WO2024101163A1 - Electrochemical cell - Google Patents

Electrochemical cell Download PDF

Info

Publication number
WO2024101163A1
WO2024101163A1 PCT/JP2023/038621 JP2023038621W WO2024101163A1 WO 2024101163 A1 WO2024101163 A1 WO 2024101163A1 JP 2023038621 W JP2023038621 W JP 2023038621W WO 2024101163 A1 WO2024101163 A1 WO 2024101163A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
layer
electrode layer
deformation suppression
main surface
Prior art date
Application number
PCT/JP2023/038621
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大森
敬司 白鳥
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2024101163A1 publication Critical patent/WO2024101163A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/042Hydrogen or oxygen by electrolysis of water by electrolysis of steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrochemical cell.
  • the electrochemical cell disclosed in Patent Document 1 has an electrode layer, an electrolyte layer, and a counter electrode layer stacked in that order on a metal plate.
  • the metal plate has communication holes for supplying and exhausting air to and from the electrode layer.
  • the thermal expansion coefficient of the laminate composed of the electrode layer and electrolyte layer is smaller than that of the metal plate, when the laminate is cooled after the electrolyte layer is formed on the electrode layer, the laminate deforms together with the metal plate. As a result, there is a risk of damage to the laminate, such as cracks or chips.
  • the objective of the present invention is to prevent damage to the laminate of the electrode layer and electrolyte layer.
  • the electrochemical cell according to the first aspect of the present invention comprises a metal plate, a cell body, and a deformation suppression layer.
  • the metal plate has a first main surface, a second main surface, and a through hole communicating with the first main surface and the second main surface.
  • the cell body includes a laminate constituted by an electrode layer formed on the first main surface and an electrolyte layer formed on the electrode layer.
  • the deformation suppression layer is formed on the second main surface.
  • the thermal expansion coefficient of the laminate is smaller than the thermal expansion coefficient of the metal plate.
  • the thermal expansion coefficient of the deformation suppression layer is smaller than the thermal expansion coefficient of the metal plate.
  • the electrochemical cell according to the second aspect of the present invention is the electrochemical cell according to the first aspect, in which the deformation suppression layer covers only a portion of the second main surface.
  • the electrochemical cell according to the third aspect of the present invention is the electrochemical cell according to the first or second aspect, in which the cell body has an opposing electrode layer disposed on the opposite side of the electrode layer with respect to the electrolyte layer, and the thickness of the deformation suppression layer is equal to or less than the thickness of the cell body.
  • the electrochemical cell according to the fourth aspect of the present invention is related to any one of the first to third aspects and further comprises a flow path member for forming a gas flow path between the metal plate and the flow path member, and a joint for joining the metal plate and the flow path member.
  • a flow path member for forming a gas flow path between the metal plate and the flow path member
  • a joint for joining the metal plate and the flow path member.
  • the ratio of the width of the joint to the sum of the thicknesses of the metal plate, the cell main body, and the deformation suppression layer is 0.05 or more and 1.0 or less.
  • the electrochemical cell according to the fourth aspect of the present invention is related to any one of the first to fourth aspects and further includes a flow path member for forming a gas flow path between the metal plate.
  • the deformation suppression layer is made of an insulating material.
  • the electrochemical cell according to the fifth aspect of the present invention relates to any one of the first to fourth aspects, in which the deformation suppression layer is made of a conductive material, and a conductive portion is disposed within the communication hole to electrically connect the deformation suppression layer and the electrode layer.
  • the present invention makes it possible to suppress damage to the laminate of the electrode layer and electrolyte layer.
  • FIG. 1 is a cross-sectional view of an electrolysis cell according to an embodiment.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 4 is a cross-sectional view of an electrolysis cell according to a first modified example.
  • electrolytic cell an example of an electrochemical cell
  • SOEC ceramic solid oxide electrolytic cell
  • electrolytic cell the solid oxide electrolytic cell
  • FIG. 1 is a cross-sectional view of an electrolytic cell 1 according to an embodiment.
  • the electrolytic cell 1 includes a metal plate 10, a cell body 20, a deformation suppression layer 30, and a flow path member 40.
  • the metal plate 10 supports the cell main body 20.
  • the metal plate 10 is formed in a plate shape.
  • the metal plate 10 may be flat or curved.
  • the metal plate 10 only needs to be able to support the cell main body 20, and the thickness of the metal plate 10 is not particularly limited, but may be, for example, 0.1 mm or more and 2.0 mm or less.
  • the metal plate 10 is made of a metal material.
  • the metal plate 10 is made of an alloy material containing Cr (chromium).
  • Such metal materials include Fe-Cr alloy steel (stainless steel, etc.) and Ni-Cr alloy steel.
  • the Cr content in the metal plate 10 is not particularly limited, but can be 4% by mass or more and 30% by mass or less.
  • the metal plate 10 may contain Ti (titanium) or Zr (zirconium).
  • the content of Ti in the metal plate 10 is not particularly limited, but may be 0.01 mol% or more and 1.0 mol% or less.
  • the content of Zr in the metal plate 10 is not particularly limited, but may be 0.01 mol% or more and 0.4 mol% or less.
  • the metal plate 10 may contain Ti as TiO2 (titania) or Zr as Zr (zirconium).
  • the metal plate 10 may have a chromium oxide film on its surface.
  • the chromium oxide film covers at least a portion of the surface of the metal plate 10.
  • the chromium oxide film may cover at least a portion of the surface of the metal plate 10, but may also cover substantially the entire surface.
  • the thermal expansion coefficient of the metal plate 10 is larger than the thermal expansion coefficient of the laminate 20a described below and is also larger than the thermal expansion coefficient of the deformation suppression layer 30.
  • the value of the thermal expansion coefficient of the metal plate 10 is not particularly limited, but can be, for example, 10 ⁇ 10 ⁇ 6 /°C or more and 18 ⁇ 10 ⁇ 6 /°C or less.
  • the metal plate 10 has a first main surface 11, a second main surface 12, and a plurality of communicating holes 13.
  • a cell main body 20 is disposed on the first main surface 11 of the metal plate 10.
  • the second main surface 12 of the metal plate 10 is provided on the opposite side to the first main surface 11.
  • a deformation suppression layer 30 is formed on the second main surface 12 of the metal plate 10.
  • a flow path member 40 is bonded to the second main surface 12 of the metal plate 10.
  • the multiple communication holes 13 are formed in an area corresponding to the hydrogen electrode layer 21 described below. Each communication hole 13 communicates with the first main surface 11 and the second main surface 12. Each communication hole 13 opens to the first main surface 11 and the second main surface 12, respectively. The opening of each communication hole 13 on the first main surface 11 side is covered by the hydrogen electrode layer 21. In this embodiment, the inside of each communication hole 13 is hollow. However, a portion of the hydrogen electrode layer 21 may penetrate into each communication hole 13.
  • the area of the communication hole 13 in plan view can be, for example, 0.00005 mm2 or more and 1 mm2 or less.
  • the diameter of the communication hole 13 can be, for example, 10 ⁇ m or more and 1000 ⁇ m or less.
  • the shape of the communication hole 13 in plan view may be rectangular.
  • the communication holes 13 can be formed by mechanical processing (e.g., punching), laser processing, or chemical processing (e.g., etching).
  • the metal plate 10 may be made of a porous metal having a mesh-like pore.
  • the metal plate 10 may have a chromium oxide film covering the surface.
  • the chromium oxide film may cover at least a portion of the surface of the metal plate 10, but may also cover the entire surface.
  • the chromium oxide film may also cover the inner wall surface of the communication hole 13.
  • the chromium oxide film contains chromium oxide as its main component.
  • "Containing chromium oxide as its main component” means that chromium oxide accounts for 70% by weight or more of the entire chromium oxide film.
  • the cell body 20 1, the cell body 20 is disposed on the first main surface 11 of the metal plate 10.
  • the cell body 20 has a hydrogen electrode layer 21 (cathode), an electrolyte layer 22, a reaction prevention layer 23, and an oxygen electrode layer 24 (anode).
  • the cell body 20 includes a laminate 20a constituted by the hydrogen electrode layer 21 and the electrolyte layer 22.
  • the hydrogen electrode layer 21 is an example of an "electrode layer” according to the present invention
  • the oxygen electrode layer 24 is an example of a "counter electrode layer” according to the present invention.
  • the hydrogen electrode layer 21, electrolyte layer 22, reaction prevention layer 23, and oxygen electrode layer 24 are stacked in this order from the metal plate 10 side.
  • the cell body 20 does not necessarily have to have the reaction prevention layer 23.
  • the thermal expansion coefficient of the laminate 20a is smaller than the thermal expansion coefficient of the metal plate 10.
  • the value of the thermal expansion coefficient of the laminate 20a is not particularly limited, but can be, for example, 9 ⁇ 10 ⁇ 6 /° C. or more and 13 ⁇ 10 ⁇ 6 /° C. or less.
  • the thermal expansion coefficient of the laminate 20a is calculated based on the following formula (A).
  • Thermal expansion coefficient of laminate 20a (thermal expansion coefficient of hydrogen electrode layer 21 x thickness of hydrogen electrode layer 21 x Young's modulus of hydrogen electrode layer 21 + thermal expansion coefficient of electrolyte layer 22 x thickness of electrolyte layer 22 x Young's modulus of electrolyte layer 22) ⁇ (thickness of hydrogen electrode layer 21 x Young's modulus of hydrogen electrode layer 21 + thickness of electrolyte layer 22 x Young's modulus of electrolyte layer 22) ... (A)
  • the hydrogen electrode layer 21 is formed on the first main surface 11 of the metal plate 10.
  • the hydrogen electrode layer 21 is provided so as to cover an area of the metal plate 10 in which the plurality of communication holes 13 are provided. A portion of the hydrogen electrode layer 21 may extend into each communication hole 13 of the metal support 10.
  • a source gas is supplied to the hydrogen electrode layer 21 through each communication hole 13 of the metal plate 10.
  • the source gas contains at least H 2 O.
  • the hydrogen electrode layer 21 generates H 2 from the source gas in accordance with the electrochemical reaction of water electrolysis shown in the following formula (1).
  • Hydrogen electrode layer 6 H 2 O+2e ⁇ ⁇ H 2 +O 2 ⁇ (1)
  • the hydrogen electrode layer 21 produces H 2 , CO, and O 2 ⁇ from the source gas in accordance with the co-electrolytic electrochemical reaction shown in formula (2) below.
  • Hydrogen electrode layer 21 CO 2 + H 2 O + 4e ⁇ ⁇ CO + H 2 + 2O 2 ⁇ (2)
  • the hydrogen electrode layer 21 is made of a conductive porous material.
  • the hydrogen electrode layer 21 may have oxide ion conductivity.
  • the hydrogen electrode layer 21 may be made of, for example, 8 mol % yttria-stabilized zirconia (8YSZ), calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ), gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), (La, Sr) (Cr, Mn) O 3 , (La, Sr) TiO 3 , Sr 2 (Fe, Mo) 2 O 6 , (La, Sr) VO 3 , (La, Sr) FeO 3 , a mixed material of two or more of these, or a composite material of one or more of these and NiO.
  • 8YSZ 8 mol % yttria-stabilized zirconia
  • CSZ calcia-stabil
  • the porosity of the hydrogen electrode layer 21 is not particularly limited, but may be, for example, 5% to 70%.
  • the thickness of the hydrogen electrode layer 21 is not particularly limited, but may be, for example, 1 ⁇ m to 100 ⁇ m.
  • the thermal expansion coefficient of the hydrogen electrode layer 21 is not particularly limited, but may be, for example, 10 ⁇ 10 ⁇ 6 /° C. to 13 ⁇ 10 ⁇ 6 /° C.
  • the Young's modulus of the hydrogen electrode layer 21 is not particularly limited, but may be, for example, 50 GPa to 200 GPa.
  • the thickness of the hydrogen electrode layer 21 is obtained by arithmetically averaging the thicknesses of the hydrogen electrode layer 21 measured at three locations that divide the hydrogen electrode layer 21 into four equal parts in the plane direction on a cross section along the thickness direction of the hydrogen electrode layer 21.
  • the thermal expansion coefficient of the hydrogen electrode layer 21 is obtained by separating the electrolyte layer 22 from the hydrogen electrode layer 21 by micromachining using a focused ion beam (FIB) device, and then measuring the lattice expansion of the hydrogen electrode layer 21 using a high-temperature X-ray diffraction (XRD) device.
  • FIB focused ion beam
  • the method for forming the hydrogen electrode layer 21 is not particularly limited, and may be a sintering method, a spray coating method (thermal spraying, aerosol deposition, aerosol gas deposition, powder jet deposition, particle jet deposition, cold spray, etc.), a PVD method (sputtering, pulsed laser deposition, etc.), a CVD method, etc.
  • the electrolyte layer 22 is disposed between the hydrogen electrode layer 21 and the oxygen electrode layer 24.
  • the electrolyte layer 22 is interposed between the hydrogen electrode layer 21 and the reaction prevention layer 23.
  • the electrolyte layer 22 is disposed so as to cover the entire hydrogen electrode layer 21.
  • the outer periphery of the electrolyte layer 22 is bonded to the first main surface 11 of the metal plate 10. This ensures airtightness between the hydrogen electrode layer 21 side and the oxygen electrode layer 24 side, eliminating the need for a separate seal between the metal plate 10 and the electrolyte layer 22.
  • the electrolyte layer 22 transfers O 2- generated in the hydrogen electrode layer 21 to the oxygen electrode layer 24.
  • the electrolyte layer 22 is a dense body having oxide ion conductivity.
  • oxide ion conductive materials include YSZ (yttria stabilized zirconia, for example, 8YSZ), GDC (gadolinium doped ceria), ScSZ (scandia stabilized zirconia), SDC (samarium doped ceria), LSGM (lanthanum gallate), and composite materials thereof.
  • the porosity of the electrolyte layer 22 is not particularly limited, but may be, for example, 0.1% or more and 7% or less.
  • the thickness of the electrolyte layer 22 is not particularly limited, but may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the value of the thermal expansion coefficient of the electrolyte layer 22 is not particularly limited, but may be, for example, 9 ⁇ 10 ⁇ 6 /° C. or more and 12 ⁇ 10 ⁇ 6 /° C. or less.
  • the value of the Young's modulus of the electrolyte layer 22 is not particularly limited, but may be, for example, 150 GPa or more and 250 GPa or less.
  • the thickness of the electrolyte layer 22 is obtained by arithmetically averaging the thicknesses of the electrolyte layer 22 measured at three points that divide the electrolyte layer 22 into four equal parts in the surface direction on a cross section along the thickness direction of the electrolyte layer 22.
  • the thermal expansion coefficient of the electrolyte layer 22 is obtained by sequentially separating the oxygen electrode layer 24 and the reaction prevention layer 23 from the electrolyte layer 22 by micromachining using an FIB device, and then measuring the lattice expansion of the electrolyte layer 22 using an XRD device.
  • the electrolyte layer 22 is formed by a method including a high-temperature process.
  • the high-temperature process is a process in which all or part of at least one of the metal plate 10, the hydrogen electrode layer 21, and the electrolyte layer 22 is heated to 100°C or higher.
  • methods including a high-temperature process include a baking method, a spray coating method, a PVD method, and a CVD method.
  • reaction prevention layer 23 is disposed on the electrolyte layer 22.
  • the reaction prevention layer 23 is interposed between the electrolyte layer 22 and the oxygen electrode layer 24.
  • the reaction prevention layer 23 prevents the constituent material of the oxygen electrode layer 24 from reacting with the constituent material of the electrolyte layer 22 to form a reaction layer having a high electrical resistance.
  • the reaction prevention layer 23 is made of a material having oxide ion conductivity.
  • the reaction prevention layer 23 can be made of a ceria-based material such as GDC or SDC.
  • the porosity of the reaction prevention layer 23 is not particularly limited, but may be, for example, 0% to 50%.
  • the thickness of the reaction prevention layer 23 is not particularly limited, but may be, for example, 3 ⁇ m to 50 ⁇ m.
  • the thermal expansion coefficient of the reaction prevention layer 23 is not particularly limited, but may be, for example, 9 ⁇ 10 ⁇ 6 /° C. to 13 ⁇ 10 ⁇ 6 /° C.
  • the reaction prevention layer 23 is formed by a method including a high-temperature process.
  • methods including a high-temperature process include a baking method, a spray coating method, a PVD method, and a CVD method.
  • the oxygen electrode layer 24 is disposed on the opposite side of the hydrogen electrode layer 21 with respect to the electrolyte layer 22. In this embodiment, since the reaction prevention layer 23 is disposed between the electrolyte layer 22 and the oxygen electrode layer 24, the oxygen electrode layer 24 is connected to the reaction prevention layer 23. If the reaction prevention layer 23 is not disposed between the electrolyte layer 22 and the oxygen electrode layer 24, the oxygen electrode layer 24 is connected to the electrolyte layer 22.
  • the oxygen electrode layer 24 produces O 2 from O 2 ⁇ transferred from the hydrogen electrode layer 21 via the electrolyte layer 22 in accordance with the chemical reaction of the following formula (3).
  • Oxygen electrode layer 24 2O 2 ⁇ ⁇ O 2 +4e ⁇ (3)
  • the oxygen electrode layer 24 is made of a porous material having oxide ion conductivity and electrical conductivity, and may be made of a composite material of one or more of (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr) CoO3 and an oxide ion conductive material (such as GDC).
  • the porosity of the oxygen electrode layer 24 is not particularly limited, but may be, for example, 20% to 60%.
  • the thickness of the oxygen electrode layer 24 is not particularly limited, but may be, for example, 1 ⁇ m to 100 ⁇ m.
  • the thermal expansion coefficient of the oxygen electrode layer 24 is not particularly limited, but may be, for example, 10 ⁇ 10 ⁇ 6 /° C. to 16 ⁇ 10 ⁇ 6 /° C.
  • the method for forming the oxygen electrode layer 24 is not particularly limited, and a firing method, a spray coating method, a PVD method, a CVD method, etc. can be used.
  • the deformation suppression layer 30 is formed on the second main surface 12 of the metal plate 10.
  • the deformation suppression layer 30 has a plurality of communication paths 31.
  • the communication paths 31 penetrate the deformation suppression layer 30 in the thickness direction.
  • the communication paths 31 communicate with a gas flow path 41 (described later) and the communication holes 13 of the metal plate 10.
  • the inside of each communication path 31 is hollow.
  • the raw gas supplied to the hydrogen electrode layer 21 passes through the communication passage 31 of the deformation suppression layer 30 and the communication hole 13 of the metal plate 10 in sequence, and is supplied to the hydrogen electrode layer 21.
  • the product gas generated in the hydrogen electrode layer 21 passes through the communication hole 13 of the metal plate 10 and the communication passage 31 of the deformation suppression layer 30 in sequence, and is discharged to the gas flow path 41 described later.
  • the thermal expansion coefficient of the deformation suppression layer 30 is smaller than the thermal expansion coefficient of the metal plate 10. This makes it possible to suppress deformation of the laminate 20a together with the metal plate 10. Specifically, this is as follows.
  • a deformation suppression layer 30 is formed on the second main surface 12 of the metal plate 10.
  • the thermal expansion coefficient of the deformation suppression layer 30 is smaller than that of the metal plate 10, the metal plate 10, which tends to deform toward the laminate 20a, can be held by the deformation suppression layer 30. In other words, at least a part of the stress generated between the metal plate 10 and the laminate 20a can be offset by the stress generated between the metal plate 10 and the deformation suppression layer 30. In this way, by reducing the stress difference that occurs on both main surfaces of the metal plate 10, it is possible to prevent the laminate 20a from deforming together with the metal plate 10.
  • the thermal expansion coefficient of the deformation suppression layer 30 may be equal to the thermal expansion coefficient of the cell main body 20, or may be larger or smaller than the thermal expansion coefficient of the cell main body 20.
  • the value of the thermal expansion coefficient of the deformation suppression layer 30 is not particularly limited, but can be, for example, 5 ⁇ 10 ⁇ 6 /°C or more and 13 ⁇ 10 ⁇ 6 /°C or less.
  • the deformation suppression layer 30 may be made of an insulating material or a conductive material.
  • the deformation suppression layer 30 is made of an insulating material, even if the deformation suppression layer 30 accidentally comes into contact with the interconnector 43 described below, it is possible to prevent an unintended conductive path from being formed between the deformation suppression layer 30 and the interconnector 43. Therefore, in the configuration shown in FIG. 1, it is preferable that the deformation suppression layer 30 is made of an insulating material.
  • Examples of the insulating material constituting the deformation suppression layer 30 include Al 2 O 3 , ZrO 2 , SiO 2 , and TiO 2 .
  • Examples of the conductive material constituting the deformation suppression layer 30 include a ceramic material having electronic conductivity in a reducing atmosphere, or a composite of the ceramic material and a metal material.
  • Examples of the ceramic material having electronic conductivity in a reducing atmosphere include TiO 2 , ZnO 2 , and CeO 2 .
  • Examples of the metal material include metals such as Ni, Cu, and Co, or oxides thereof.
  • the deformation suppression layer 30 may be made of the same material as the hydrogen electrode layer 21 or the electrolyte layer 22.
  • the deformation suppression layer 30 preferably covers only a portion of the second main surface 12 of the metal plate 10. By appropriately designing the planar shape of the deformation suppression layer 30, it is possible to prevent stress from concentrating on the deformation suppression layer 30 and causing damage. For example, the deformation suppression layer 30 does not have to be formed in the area of the second main surface 12 where the communication holes 13 open. Alternatively, the deformation suppression layer 30 does not have to be formed in the area where the flow path member 40 is joined.
  • the thickness of the deformation suppression layer 30 is not particularly limited, but is preferably equal to or less than the thickness of the cell body 20. This reduces the proportion of ceramics in the electrolytic cell 1, thereby preventing a decrease in the toughness of the electrolytic cell 1 as a whole, which is a laminated structure. As a result, damage to the electrolytic cell 1 can be prevented.
  • the porosity of the deformation suppression layer 30 is not particularly limited, and the deformation suppression layer 30 may be a porous layer or a dense layer.
  • the deformation suppression layer 30 is preferably formed before the electrolyte layer 22 is formed.
  • the deformation suppression layer 30 may be formed simultaneously with the formation of the hydrogen electrode layer 21, or may be formed simultaneously with the formation of the electrolyte layer 22.
  • the deformation suppression layer 30 may be formed before the formation of the hydrogen electrode layer 21, or may be formed after the formation of the hydrogen electrode layer 21 and before the formation of the electrolyte layer 22.
  • the flow path member 40 is joined to the metal plate 10.
  • the space between the metal plate 10 and the flow path member 40 becomes a gas flow path 41.
  • the gas flow path 41 opens on the metal plate 10 side and is covered by the metal plate 10.
  • the gas flow path 41 communicates with each communication path 31 of the deformation suppression layer 30.
  • a raw material gas is supplied to the gas flow path 41.
  • the flow path member 40 can be made of a metal material that can be used for the metal plate 10.
  • the flow path member 40 has a frame body 42 and an interconnector 43.
  • the frame body 42 is joined to the second main surface 12 of the metal plate 10.
  • the frame body 42 is an annular member that surrounds the side periphery of the gas flow path 41.
  • the frame body 42 surrounds the side periphery of the deformation suppression layer 30.
  • the interconnector 43 is a plate-shaped member that electrically connects the electrolytic cell 1 in series with an external power source or another electrolytic cell.
  • the interconnector 43 is joined to the frame body 42.
  • the interconnector 43 faces the deformation suppression layer 30.
  • the frame body 42 and the interconnector 43 are separate components, but the frame body 42 and the interconnector 43 may be an integrated component.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • FIG. 2 shows a cross section perpendicular to the outer edge 10a of the second main surface 12 of the metal plate 10.
  • the metal plate 10 is joined to the flow path member 40 via a joint 45.
  • the joint 45 seals the gap between the metal plate 10 and the flow path member 40.
  • the joint 45 is formed in a ring shape along the gap between the metal plate 10 and the flow path member 40.
  • the joint 45 is disposed so as to surround the gas flow path 41.
  • the joint 45 is made of a conductive material.
  • the joint 45 can be formed by applying a metal paste containing SUS430 or the like to the second main surface 12 of the metal plate 10, and then firing (e.g., at 850°C for 1 hour) the flow path member 40 in a state of being in close contact with the metal paste.
  • the joint 45 can be formed by welding the metal plate 10 and the flow path member 40 in a state of being in close contact with each other.
  • the ratio (W1/T1) of the width W1 of the joint 45 to the sum T1 of the thicknesses of the metal plate 10, the cell body 20, and the deformation suppression layer 30 is preferably 0.05 or more and 1.0 or less. This makes it possible to suppress deformation and damage of the electrolytic cell 1 as follows. First, the deformation suppression layer 30 with a small thermal expansion coefficient is formed on the second main surface 12 of the metal plate 10. Therefore, if the flow path member 40 is firmly joined to the second main surface 12 of the metal plate 10, the electrolytic cell 1 will be deformed due to the difference in thermal expansion coefficient with the flow path member 40.
  • the joint 45 becomes more easily deformed, and the thermal stress generated between the metal plate 10 and the flow path member 40 can be absorbed by the deformation of the joint 45. As a result, it is possible to suppress the electrolytic cell 1 from warping and the flow path member 40 from peeling off.
  • the inside of the communication hole 13 of the metal plate 10 is hollow, but as shown in FIG. 3, a conductive part 50 may be disposed inside the communication hole 13.
  • the conductive part 50 is connected to the hydrogen electrode layer 21.
  • the conductive part 50 is made of a porous material and has gas permeability. The porosity of the conductive part 50 may be, for example, 5% to 70%.
  • the conductive part 50 is made of a conductive material and assists in electrical connection between the metal plate 10 and the hydrogen electrode layer 21. Note that, although the conductive part 50 is filled inside the communication hole 13 in FIG. 3, the conductive part 50 may be formed in a film shape so as to cover the inner wall surface of the communication hole 13.
  • the conductive portion 50 electrically connects the deformation suppression layer 30 and the hydrogen electrode layer 21.
  • the conductive portion 50 is arranged not only inside the communication hole 13 formed in the metal plate 10, but also inside the communication path 31 formed in the deformation suppression layer 30, and is connected to both the hydrogen electrode layer 21 and the deformation suppression layer 30. This can significantly improve the electrical connection between the metal plate 10 and the hydrogen electrode layer 21.
  • the material of the conductive portion 50 is not particularly limited, and for example, a conductive porous material that can be used in the hydrogen electrode layer 21 can be used.
  • the conductive portion 50 may be formed integrally with the hydrogen electrode layer 21.
  • the material of the conductive portion 50 may be a conductive material that can be used in the deformation suppression layer 30.
  • the conductive portion 50 may be formed integrally with the deformation suppression layer 30.
  • the hydrogen electrode layer 21 functions as a cathode and the oxygen electrode layer 24 functions as an anode, but the hydrogen electrode layer 21 may function as an anode and the oxygen electrode layer 24 may function as a cathode.
  • the positions of the hydrogen electrode layer 21, the reaction prevention layer 23, and the oxygen electrode layer 24 are interchanged, and a source gas is caused to flow over the outer surface of the hydrogen electrode layer 21.
  • the oxygen electrode layer 24 serves as the electrode layer according to the present invention
  • the hydrogen electrode layer 21 serves as the counter electrode layer according to the present invention.
  • the electrolysis cell 1 has been described as an example of an electrochemical cell, but the electrochemical cell is not limited to the electrolysis cell.
  • the electrochemical cell is a general term for an element in which a pair of electrodes are arranged so that an electromotive force is generated from an overall oxidation-reduction reaction to convert electrical energy into chemical energy, and an element for converting chemical energy into electrical energy. Therefore, the electrochemical cell may be a solid oxide fuel cell (SOFC) using oxide ions or protons as carriers.
  • SOFC solid oxide fuel cell
  • the fuel electrode (anode) is an example of an "electrode layer”
  • the air electrode (cathode) is an example of a "counter electrode layer”.
  • Electrolysis cell 10
  • Metal plate 11
  • First main surface 12
  • Second main surface 13
  • Communication hole 20
  • Cell body 21
  • Hydrogen electrode layer 22
  • Electrolyte layer 23
  • Reaction prevention layer 24
  • Oxygen electrode layer 30
  • Deformation suppression layer 31
  • Communication path member 41
  • Gas flow path 42
  • Frame 43
  • Interconnector 50 Conductive portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

This electrochemical cell (1) is provided with a metal plate (10), a cell main body (20) and a deformation suppressing layer (30). The cell main body (20) comprises a multilayer body (20a) that is composed of: a hydrogen electrode layer (21) which is formed on a first main surface (11) of the metal plate (10); and an electrolyte layer (22) which is formed on the hydrogen electrode layer (21). The deformation suppressing layer (30) is formed on a second main surface (12) of the metal plate (10). The thermal expansion coefficient of the multilayer body (20a) is lower than the thermal expansion coefficient of the metal plate (10). The thermal expansion coefficient of the deformation suppressing layer (30) is lower than the thermal expansion coefficient of the metal plate (10).

Description

電気化学セルElectrochemical Cell
 本発明は、電気化学セルに関する。 The present invention relates to an electrochemical cell.
 電解セル又は燃料電池などの電気化学セルにおいて、金属板によってセル本体部を支持する構造が知られている。例えば、特許文献1に開示された電気化学セルは、金属板上に、電極層、電解質層、及び対向電極層がこの順で積層されている。金属板は、電極層への給排気のための連通孔を有している。 In electrochemical cells such as electrolysis cells or fuel cells, a structure in which the cell body is supported by a metal plate is known. For example, the electrochemical cell disclosed in Patent Document 1 has an electrode layer, an electrolyte layer, and a counter electrode layer stacked in that order on a metal plate. The metal plate has communication holes for supplying and exhausting air to and from the electrode layer.
国際公開第2018/181926号International Publication No. 2018/181926
 しかしながら、電極層と電解質層によって構成される積層体の熱膨張係数は金属板の熱膨張係数より小さいため、電極層上に電解質層を成膜した後に積層体を降温させると、金属板とともに積層体が変形してしまう。その結果、積層体に割れや欠けなどの損傷が生じるおそれがある。 However, because the thermal expansion coefficient of the laminate composed of the electrode layer and electrolyte layer is smaller than that of the metal plate, when the laminate is cooled after the electrolyte layer is formed on the electrode layer, the laminate deforms together with the metal plate. As a result, there is a risk of damage to the laminate, such as cracks or chips.
 本発明の課題は、電極層と電解質層の積層体の損傷を抑制することにある。 The objective of the present invention is to prevent damage to the laminate of the electrode layer and electrolyte layer.
 本発明の第1側面に係る電気化学セルは、金属板と、セル本体部と、変形抑制層とを備える。金属板は、第1主面と、第2主面と、第1主面と第2主面に連通する連通孔とを有する。セル本体部は、第1主面上に形成される電極層と、電極層上に形成される電解質層とによって構成される積層体を含む。変形抑制層は、第2主面上に形成される。積層体の熱膨張係数は、金属板の熱膨張係数より小さい。変形抑制層の熱膨張係数は、金属板の熱膨張係数より小さい。 The electrochemical cell according to the first aspect of the present invention comprises a metal plate, a cell body, and a deformation suppression layer. The metal plate has a first main surface, a second main surface, and a through hole communicating with the first main surface and the second main surface. The cell body includes a laminate constituted by an electrode layer formed on the first main surface and an electrolyte layer formed on the electrode layer. The deformation suppression layer is formed on the second main surface. The thermal expansion coefficient of the laminate is smaller than the thermal expansion coefficient of the metal plate. The thermal expansion coefficient of the deformation suppression layer is smaller than the thermal expansion coefficient of the metal plate.
 本発明の第2側面に係る電気化学セルは、上記第1の側面に係り、変形抑制層は、第2主面の一部のみを覆っている。 The electrochemical cell according to the second aspect of the present invention is the electrochemical cell according to the first aspect, in which the deformation suppression layer covers only a portion of the second main surface.
 本発明の第3側面に係る電気化学セルは、上記第1又は第2の側面に係り、セル本体部は、電解質層を基準として電極層の反対側に配置される対向電極層を有し、変形抑制層の厚みは、セル本体部の厚み以下である。 The electrochemical cell according to the third aspect of the present invention is the electrochemical cell according to the first or second aspect, in which the cell body has an opposing electrode layer disposed on the opposite side of the electrode layer with respect to the electrolyte layer, and the thickness of the deformation suppression layer is equal to or less than the thickness of the cell body.
 本発明の第4側面に係る電気化学セルは、上記第1乃至第3いずれかの側面に係り、金属板との間にガス流路を形成するための流路部材と、金属板と流路部材を接合する接合部とをさらに備える。前記第2主面の外縁に対して垂直な断面において、前記金属板、前記セル本体部及び前記変形抑制層それぞれの厚みの和に対する前記接合部の幅の比は、0.05以上1.0以下である。 The electrochemical cell according to the fourth aspect of the present invention is related to any one of the first to third aspects and further comprises a flow path member for forming a gas flow path between the metal plate and the flow path member, and a joint for joining the metal plate and the flow path member. In a cross section perpendicular to the outer edge of the second main surface, the ratio of the width of the joint to the sum of the thicknesses of the metal plate, the cell main body, and the deformation suppression layer is 0.05 or more and 1.0 or less.
 本発明の第4側面に係る電気化学セルは、上記第1乃至第4いずれかの側面に係り、金属板との間にガス流路を形成するための流路部材をさらに備える。変形抑制層は、絶縁性材料によって構成される。 The electrochemical cell according to the fourth aspect of the present invention is related to any one of the first to fourth aspects and further includes a flow path member for forming a gas flow path between the metal plate. The deformation suppression layer is made of an insulating material.
 本発明の第5側面に係る電気化学セルは、上記第1乃至第4いずれかの側面に係り、変形抑制層は、導電性材料によって構成され、連通孔内には、変形抑制層と電極層を電気的に接続する導電部が配置されている。 The electrochemical cell according to the fifth aspect of the present invention relates to any one of the first to fourth aspects, in which the deformation suppression layer is made of a conductive material, and a conductive portion is disposed within the communication hole to electrically connect the deformation suppression layer and the electrode layer.
 本発明によれば、電極層と電解質層の積層体の損傷を抑制することができる。 The present invention makes it possible to suppress damage to the laminate of the electrode layer and electrolyte layer.
実施形態に係る電解セルの断面図。FIG. 1 is a cross-sectional view of an electrolysis cell according to an embodiment. 図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 変形例1に係る電解セルの断面図。FIG. 4 is a cross-sectional view of an electrolysis cell according to a first modified example.
 実施形態に係る電解セル(電気化学セルの一例)について図面を参照しながら説明する。本実施形態では、電解セルの一例としてセラミックス製の固体酸化物形電解セル(SOEC)について説明する。以下の説明では、固体酸化物形電解セルを「電解セル」と略称する。 An electrolytic cell (an example of an electrochemical cell) according to an embodiment will be described with reference to the drawings. In this embodiment, a ceramic solid oxide electrolytic cell (SOEC) will be described as an example of an electrolytic cell. In the following description, the solid oxide electrolytic cell will be abbreviated as "electrolytic cell".
 図1は、実施形態に係る電解セル1の断面図である。図1に示すように、電解セル1は、金属板10、セル本体部20、変形抑制層30及び流路部材40を備える。 FIG. 1 is a cross-sectional view of an electrolytic cell 1 according to an embodiment. As shown in FIG. 1, the electrolytic cell 1 includes a metal plate 10, a cell body 20, a deformation suppression layer 30, and a flow path member 40.
 (金属板10)
 金属板10は、セル本体部20を支持する。本実施形態において、金属板10は、板状に形成されている。金属板10は、平板状であってもよいし、曲板状であってもよい。金属板10は、セル本体部20を支持することができればよく、その厚みは特に制限されないが、例えば0.1mm以上2.0mm以下とすることができる。
(Metal plate 10)
The metal plate 10 supports the cell main body 20. In this embodiment, the metal plate 10 is formed in a plate shape. The metal plate 10 may be flat or curved. The metal plate 10 only needs to be able to support the cell main body 20, and the thickness of the metal plate 10 is not particularly limited, but may be, for example, 0.1 mm or more and 2.0 mm or less.
 金属板10は、金属材料によって構成される。例えば、金属板10は、Cr(クロム)を含有する合金材料によって構成される。このような金属材料としては、Fe-Cr系合金鋼(ステンレス鋼など)やNi-Cr系合金鋼などを用いることができる。金属板10におけるCrの含有率は特に制限されないが、4質量%以上30質量%以下とすることができる。 The metal plate 10 is made of a metal material. For example, the metal plate 10 is made of an alloy material containing Cr (chromium). Such metal materials include Fe-Cr alloy steel (stainless steel, etc.) and Ni-Cr alloy steel. The Cr content in the metal plate 10 is not particularly limited, but can be 4% by mass or more and 30% by mass or less.
 金属板10は、Ti(チタン)やZr(ジルコニウム)を含有していてもよい。金属板10におけるTiの含有率は特に制限されないが、0.01mol%以上1.0mol%以下とすることができる。金属板10におけるZrの含有率は特に制限されないが、0.01mol%以上0.4mol%以下とすることができる。金属板10は、TiをTiO(チタニア)として含有していてもよいし、ZrをZr(ジルコニウム)として含有していてもよい。 The metal plate 10 may contain Ti (titanium) or Zr (zirconium). The content of Ti in the metal plate 10 is not particularly limited, but may be 0.01 mol% or more and 1.0 mol% or less. The content of Zr in the metal plate 10 is not particularly limited, but may be 0.01 mol% or more and 0.4 mol% or less. The metal plate 10 may contain Ti as TiO2 (titania) or Zr as Zr (zirconium).
 金属板10は、表面に酸化クロム膜を有していてもよい。酸化クロム膜は、金属板10の表面のうち少なくとも一部を覆う。酸化クロム膜は、金属板10の表面のうち少なくとも一部を覆っていればよいが、表面の略全面を覆っていてもよい。 The metal plate 10 may have a chromium oxide film on its surface. The chromium oxide film covers at least a portion of the surface of the metal plate 10. The chromium oxide film may cover at least a portion of the surface of the metal plate 10, but may also cover substantially the entire surface.
 本実施形態において、金属板10の熱膨張係数は、後述する積層体20aの熱膨張係数より大きく、かつ、変形抑制層30の熱膨張係数より大きい。金属板10の熱膨張係数の値は特に制限されないが、例えば10×10―6/℃以上18×10-6/℃以下とすることができる。 In this embodiment, the thermal expansion coefficient of the metal plate 10 is larger than the thermal expansion coefficient of the laminate 20a described below and is also larger than the thermal expansion coefficient of the deformation suppression layer 30. The value of the thermal expansion coefficient of the metal plate 10 is not particularly limited, but can be, for example, 10×10 −6 /°C or more and 18×10 −6 /°C or less.
 図1に示すように、金属板10は、第1主面11、第2主面12、及び複数の連通孔13を有する。金属板10の第1主面11上には、セル本体部20が配置される。金属板10の第2主面12は、第1主面11の反対側に設けられる。金属板10の第2主面12上には、変形抑制層30が形成される。また、金属板10の第2主面12には、流路部材40が接合される。 As shown in FIG. 1, the metal plate 10 has a first main surface 11, a second main surface 12, and a plurality of communicating holes 13. A cell main body 20 is disposed on the first main surface 11 of the metal plate 10. The second main surface 12 of the metal plate 10 is provided on the opposite side to the first main surface 11. A deformation suppression layer 30 is formed on the second main surface 12 of the metal plate 10. In addition, a flow path member 40 is bonded to the second main surface 12 of the metal plate 10.
 複数の連通孔13は、後述する水素極層21に対応する領域に形成される。各連通孔13は、第1主面11と第2主面12に連通する。各連通孔13は、第1主面11及び第2主面12それぞれに開口する。各連通孔13の第1主面11側の開口は、水素極層21によって覆われる。本実施形態において、各連通孔13の内側は空洞である。ただし、各連通孔13には水素極層21の一部が入り込んでいてもよい。 The multiple communication holes 13 are formed in an area corresponding to the hydrogen electrode layer 21 described below. Each communication hole 13 communicates with the first main surface 11 and the second main surface 12. Each communication hole 13 opens to the first main surface 11 and the second main surface 12, respectively. The opening of each communication hole 13 on the first main surface 11 side is covered by the hydrogen electrode layer 21. In this embodiment, the inside of each communication hole 13 is hollow. However, a portion of the hydrogen electrode layer 21 may penetrate into each communication hole 13.
 平面視における連通孔13の面積は、例えば、0.00005mm以上1mm以下とすることができる。また、連通孔13の平面視形状が略円形である場合、連通孔13の直径は、例えば、10μm以上1000μm以下とすることができる。なお、連通孔13の平面視形状は矩形状であってもよい。 The area of the communication hole 13 in plan view can be, for example, 0.00005 mm2 or more and 1 mm2 or less. When the shape of the communication hole 13 in plan view is substantially circular, the diameter of the communication hole 13 can be, for example, 10 μm or more and 1000 μm or less. The shape of the communication hole 13 in plan view may be rectangular.
 連通孔13は、機械加工(例えば、パンチング加工)、レーザ加工、或いは、化学加工(例えば、エッチング加工)などによって形成することができる。また、連通孔13は、金属板10の厚み方向に沿って形成されている必要はないため、網目状の細孔を有する多孔質金属によって金属板10を構成してもよい。 The communication holes 13 can be formed by mechanical processing (e.g., punching), laser processing, or chemical processing (e.g., etching). In addition, since the communication holes 13 do not need to be formed along the thickness direction of the metal plate 10, the metal plate 10 may be made of a porous metal having a mesh-like pore.
 なお、金属板10は、表面を覆う酸化クロム膜を有していてもよい。酸化クロム膜は、金属板10の表面の少なくとも一部を覆っていればよいが、表面全体を覆っていてもよい。また、酸化クロム膜は、連通孔13の内壁面を覆っていてもよい。 The metal plate 10 may have a chromium oxide film covering the surface. The chromium oxide film may cover at least a portion of the surface of the metal plate 10, but may also cover the entire surface. The chromium oxide film may also cover the inner wall surface of the communication hole 13.
 酸化クロム膜は、酸化クロムを主成分として含有する。酸化クロムを主成分として含むとは、酸化クロム膜全体のうち、酸化クロムが70重量%以上を占めることを意味する。酸化クロム膜の厚みは特に制限されないが、例えば0.1μm以上20μm以下とすることができる。 The chromium oxide film contains chromium oxide as its main component. "Containing chromium oxide as its main component" means that chromium oxide accounts for 70% by weight or more of the entire chromium oxide film. There are no particular limitations on the thickness of the chromium oxide film, but it can be, for example, 0.1 μm or more and 20 μm or less.
 (セル本体部20)
 図1に示すように、セル本体部20は、金属板10の第1主面11上に配置される。セル本体部20は、水素極層21(カソード)、電解質層22、反応防止層23及び酸素極層24(アノード)を有する。セル本体部20は、水素極層21と電解質層22によって構成される積層体20aを含む。水素極層21は、本発明に係る「電極層」の一例であり、酸素極層24は、本発明に係る「対向電極層」の一例である。
(Cell body 20)
1, the cell body 20 is disposed on the first main surface 11 of the metal plate 10. The cell body 20 has a hydrogen electrode layer 21 (cathode), an electrolyte layer 22, a reaction prevention layer 23, and an oxygen electrode layer 24 (anode). The cell body 20 includes a laminate 20a constituted by the hydrogen electrode layer 21 and the electrolyte layer 22. The hydrogen electrode layer 21 is an example of an "electrode layer" according to the present invention, and the oxygen electrode layer 24 is an example of a "counter electrode layer" according to the present invention.
 水素極層21、電解質層22、反応防止層23及び酸素極層24は、この順で金属板10側から積層されている。ただし、セル本体部20は、反応防止層23を有していなくてもよい。 The hydrogen electrode layer 21, electrolyte layer 22, reaction prevention layer 23, and oxygen electrode layer 24 are stacked in this order from the metal plate 10 side. However, the cell body 20 does not necessarily have to have the reaction prevention layer 23.
 本実施形態において、積層体20aの熱膨張係数は、金属板10の熱膨張係数より小さい。積層体20aの熱膨張係数の値は特に制限されないが、例えば9×10―6/℃以上13×10-6/℃以下とすることができる。 In this embodiment, the thermal expansion coefficient of the laminate 20a is smaller than the thermal expansion coefficient of the metal plate 10. The value of the thermal expansion coefficient of the laminate 20a is not particularly limited, but can be, for example, 9×10 −6 /° C. or more and 13×10 −6 /° C. or less.
 なお、積層体20aの熱膨張係数は、下記(A)式に基づいて算出される。 The thermal expansion coefficient of the laminate 20a is calculated based on the following formula (A).
 ・積層体20aの熱膨張係数=(水素極層21の熱膨張係数×水素極層21の厚み×水素極層21のヤング率+電解質層22の熱膨張係数×電解質層22の厚み×電解質層22のヤング率)÷(水素極層21の厚み×水素極層21のヤング率+電解質層22の厚み×電解質層22のヤング率)・・・(A) - Thermal expansion coefficient of laminate 20a = (thermal expansion coefficient of hydrogen electrode layer 21 x thickness of hydrogen electrode layer 21 x Young's modulus of hydrogen electrode layer 21 + thermal expansion coefficient of electrolyte layer 22 x thickness of electrolyte layer 22 x Young's modulus of electrolyte layer 22) ÷ (thickness of hydrogen electrode layer 21 x Young's modulus of hydrogen electrode layer 21 + thickness of electrolyte layer 22 x Young's modulus of electrolyte layer 22) ... (A)
 [水素極層21]
 水素極層21は、金属板10の第1主面11上に形成される。水素極層21は、金属板10のうち複数の連通孔13が設けられた領域を覆うように設けられる。水素極層21の一部は、金属支持体10の各連通孔13に入り込んでいてもよい。
[Hydrogen electrode layer 21]
The hydrogen electrode layer 21 is formed on the first main surface 11 of the metal plate 10. The hydrogen electrode layer 21 is provided so as to cover an area of the metal plate 10 in which the plurality of communication holes 13 are provided. A portion of the hydrogen electrode layer 21 may extend into each communication hole 13 of the metal support 10.
 水素極層21には、金属板10の各連通孔13を介して、原料ガスが供給される。原料ガスは、少なくともHOを含む。原料ガスがHOのみを含む場合、水素極層21は、下記(1)式に示す水電解の電気化学反応に従って、原料ガスからHを生成する。 A source gas is supplied to the hydrogen electrode layer 21 through each communication hole 13 of the metal plate 10. The source gas contains at least H 2 O. When the source gas contains only H 2 O, the hydrogen electrode layer 21 generates H 2 from the source gas in accordance with the electrochemical reaction of water electrolysis shown in the following formula (1).
 ・水素極層6:HO+2e→H+O2-・・・(1) Hydrogen electrode layer 6: H 2 O+2e →H 2 +O 2− (1)
 原料ガスがHOに加えてCOを含む場合、水素極層21は、下記(2)式に示す共電解の電気化学反応に従って、原料ガスから、H、CO、及びO2-を生成する。 When the source gas contains CO 2 in addition to H 2 O, the hydrogen electrode layer 21 produces H 2 , CO, and O 2− from the source gas in accordance with the co-electrolytic electrochemical reaction shown in formula (2) below.
 ・水素極層21:CO+HO+4e→CO+H+2O2-・・・(2) Hydrogen electrode layer 21: CO 2 + H 2 O + 4e → CO + H 2 + 2O 2− (2)
 水素極層21は、導電性を有する多孔質材料によって構成される。水素極層21は、酸化物イオン伝導性を有していてよい。水素極層21は、例えば、8mol%イットリア安定化ジルコニア(8YSZ)、カルシア安定化ジルコニア(CSZ)、スカンジア安定化ジルコニア(ScSZ)、ガドリニウムドープセリア(GDC)、サマリウムドープセリア(SDC)、(La,Sr)(Cr,Mn)O、(La,Sr)TiO、Sr(Fe,Mo)、(La,Sr)VO、(La,Sr)FeO、及びこれらのうち2つ以上を組み合わせた混合材料、或いは、これらのうち1以上とNiOとの複合材料によって構成することができる。 The hydrogen electrode layer 21 is made of a conductive porous material. The hydrogen electrode layer 21 may have oxide ion conductivity. The hydrogen electrode layer 21 may be made of, for example, 8 mol % yttria-stabilized zirconia (8YSZ), calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ), gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), (La, Sr) (Cr, Mn) O 3 , (La, Sr) TiO 3 , Sr 2 (Fe, Mo) 2 O 6 , (La, Sr) VO 3 , (La, Sr) FeO 3 , a mixed material of two or more of these, or a composite material of one or more of these and NiO.
 水素極層21の気孔率は特に制限されないが、例えば5%以上70%以下とすることができる。水素極層21の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。水素極層21の熱膨張係数の値は特に制限されないが、例えば10×10―6/℃以上13×10-6/℃以下とすることができる。水素極層21のヤング率の値は特に制限されないが、例えば50GPa以上200GPa以下とすることができる。 The porosity of the hydrogen electrode layer 21 is not particularly limited, but may be, for example, 5% to 70%. The thickness of the hydrogen electrode layer 21 is not particularly limited, but may be, for example, 1 μm to 100 μm. The thermal expansion coefficient of the hydrogen electrode layer 21 is not particularly limited, but may be, for example, 10×10 −6 /° C. to 13×10 −6 /° C. The Young's modulus of the hydrogen electrode layer 21 is not particularly limited, but may be, for example, 50 GPa to 200 GPa.
 なお、水素極層21の厚みは、水素極層21の厚み方向に沿った断面において、水素極層21を面方向に4等分する3か所において測定した水素極層21の厚みを算術平均することによって得られる。水素極層21の熱膨張係数は、集束イオンビーム(FIB)装置を用いた微細加工によって水素極層21から電解質層22を分離した後、高温X線回折(XRD)装置を用いて水素極層21の格子膨張を測定することによって得られる。 The thickness of the hydrogen electrode layer 21 is obtained by arithmetically averaging the thicknesses of the hydrogen electrode layer 21 measured at three locations that divide the hydrogen electrode layer 21 into four equal parts in the plane direction on a cross section along the thickness direction of the hydrogen electrode layer 21. The thermal expansion coefficient of the hydrogen electrode layer 21 is obtained by separating the electrolyte layer 22 from the hydrogen electrode layer 21 by micromachining using a focused ion beam (FIB) device, and then measuring the lattice expansion of the hydrogen electrode layer 21 using a high-temperature X-ray diffraction (XRD) device.
 水素極層21の形成方法は特に制限されず、焼成法、スプレーコーティング法(溶射法、エアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法など)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを用いることができる。 The method for forming the hydrogen electrode layer 21 is not particularly limited, and may be a sintering method, a spray coating method (thermal spraying, aerosol deposition, aerosol gas deposition, powder jet deposition, particle jet deposition, cold spray, etc.), a PVD method (sputtering, pulsed laser deposition, etc.), a CVD method, etc.
 [電解質層22]
 図1に示すように、電解質層22は、水素極層21と酸素極層24の間に配置される。本実施形態では、セル本体部20が反応防止層23を有しているため、電解質層22は、水素極層21と反応防止層23の間に介挿されている。
[Electrolyte layer 22]
1 , the electrolyte layer 22 is disposed between the hydrogen electrode layer 21 and the oxygen electrode layer 24. In this embodiment, since the cell body 20 has the reaction prevention layer 23, the electrolyte layer 22 is interposed between the hydrogen electrode layer 21 and the reaction prevention layer 23.
 電解質層22は、水素極層21全体を覆うように配置される。電解質層22の外周部は、金属板10の第1主面11に接合されている。これにより、水素極層21側と酸素極層24側の間の気密性を確保できるため、金属板10と電解質層22の間を別途封止する必要がない。 The electrolyte layer 22 is disposed so as to cover the entire hydrogen electrode layer 21. The outer periphery of the electrolyte layer 22 is bonded to the first main surface 11 of the metal plate 10. This ensures airtightness between the hydrogen electrode layer 21 side and the oxygen electrode layer 24 side, eliminating the need for a separate seal between the metal plate 10 and the electrolyte layer 22.
 電解質層22は、水素極層21において生成されたO2-を酸素極層24側に伝達させる。電解質層22は、酸化物イオン伝導性を有する緻密体である。酸化物イオン伝導性材料としては、例えば、YSZ(イットリア安定化ジルコニア、例えば8YSZ)、GDC(ガドリニウムドープセリア)、ScSZ(スカンジア安定化ジルコニア)、SDC(サマリウム固溶セリア)、LSGM(ランタンガレート)、及びこれらの複合材料が挙げられる。 The electrolyte layer 22 transfers O 2- generated in the hydrogen electrode layer 21 to the oxygen electrode layer 24. The electrolyte layer 22 is a dense body having oxide ion conductivity. Examples of oxide ion conductive materials include YSZ (yttria stabilized zirconia, for example, 8YSZ), GDC (gadolinium doped ceria), ScSZ (scandia stabilized zirconia), SDC (samarium doped ceria), LSGM (lanthanum gallate), and composite materials thereof.
 電解質層22の気孔率は特に制限されないが、例えば0.1%以上7%以下とすることができる。電解質層22の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。電解質層22の熱膨張係数の値は特に制限されないが、例えば9×10―6/℃以上12×10―6/℃以下とすることができる。電解質層22のヤング率の値は特に制限されないが、例えば150GPa以上250GPa以下とすることができる。 The porosity of the electrolyte layer 22 is not particularly limited, but may be, for example, 0.1% or more and 7% or less. The thickness of the electrolyte layer 22 is not particularly limited, but may be, for example, 1 μm or more and 100 μm or less. The value of the thermal expansion coefficient of the electrolyte layer 22 is not particularly limited, but may be, for example, 9×10 −6 /° C. or more and 12×10 −6 /° C. or less. The value of the Young's modulus of the electrolyte layer 22 is not particularly limited, but may be, for example, 150 GPa or more and 250 GPa or less.
 なお、電解質層22の厚みは、電解質層22の厚み方向に沿った断面において、電解質層22を面方向に4等分する3か所において測定した電解質層22の厚みを算術平均することによって得られる。電解質層22の熱膨張係数は、FIB装置を用いた微細加工によって電解質層22から酸素極層24及び反応防止層23を順次分離した後、XRD装置を用いて電解質層22の格子膨張を測定することによって得られる。 The thickness of the electrolyte layer 22 is obtained by arithmetically averaging the thicknesses of the electrolyte layer 22 measured at three points that divide the electrolyte layer 22 into four equal parts in the surface direction on a cross section along the thickness direction of the electrolyte layer 22. The thermal expansion coefficient of the electrolyte layer 22 is obtained by sequentially separating the oxygen electrode layer 24 and the reaction prevention layer 23 from the electrolyte layer 22 by micromachining using an FIB device, and then measuring the lattice expansion of the electrolyte layer 22 using an XRD device.
 電解質層22は、高温プロセスを含む手法によって形成される。高温プロセスとは、金属板10、水素極層21及び電解質層22の少なくとも1つの全部または一部が100℃以上に加熱される工程である。高温プロセスを含む手法としては、例えば、焼成法、スプレーコーティング法、PVD法、CVD法などが挙げられる。 The electrolyte layer 22 is formed by a method including a high-temperature process. The high-temperature process is a process in which all or part of at least one of the metal plate 10, the hydrogen electrode layer 21, and the electrolyte layer 22 is heated to 100°C or higher. Examples of methods including a high-temperature process include a baking method, a spray coating method, a PVD method, and a CVD method.
 [反応防止層23]
 反応防止層23は、電解質層22上に配置される。反応防止層23は、電解質層22と酸素極層24の間に介挿される。反応防止層23は、酸素極層24の構成材料と電解質層22の構成材料とが反応して電気抵抗の大きい反応層が形成されることを抑制する。
[Reaction prevention layer 23]
The reaction prevention layer 23 is disposed on the electrolyte layer 22. The reaction prevention layer 23 is interposed between the electrolyte layer 22 and the oxygen electrode layer 24. The reaction prevention layer 23 prevents the constituent material of the oxygen electrode layer 24 from reacting with the constituent material of the electrolyte layer 22 to form a reaction layer having a high electrical resistance.
 反応防止層23は、酸化物イオン伝導性を有する材料によって構成される。反応防止層23は、GDC、SDCなどのセリア系材料によって構成することができる。 The reaction prevention layer 23 is made of a material having oxide ion conductivity. The reaction prevention layer 23 can be made of a ceria-based material such as GDC or SDC.
 反応防止層23の気孔率は特に制限されないが、例えば0%以上50%以下とすることができる。反応防止層23の厚さは特に制限されないが、例えば3μm以上50μm以下とすることができる。反応防止層23の熱膨張係数の値は特に制限されないが、例えば9×10―6/℃以上13×10―6/℃以下とすることができる。 The porosity of the reaction prevention layer 23 is not particularly limited, but may be, for example, 0% to 50%. The thickness of the reaction prevention layer 23 is not particularly limited, but may be, for example, 3 μm to 50 μm. The thermal expansion coefficient of the reaction prevention layer 23 is not particularly limited, but may be, for example, 9×10 −6 /° C. to 13×10 −6 /° C.
 反応防止層23は、高温プロセスを含む手法によって形成される。高温プロセスを含む手法としては、例えば、焼成法、スプレーコーティング法、PVD法、CVD法などが挙げられる。 The reaction prevention layer 23 is formed by a method including a high-temperature process. Examples of methods including a high-temperature process include a baking method, a spray coating method, a PVD method, and a CVD method.
 [酸素極層24]
 酸素極層24は、電解質層22を基準として水素極層21の反対側に配置される。本実施形態では、電解質層22及び酸素極層24の間に反応防止層23が配置されているので、酸素極層24は反応防止層23に接続される。電解質層22及び酸素極層24の間に反応防止層23が配置されない場合、酸素極層24は電解質層22に接続される。
[Oxygen electrode layer 24]
The oxygen electrode layer 24 is disposed on the opposite side of the hydrogen electrode layer 21 with respect to the electrolyte layer 22. In this embodiment, since the reaction prevention layer 23 is disposed between the electrolyte layer 22 and the oxygen electrode layer 24, the oxygen electrode layer 24 is connected to the reaction prevention layer 23. If the reaction prevention layer 23 is not disposed between the electrolyte layer 22 and the oxygen electrode layer 24, the oxygen electrode layer 24 is connected to the electrolyte layer 22.
 酸素極層24は、下記(3)式の化学反応に従って、電解質層22を介して水素極層21から伝達されるO2-からOを生成する。 The oxygen electrode layer 24 produces O 2 from O 2− transferred from the hydrogen electrode layer 21 via the electrolyte layer 22 in accordance with the chemical reaction of the following formula (3).
 ・酸素極層24:2O2-→O+4e・・・(3) Oxygen electrode layer 24: 2O 2− →O 2 +4e (3)
 酸素極層24は、酸化物イオン伝導性及び導電性を有する多孔質材料によって構成される。酸素極層24は、例えば(La,Sr)(Co,Fe)O、(La,Sr)FeO、La(Ni,Fe)O、(La,Sr)CoO、及び(Sm,Sr)CoOのうち1つ以上と酸化物イオン伝導材料(GDCなど)との複合材料によって構成することができる。 The oxygen electrode layer 24 is made of a porous material having oxide ion conductivity and electrical conductivity, and may be made of a composite material of one or more of (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr) CoO3 and an oxide ion conductive material (such as GDC).
 酸素極層24の気孔率は特に制限されないが、例えば20%以上60%以下とすることができる。酸素極層24の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。酸素極層24の熱膨張係数の値は特に制限されないが、例えば10×10―6/℃以上16×10―6/℃以下とすることができる。 The porosity of the oxygen electrode layer 24 is not particularly limited, but may be, for example, 20% to 60%. The thickness of the oxygen electrode layer 24 is not particularly limited, but may be, for example, 1 μm to 100 μm. The thermal expansion coefficient of the oxygen electrode layer 24 is not particularly limited, but may be, for example, 10×10 −6 /° C. to 16×10 −6 /° C.
 酸素極層24の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などを用いることができる。 The method for forming the oxygen electrode layer 24 is not particularly limited, and a firing method, a spray coating method, a PVD method, a CVD method, etc. can be used.
 [変形抑制層30]
 図1に示すように、変形抑制層30は、金属板10の第2主面12上に形成される。変形抑制層30は、複数の連通路31を有する。連通路31は、変形抑制層30を厚み方向に貫通する。連通路31は、後述するガス流路41と金属板10の連通孔13とに連通する。本実施形態において、各連通路31の内側は空洞である。
[Deformation suppression layer 30]
1, the deformation suppression layer 30 is formed on the second main surface 12 of the metal plate 10. The deformation suppression layer 30 has a plurality of communication paths 31. The communication paths 31 penetrate the deformation suppression layer 30 in the thickness direction. The communication paths 31 communicate with a gas flow path 41 (described later) and the communication holes 13 of the metal plate 10. In this embodiment, the inside of each communication path 31 is hollow.
 水素極層21に供給される原料ガスは、変形抑制層30の連通路31と金属板10の連通孔13とを順次通過して水素極層21に供給される。水素極層21において生成された生成ガスは、金属板10の連通孔13と変形抑制層30の連通路31とを順次通過して後述するガス流路41に排出される。 The raw gas supplied to the hydrogen electrode layer 21 passes through the communication passage 31 of the deformation suppression layer 30 and the communication hole 13 of the metal plate 10 in sequence, and is supplied to the hydrogen electrode layer 21. The product gas generated in the hydrogen electrode layer 21 passes through the communication hole 13 of the metal plate 10 and the communication passage 31 of the deformation suppression layer 30 in sequence, and is discharged to the gas flow path 41 described later.
 本実施形態において、変形抑制層30の熱膨張係数は、金属板10の熱膨張係数より小さい。これによって、金属板10とともに積層体20aが変形してしまうことを抑制することができる。具体的には、次の通りである。 In this embodiment, the thermal expansion coefficient of the deformation suppression layer 30 is smaller than the thermal expansion coefficient of the metal plate 10. This makes it possible to suppress deformation of the laminate 20a together with the metal plate 10. Specifically, this is as follows.
 金属板10の第1主面11上に水素極層21を成膜し、更に電解質層22を高温プロセスで成膜した後に常温まで降温させるとき、積層体20aの熱膨張係数は金属板10の熱膨張係数より小さいため、金属板10は積層体20aに比べて大きく収縮しようとする。しかしながら、金属板10は積層体20aによって拘束されているため収縮できず、第1主面11の中央が積層体20a側に突出するように変形しようとする。そこで、本実施形態では、金属板10の第2主面12上に変形抑制層30が形成されている。変形抑制層30の熱膨張係数は金属板10の熱膨張係数より小さいため、積層体20a側に変形しようとする金属板10を変形抑制層30によって保持することができる。すなわち、金属板10と積層体20aの間に生じる応力の少なくとも一部を、金属板10と変形抑制層30の間に生じる応力によって相殺することができる。このように、金属板10の両主面側に生じる応力差を低減させることによって、金属板10とともに積層体20aが変形してしまうことを抑制することができる。 When the hydrogen electrode layer 21 is formed on the first main surface 11 of the metal plate 10, and the electrolyte layer 22 is formed by a high-temperature process and then cooled to room temperature, the thermal expansion coefficient of the laminate 20a is smaller than that of the metal plate 10, so the metal plate 10 tends to shrink more than the laminate 20a. However, since the metal plate 10 is restrained by the laminate 20a, it cannot shrink, and the center of the first main surface 11 tends to deform so as to protrude toward the laminate 20a. Therefore, in this embodiment, a deformation suppression layer 30 is formed on the second main surface 12 of the metal plate 10. Since the thermal expansion coefficient of the deformation suppression layer 30 is smaller than that of the metal plate 10, the metal plate 10, which tends to deform toward the laminate 20a, can be held by the deformation suppression layer 30. In other words, at least a part of the stress generated between the metal plate 10 and the laminate 20a can be offset by the stress generated between the metal plate 10 and the deformation suppression layer 30. In this way, by reducing the stress difference that occurs on both main surfaces of the metal plate 10, it is possible to prevent the laminate 20a from deforming together with the metal plate 10.
 変形抑制層30の熱膨張係数は、セル本体部20の熱膨張係数と同等であってもよいし、或いは、セル本体部20の熱膨張係数より大きくても小さくてもよい。変形抑制層30の熱膨張係数の値は特に制限されないが、例えば5×10―6/℃以上13×10-6/℃以下とすることができる。 The thermal expansion coefficient of the deformation suppression layer 30 may be equal to the thermal expansion coefficient of the cell main body 20, or may be larger or smaller than the thermal expansion coefficient of the cell main body 20. The value of the thermal expansion coefficient of the deformation suppression layer 30 is not particularly limited, but can be, for example, 5×10 −6 /°C or more and 13×10 −6 /°C or less.
 変形抑制層30は、絶縁性材料によって構成されていてもよいし、導電性材料によって構成されていてもよい。変形抑制層30が絶縁性材料によって構成されている場合には、後述するインターコネクタ43と変形抑制層30が偶発的に接触したとしても、変形抑制層30とインターコネクタ43の間に意図せぬ電導パスが形成されてしまうことを抑制できる。従って、図1に示す構成においては、変形抑制層30は絶縁性材料によって構成されていることが好ましい。 The deformation suppression layer 30 may be made of an insulating material or a conductive material. When the deformation suppression layer 30 is made of an insulating material, even if the deformation suppression layer 30 accidentally comes into contact with the interconnector 43 described below, it is possible to prevent an unintended conductive path from being formed between the deformation suppression layer 30 and the interconnector 43. Therefore, in the configuration shown in FIG. 1, it is preferable that the deformation suppression layer 30 is made of an insulating material.
 変形抑制層30を構成する絶縁性材料としては、例えば、Al、ZrO、SiO、TiOなどを用いることができる。変形抑制層30を構成する導電性材料としては、還元雰囲気において電子伝導性を有するセラミックス材料、或いは、当該セラミックス材料と金属材料の複合体を用いることができる。還元雰囲気において電子伝導性を有するセラミックス材料としては、例えば、TiO、ZnO、CeOなどが挙げられる。金属材料としては、例えば、Ni、Cu、Coなどの金属もしくはそれらの酸化物が挙げられる。なお、変形抑制層30は、水素極層21又は電解質層22と同じ材料によって構成されていてもよい。 Examples of the insulating material constituting the deformation suppression layer 30 include Al 2 O 3 , ZrO 2 , SiO 2 , and TiO 2 . Examples of the conductive material constituting the deformation suppression layer 30 include a ceramic material having electronic conductivity in a reducing atmosphere, or a composite of the ceramic material and a metal material. Examples of the ceramic material having electronic conductivity in a reducing atmosphere include TiO 2 , ZnO 2 , and CeO 2 . Examples of the metal material include metals such as Ni, Cu, and Co, or oxides thereof. The deformation suppression layer 30 may be made of the same material as the hydrogen electrode layer 21 or the electrolyte layer 22.
 変形抑制層30は、金属板10の第2主面12の一部のみを覆っていることが好ましい。変形抑制層30の平面視形状を適切に設計することによって、変形抑制層30に応力が集中して損傷することを抑制できる。例えば、変形抑制層30は、第2主面12のうち連通孔13が開口する領域に形成されていなくてよい。或いは、変形抑制層30は、流路部材40が接合される領域に形成されていなくてよい。 The deformation suppression layer 30 preferably covers only a portion of the second main surface 12 of the metal plate 10. By appropriately designing the planar shape of the deformation suppression layer 30, it is possible to prevent stress from concentrating on the deformation suppression layer 30 and causing damage. For example, the deformation suppression layer 30 does not have to be formed in the area of the second main surface 12 where the communication holes 13 open. Alternatively, the deformation suppression layer 30 does not have to be formed in the area where the flow path member 40 is joined.
 また、変形抑制層30の厚みは特に制限されないが、セル本体部20の厚み以下であることが好ましい。これによって、電解セル1においてセラミックスが占める割合を低減できるため、積層構造物である電解セル1全体としての靭性が低下することを抑制できる。その結果、電解セル1が破損することを抑制できる。 The thickness of the deformation suppression layer 30 is not particularly limited, but is preferably equal to or less than the thickness of the cell body 20. This reduces the proportion of ceramics in the electrolytic cell 1, thereby preventing a decrease in the toughness of the electrolytic cell 1 as a whole, which is a laminated structure. As a result, damage to the electrolytic cell 1 can be prevented.
 変形抑制層30の気孔率は特に制限されず、変形抑制層30は、多孔層であってもよいし、緻密層であってもよい。 The porosity of the deformation suppression layer 30 is not particularly limited, and the deformation suppression layer 30 may be a porous layer or a dense layer.
 変形抑制層30は、電解質層22の成膜以前に形成されることが好ましい。例えば、変形抑制層30は、水素極層21の成膜と同時に形成してもよいし、電解質層22の成膜と同時に形成してもよい。或いは、変形抑制層30は、水素極層21の成膜前に形成してもよいし、水素極層21の成膜後かつ電解質層22の成膜前に形成してもよい。 The deformation suppression layer 30 is preferably formed before the electrolyte layer 22 is formed. For example, the deformation suppression layer 30 may be formed simultaneously with the formation of the hydrogen electrode layer 21, or may be formed simultaneously with the formation of the electrolyte layer 22. Alternatively, the deformation suppression layer 30 may be formed before the formation of the hydrogen electrode layer 21, or may be formed after the formation of the hydrogen electrode layer 21 and before the formation of the electrolyte layer 22.
 [流路部材40]
 流路部材40は、金属板10に接合される。金属板10と流路部材40の間の空間はガス流路41となる。ガス流路41は、金属板10側に開口しており、金属板10によって覆われている。ガス流路41は、変形抑制層30の各連通路31に連なる。本実施形態では、ガス流路41に原料ガスが供給される。
[Flow path member 40]
The flow path member 40 is joined to the metal plate 10. The space between the metal plate 10 and the flow path member 40 becomes a gas flow path 41. The gas flow path 41 opens on the metal plate 10 side and is covered by the metal plate 10. The gas flow path 41 communicates with each communication path 31 of the deformation suppression layer 30. In this embodiment, a raw material gas is supplied to the gas flow path 41.
 流路部材40は、金属板10に用いることのできる金属材料によって構成することができる。 The flow path member 40 can be made of a metal material that can be used for the metal plate 10.
 図1に示すように、流路部材40は、枠体42及びインターコネクタ43を有する。枠体42は、金属板10の第2主面12に接合される。枠体42は、ガス流路41の側周を取り囲む環状部材である。枠体42は、変形抑制層30の側周を取り囲んでいる。インターコネクタ43は、電解セル1を外部電源又は他の電解セルと電気的に直列に接続する板状部材である。インターコネクタ43は、枠体42に接合される。インターコネクタ43は、変形抑制層30と対向している。 As shown in FIG. 1, the flow path member 40 has a frame body 42 and an interconnector 43. The frame body 42 is joined to the second main surface 12 of the metal plate 10. The frame body 42 is an annular member that surrounds the side periphery of the gas flow path 41. The frame body 42 surrounds the side periphery of the deformation suppression layer 30. The interconnector 43 is a plate-shaped member that electrically connects the electrolytic cell 1 in series with an external power source or another electrolytic cell. The interconnector 43 is joined to the frame body 42. The interconnector 43 faces the deformation suppression layer 30.
 なお、本実施形態では、枠体42とインターコネクタ43が別々の部材であるが、枠体42とインターコネクタ43は一体の部材であってもよい。 In this embodiment, the frame body 42 and the interconnector 43 are separate components, but the frame body 42 and the interconnector 43 may be an integrated component.
 ここで、図2は、図1の部分拡大図である。図2には、金属板10の第2主面12の外縁10aに対して垂直な断面が図示されている。 Here, FIG. 2 is a partially enlarged view of FIG. 1. FIG. 2 shows a cross section perpendicular to the outer edge 10a of the second main surface 12 of the metal plate 10.
 図2に示すように、金属板10は、接合部45を介して流路部材40に接合されている。接合部45は、金属板10と流路部材40の隙間を封止する。接合部45は、金属板10と流路部材40の隙間に沿って環状に形成される。接合部45は、ガス流路41を取り囲むように配置される。 As shown in FIG. 2, the metal plate 10 is joined to the flow path member 40 via a joint 45. The joint 45 seals the gap between the metal plate 10 and the flow path member 40. The joint 45 is formed in a ring shape along the gap between the metal plate 10 and the flow path member 40. The joint 45 is disposed so as to surround the gas flow path 41.
 接合部45は、導電性材料によって構成される。例えば、接合部45は、SUS430などを含む金属ペーストを金属板10の第2主面12に塗布し、流路部材40を金属ペーストに密着させた状態で焼成(例えば、850℃、1時間)することで形成することができる。或いは、接合部45は、金属板10と流路部材40を密着させた状態で溶接することによって形成することができる。 The joint 45 is made of a conductive material. For example, the joint 45 can be formed by applying a metal paste containing SUS430 or the like to the second main surface 12 of the metal plate 10, and then firing (e.g., at 850°C for 1 hour) the flow path member 40 in a state of being in close contact with the metal paste. Alternatively, the joint 45 can be formed by welding the metal plate 10 and the flow path member 40 in a state of being in close contact with each other.
 金属板10、セル本体部20及び変形抑制層30それぞれの厚みの和T1に対する接合部45の幅W1の比(W1/T1)は、0.05以上1.0以下であることが好ましい。これによって、次のように電解セル1の変形及び破損を抑制することができる。まず、金属板10の第2主面12には熱膨張係数の小さい変形抑制層30が形成されている。そのため、もし流路部材40が金属板10の第2主面12に強固に接合されていれば、流路部材40との熱膨張係数差によって電解セル1が変形してしまう。そこで、比(W1/T1)を0.05以上1.0以下とすることで接合部45が変形しやすくなるため、金属板10と流路部材40の間に生じる熱応力を接合部45の変形によって吸収することができる。その結果、電解セル1に反りが生じたり、流路部材40が剥離したりすることを抑制できる。 The ratio (W1/T1) of the width W1 of the joint 45 to the sum T1 of the thicknesses of the metal plate 10, the cell body 20, and the deformation suppression layer 30 is preferably 0.05 or more and 1.0 or less. This makes it possible to suppress deformation and damage of the electrolytic cell 1 as follows. First, the deformation suppression layer 30 with a small thermal expansion coefficient is formed on the second main surface 12 of the metal plate 10. Therefore, if the flow path member 40 is firmly joined to the second main surface 12 of the metal plate 10, the electrolytic cell 1 will be deformed due to the difference in thermal expansion coefficient with the flow path member 40. Therefore, by setting the ratio (W1/T1) to 0.05 or more and 1.0 or less, the joint 45 becomes more easily deformed, and the thermal stress generated between the metal plate 10 and the flow path member 40 can be absorbed by the deformation of the joint 45. As a result, it is possible to suppress the electrolytic cell 1 from warping and the flow path member 40 from peeling off.
 図1に示した電解セル1における当該効果の確認結果を表1に示す。なお、サンプルNo.1~8では、正方形(100mm×100mm)の金属板10を用い、金属板10の厚みを0.3mmとし、セル本体部20の厚みを0.1mmとし、変形抑制層30の厚みを0.03mmとした。 The results of confirming this effect in the electrolytic cell 1 shown in Figure 1 are shown in Table 1. In addition, in samples No. 1 to 8, a square (100 mm x 100 mm) metal plate 10 was used, the thickness of the metal plate 10 was 0.3 mm, the thickness of the cell main body 20 was 0.1 mm, and the thickness of the deformation suppression layer 30 was 0.03 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比(W1/T1)を0.05以上1.0以下としたサンプルNo.1~6では、電解セル1の反りや流路部材40の剥離を抑制することができた。一方で、比(W1/T1)を0.05未満としたサンプルNo.7では、流路部材40の剥離が生じた。また、比(W1/T1)を1.0より大きくしたサンプルNo.8では、電解セル1に大きな反りが生じた。 As shown in Table 1, in samples No. 1 to 6, in which the ratio (W1/T1) was 0.05 or more and 1.0 or less, warping of the electrolytic cell 1 and peeling of the flow path member 40 were suppressed. On the other hand, in sample No. 7, in which the ratio (W1/T1) was less than 0.05, peeling of the flow path member 40 occurred. Also, in sample No. 8, in which the ratio (W1/T1) was greater than 1.0, significant warping of the electrolytic cell 1 occurred.
 (変形例)
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
(Modification)
Although the embodiments of the present invention have been described above, the present invention is not limited to these, and various modifications are possible without departing from the spirit of the present invention.
 [変形例1]
 上記実施形態において、金属板10の連通孔13の内側は空洞であることとしたが、図3に示すように、連通孔13の内側には導電部50が配置されていてもよい。導電部50は、水素極層21に接続される。導電部50は、多孔質材料によって構成されており、ガス透過性を有する。導電部50の気孔率は、例えば5%以上70%以下とすることができる。導電部50は、導電性材料によって構成されており、金属板10と水素極層21の間の電気的接続を補助する。なお、図3では、導電部50が連通孔13の内側に充填されているが、連通孔13の内壁面を覆うよう膜状に形成されていてもよい。
[Modification 1]
In the above embodiment, the inside of the communication hole 13 of the metal plate 10 is hollow, but as shown in FIG. 3, a conductive part 50 may be disposed inside the communication hole 13. The conductive part 50 is connected to the hydrogen electrode layer 21. The conductive part 50 is made of a porous material and has gas permeability. The porosity of the conductive part 50 may be, for example, 5% to 70%. The conductive part 50 is made of a conductive material and assists in electrical connection between the metal plate 10 and the hydrogen electrode layer 21. Note that, although the conductive part 50 is filled inside the communication hole 13 in FIG. 3, the conductive part 50 may be formed in a film shape so as to cover the inner wall surface of the communication hole 13.
 ここで、変形抑制層30が導電性材料によって構成されている場合、図3に示すように、導電部50は、変形抑制層30と水素極層21を電気的に接続することが好ましい。具体的には、導電部50は、金属板10に形成された連通孔13の内側だけでなく、変形抑制層30に形成された連通路31の内側にも配置され、水素極層21及び変形抑制層30の両方に接続されていることが好ましい。これによって、金属板10と水素極層21の間の電気的接続を顕著に向上させることができる。 Here, when the deformation suppression layer 30 is made of a conductive material, as shown in FIG. 3, it is preferable that the conductive portion 50 electrically connects the deformation suppression layer 30 and the hydrogen electrode layer 21. Specifically, it is preferable that the conductive portion 50 is arranged not only inside the communication hole 13 formed in the metal plate 10, but also inside the communication path 31 formed in the deformation suppression layer 30, and is connected to both the hydrogen electrode layer 21 and the deformation suppression layer 30. This can significantly improve the electrical connection between the metal plate 10 and the hydrogen electrode layer 21.
 導電部50の構成材料は特に制限されず、例えば、水素極層21に用いることのできる導電性の多孔質材料を用いることができる。導電部50は、水素極層21と一体的に形成されていてもよい。或いは、導電部50の構成材料としては、変形抑制層30に用いることのできる導電性材料を用いることができる。導電部50は、変形抑制層30と一体的に形成されていてもよい。 The material of the conductive portion 50 is not particularly limited, and for example, a conductive porous material that can be used in the hydrogen electrode layer 21 can be used. The conductive portion 50 may be formed integrally with the hydrogen electrode layer 21. Alternatively, the material of the conductive portion 50 may be a conductive material that can be used in the deformation suppression layer 30. The conductive portion 50 may be formed integrally with the deformation suppression layer 30.
 [変形例2]
 上記実施形態において、水素極層21はカソードとして機能し、酸素極層24はアノードとして機能することとしたが、水素極層21がアノードとして機能し、酸素極層24がカソードとして機能してもよい。具体的には、水素極層21と反応防止層23及び酸素極層24の位置を入れ替えるとともに、水素極層21の外表面に原料ガスを流す。この場合、酸素極層24が本発明に係る電極層となり、水素極層21が本発明に係る対向電極層となる。
[Modification 2]
In the above embodiment, the hydrogen electrode layer 21 functions as a cathode and the oxygen electrode layer 24 functions as an anode, but the hydrogen electrode layer 21 may function as an anode and the oxygen electrode layer 24 may function as a cathode. Specifically, the positions of the hydrogen electrode layer 21, the reaction prevention layer 23, and the oxygen electrode layer 24 are interchanged, and a source gas is caused to flow over the outer surface of the hydrogen electrode layer 21. In this case, the oxygen electrode layer 24 serves as the electrode layer according to the present invention, and the hydrogen electrode layer 21 serves as the counter electrode layer according to the present invention.
 [変形例3]
 上記実施形態では、電気化学セルの一例として電解セル1を挙げて説明したが、電気化学セルは電解セルに限られない。電気化学セルは、電気エネルギーを化学エネルギーに変えるため全体的な酸化還元反応から起電力が生じるように一対の電極が配置された素子と、化学エネルギーを電気エネルギーに変えるための素子との総称である。従って、電気化学セルは、酸化物イオン或いはプロトンをキャリアとする固体酸化物形燃料電池セル(SOFC:Solid Oxide Fuel Cell)であってもよい。この場合、燃料極(アノード)が「電極層」の一例となり、空気極(カソード)が「対向電極層」の一例となる。
[Modification 3]
In the above embodiment, the electrolysis cell 1 has been described as an example of an electrochemical cell, but the electrochemical cell is not limited to the electrolysis cell. The electrochemical cell is a general term for an element in which a pair of electrodes are arranged so that an electromotive force is generated from an overall oxidation-reduction reaction to convert electrical energy into chemical energy, and an element for converting chemical energy into electrical energy. Therefore, the electrochemical cell may be a solid oxide fuel cell (SOFC) using oxide ions or protons as carriers. In this case, the fuel electrode (anode) is an example of an "electrode layer", and the air electrode (cathode) is an example of a "counter electrode layer".
1   電解セル
10  金属板
11  第1主面
12  第2主面
13  連通孔
20  セル本体部
21  水素極層
22  電解質層
23  反応防止層
24  酸素極層
30  変形抑制層
31  連通路
40  流路部材
41  ガス流路
42  枠体
43  インターコネクタ
50  導電部
Reference Signs List 1 Electrolysis cell 10 Metal plate 11 First main surface 12 Second main surface 13 Communication hole 20 Cell body 21 Hydrogen electrode layer 22 Electrolyte layer 23 Reaction prevention layer 24 Oxygen electrode layer 30 Deformation suppression layer 31 Communication path 40 Flow path member 41 Gas flow path 42 Frame 43 Interconnector 50 Conductive portion

Claims (6)

  1.  第1主面と、第2主面と、前記第1主面と前記第2主面に連通する連通孔とを有する金属板と、
     前記第1主面上に形成される電極層と、前記電極層上に形成される電解質層とによって構成される積層体を有するセル本体部と、
     前記第2主面上に形成される変形抑制層と、
    を備え、
     前記積層体の熱膨張係数は、前記金属板の熱膨張係数より小さく、
     前記変形抑制層の熱膨張係数は、前記金属板の熱膨張係数より小さい、
    電気化学セル。
     
    A metal plate having a first main surface, a second main surface, and a through hole communicating with the first main surface and the second main surface;
    a cell body having a laminate including an electrode layer formed on the first main surface and an electrolyte layer formed on the electrode layer;
    a deformation suppression layer formed on the second main surface;
    Equipped with
    The thermal expansion coefficient of the laminate is smaller than the thermal expansion coefficient of the metal plate,
    The thermal expansion coefficient of the deformation suppression layer is smaller than the thermal expansion coefficient of the metal plate.
    Electrochemical cell.
  2.  前記変形抑制層は、前記第2主面の一部のみを覆っている、
    請求項1に記載の電気化学セル。
     
    The deformation suppression layer covers only a portion of the second main surface.
    10. The electrochemical cell of claim 1.
  3.  前記セル本体部は、前記電解質層を基準として前記電極層の反対側に配置される対向電極層を有し、
     前記変形抑制層の厚みは、前記セル本体部の厚み以下である、
    請求項1又は2に記載の電気化学セル。
     
    the cell body portion has a counter electrode layer disposed on the opposite side of the electrode layer with respect to the electrolyte layer;
    The thickness of the deformation suppression layer is equal to or less than the thickness of the cell main body portion.
    3. An electrochemical cell according to claim 1 or 2.
  4.  前記金属板との間にガス流路を形成するための流路部材と、
     前記金属板と前記流路部材を接合する接合部と、
    をさらに備え、
     前記第2主面の外縁に対して垂直な断面において、前記金属板、前記セル本体部及び前記変形抑制層それぞれの厚みの和に対する前記接合部の幅の比は、0.05以上1.0以下である、
    請求項1に記載の電気化学セル。
     
    a flow path member for forming a gas flow path between the metal plate and the flow path member;
    a joining portion that joins the metal plate and the flow path member;
    Further equipped with
    In a cross section perpendicular to the outer edge of the second main surface, the ratio of the width of the joint portion to the sum of the thicknesses of the metal plate, the cell main body portion, and the deformation suppression layer is 0.05 or more and 1.0 or less.
    10. The electrochemical cell of claim 1.
  5.  前記金属板との間にガス流路を形成するための流路部材をさらに備え、
     前記変形抑制層は、絶縁性材料によって構成される、
    請求項1に記載の電気化学セル。
     
    A flow path member for forming a gas flow path between the metal plate and the flow path member is further provided.
    The deformation suppression layer is made of an insulating material.
    10. The electrochemical cell of claim 1.
  6.  前記変形抑制層は、導電性材料によって構成され、
     前記連通孔内には、前記変形抑制層と前記電極層を電気的に接続する導電部が配置されている、
    請求項1に記載の電気化学セル。
    The deformation suppression layer is made of a conductive material,
    A conductive portion electrically connecting the deformation suppression layer and the electrode layer is disposed in the communication hole.
    10. The electrochemical cell of claim 1.
PCT/JP2023/038621 2022-11-08 2023-10-26 Electrochemical cell WO2024101163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022178995 2022-11-08
JP2022-178995 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024101163A1 true WO2024101163A1 (en) 2024-05-16

Family

ID=91032592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038621 WO2024101163A1 (en) 2022-11-08 2023-10-26 Electrochemical cell

Country Status (1)

Country Link
WO (1) WO2024101163A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077418A (en) * 1999-09-01 2001-03-23 Toyoda Gosei Co Ltd Manufacture of group iii nitride compound semiconductor element
JP2006236989A (en) * 2005-01-25 2006-09-07 Sumitomo Precision Prod Co Ltd Unit battery cell for fuel battery
JP2006287227A (en) * 2005-03-31 2006-10-19 Agere Systems Inc Curvature control in integrated circuit device
JP2008016248A (en) * 2006-07-04 2008-01-24 Nissan Motor Co Ltd Solid electrolyte fuel cell unit, and stack thereof
JP2008135360A (en) * 2006-10-24 2008-06-12 Ngk Insulators Ltd Thin plate for unit cell of solid oxide fuel battery
JP2008251379A (en) * 2007-03-30 2008-10-16 Ngk Insulators Ltd Electrochemical device
WO2020166202A1 (en) * 2019-02-13 2020-08-20 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077418A (en) * 1999-09-01 2001-03-23 Toyoda Gosei Co Ltd Manufacture of group iii nitride compound semiconductor element
JP2006236989A (en) * 2005-01-25 2006-09-07 Sumitomo Precision Prod Co Ltd Unit battery cell for fuel battery
JP2006287227A (en) * 2005-03-31 2006-10-19 Agere Systems Inc Curvature control in integrated circuit device
JP2008016248A (en) * 2006-07-04 2008-01-24 Nissan Motor Co Ltd Solid electrolyte fuel cell unit, and stack thereof
JP2008135360A (en) * 2006-10-24 2008-06-12 Ngk Insulators Ltd Thin plate for unit cell of solid oxide fuel battery
JP2008251379A (en) * 2007-03-30 2008-10-16 Ngk Insulators Ltd Electrochemical device
WO2020166202A1 (en) * 2019-02-13 2020-08-20 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell

Similar Documents

Publication Publication Date Title
EP1334528B1 (en) Fuel cells
US6835485B2 (en) Solid oxide fuel cell having a supported electrolyte film
RU2389110C2 (en) Structure of sealed joint unit for electrochemical device
CN107431216B (en) Electrochemical reaction unit and fuel cell stack
US20220200033A1 (en) Cell, cell stack device, module, and module housing device
TW201900898A (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of electrochemical element
KR20100119577A (en) Cell for solid oxide fuel cell and method for manufacturing same
JPH1092446A (en) Solid electrolyte type fuel cell
JP5727428B2 (en) Fuel cell with separator and fuel cell
WO2024101163A1 (en) Electrochemical cell
JP6752387B1 (en) Electrochemical cell
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
WO2018174168A1 (en) Method for manufacturing electrochemical element and electrochemical element
JP6752386B1 (en) Electrochemical cell
WO2024122286A1 (en) Electrochemical cell
WO2023171276A1 (en) Electrochemical cell
JP7333439B1 (en) electrochemical cell
WO2023171299A1 (en) Electrochemical cell
JP7394189B1 (en) electrochemical cell
WO2023171297A1 (en) Electrochemical cell
JP7394190B1 (en) electrochemical cell
WO2024143271A1 (en) Electrochemical cell
WO2023176241A1 (en) Electrochemical cell
WO2024143264A1 (en) Electrochemical cell
WO2023188936A1 (en) Electrochemical cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888511

Country of ref document: EP

Kind code of ref document: A1