode layer 6 functions as a cathode and the oxygen electrode layer 9 functions as an anode, but even if the hydrogen electrode layer 6 functions as an anode and the oxygen electrode layer 9 functions as a cathode, good. In this case, the constituent materials of the hydrogen electrode layer 6 and the oxygen electrode layer 9 are exchanged, and the raw material gas is caused to flow over the outer surface of the hydrogen electrode layer 6.
 [変形例6]
 上記実施形態では、電気化学セルの一例として電解セル1について説明したが、電気化学セルは電解セルに限られない。電気化学セルとは、電気エネルギーを化学エネルギーに変えるため、全体的な酸化還元反応から起電力が生じるように一対の電極が配置された素子と、化学エネルギーを電気エネルギーに変えるための素子との総称である。従って、電気化学セルには、例えば、酸化物イオン或いはプロトンをキャリアとする燃料電池が含まれる。
[Modification 6]
In the above embodiment, the electrolytic cell 1 has been described as an example of an electrochemical cell, but the electrochemical cell is not limited to an electrolytic cell. An electrochemical cell consists of an element with a pair of electrodes arranged so that an electromotive force is generated from the overall redox reaction, and an element that converts chemical energy into electrical energy. It is a generic term. Therefore, electrochemical cells include, for example, fuel cells that use oxide ions or protons as carriers.
1   セル
6   水素極層
7   電解質層
71  第1端部
71a 先端部
71b 突出部
72  第2端部
72a 先端部
73  第3端部
74  第4端部
8   反応防止層
9   酸素極層
10  セル本体部
20  金属支持体
20S 第1主面
21  供給孔
30  流路部材
30a 流路
L1~L4  第1乃至第4辺
P1~P4  第1乃至第4基準線
1 Cell 6 Hydrogen electrode layer 7 Electrolyte layer 71 First end 71a Tip 71b Projection 72 Second end 72a Tip 73 Third end 74 Fourth end 8 Reaction prevention layer 9 Oxygen electrode layer 10 Cell main body 20 Metal support 20S First main surface 21 Supply hole 30 Channel member 30a Channels L1 to L4 First to fourth sides P1 to P4 First to fourth reference lines

Claims (4)

  1.  第1電極層、第2電極層、及び前記第1電極層と前記第2電極層との間に配置される電解質層を有するセル本体部と、
     前記セル本体部を支持する主面、及び複数の供給孔を有する金属支持体と、
    を備え、
     前記電解質層は、前記主面の第1辺を覆う第1端部を有し、
     前記第1端部は、前記主面と平行な方向において前記第1辺に近づくほど薄くなっている、
    電気化学セル。
    a cell main body having a first electrode layer, a second electrode layer, and an electrolyte layer disposed between the first electrode layer and the second electrode layer;
    a metal support having a main surface supporting the cell main body and a plurality of supply holes;
    Equipped with
    The electrolyte layer has a first end that covers a first side of the main surface,
    The first end portion becomes thinner as it approaches the first side in a direction parallel to the main surface.
    electrochemical cell.
  2.  前記電解質層は、前記主面の第2辺を覆う第2端部を有し、
     前記第2辺は、前記第1辺と平行であり、
     前記第2端部は、前記主面と平行な方向において前記第2辺に近づくほど薄くなっている、
    請求項1に記載の電気化学セル。
    The electrolyte layer has a second end covering a second side of the main surface,
    the second side is parallel to the first side,
    The second end portion becomes thinner as it approaches the second side in a direction parallel to the main surface.
    An electrochemical cell according to claim 1.
  3.  前記主面は、長方形に形成され、
     前記第1辺及び前記第2辺それぞれは、前記主面の長辺である、
    請求項2に記載の電気化学セル。
    The main surface is formed into a rectangle,
    Each of the first side and the second side is a long side of the main surface,
    An electrochemical cell according to claim 2.
  4.  前記電解質層は、前記主面の外側にはみ出た突出部を有し、
     前記突出部は、前記金属支持体の側面のうち少なくとも一部を覆っている、
    請求項1乃至3のいずれかに記載の電気化学セル。
    The electrolyte layer has a protrusion protruding outside the main surface,
    The protrusion covers at least a portion of the side surface of the metal support.
    An electrochemical cell according to any one of claims 1 to 3.
PCT/JP2023/005517 2022-03-08 2023-02-16 Electrochemical cell WO2023171297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-035316 2022-03-08
JP2022035316 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171297A1 true WO2023171297A1 (en) 2023-09-14

Family

ID=87936785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005517 WO2023171297A1 (en) 2022-03-08 2023-02-16 Electrochemical cell

Country Status (1)

Country Link
WO (1) WO2023171297A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041044A (en) * 2007-08-06 2009-02-26 Toshiba Corp Reaction cell, its production method, and reaction system
WO2020218334A1 (en) * 2019-04-24 2020-10-29 京セラ株式会社 Cell, cell stack device, module, and module accommodation device
JP2021111473A (en) * 2020-01-07 2021-08-02 東芝エネルギーシステムズ株式会社 Solid oxide electrochemical stack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041044A (en) * 2007-08-06 2009-02-26 Toshiba Corp Reaction cell, its production method, and reaction system
WO2020218334A1 (en) * 2019-04-24 2020-10-29 京セラ株式会社 Cell, cell stack device, module, and module accommodation device
JP2021111473A (en) * 2020-01-07 2021-08-02 東芝エネルギーシステムズ株式会社 Solid oxide electrochemical stack

Similar Documents

Publication Publication Date Title
WO2016152923A1 (en) Electrochemical reaction unit and fuel cell stack
JP3914990B2 (en) Cylindrical fuel cell
WO2023171297A1 (en) Electrochemical cell
WO2023171299A1 (en) Electrochemical cell
WO2023171276A1 (en) Electrochemical cell
JP6839022B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7394189B1 (en) electrochemical cell
WO2023176241A1 (en) Electrochemical cell
JP7280991B1 (en) electrochemical cell
JP6527990B1 (en) Alloy member, cell stack and cell stack device
JP7394190B1 (en) electrochemical cell
JP6637939B2 (en) Fuel cell and cell stack device
WO2024101163A1 (en) Electrochemical cell
JP7333439B1 (en) electrochemical cell
WO2024122286A1 (en) Electrochemical cell
JP2019215980A (en) Metal member for electrochemical cell, cell stack, and cell stack device
JP5824204B2 (en) Fuel cell
WO2024116970A1 (en) Electrochemical cell and electrochemical cell with separator
US20240209524A1 (en) Electrochemical cell
WO2024122334A1 (en) Electrochemical cell
WO2023176242A1 (en) Electrochemical cell
WO2024122335A1 (en) Electrochemical cell
JP2019215991A (en) Alloy member, cell stack, and cell stack device
WO2023188936A1 (en) Electrochemical cell
JP6572349B1 (en) Metal member for electrochemical cell and electrochemical cell assembly using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766477

Country of ref document: EP

Kind code of ref document: A1