WO2023171299A1 - Electrochemical cell - Google Patents

Electrochemical cell Download PDF

Info

Publication number
WO2023171299A1
WO2023171299A1 PCT/JP2023/005529 JP2023005529W WO2023171299A1 WO 2023171299 A1 WO2023171299 A1 WO 2023171299A1 JP 2023005529 W JP2023005529 W JP 2023005529W WO 2023171299 A1 WO2023171299 A1 WO 2023171299A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
main surface
hydrogen electrode
average thickness
metal support
Prior art date
Application number
PCT/JP2023/005529
Other languages
French (fr)
Japanese (ja)
Inventor
春香 千葉
俊之 中村
玄太 寺澤
誠 大森
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2024506001A priority Critical patent/JPWO2023171299A1/ja
Publication of WO2023171299A1 publication Critical patent/WO2023171299A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material

Definitions

  • the present invention relates to an electrochemical cell.
  • the electrochemical cell described in Patent Document 1 includes a cell main body in which a first electrode layer, an electrolyte layer, and a second electrode layer are laminated in this order on the main surface of a metal support.
  • the electrolyte layer covers the first electrode layer and has an end connected to the main surface of the cell body.
  • An object of the present invention is to provide an electrochemical cell whose rigidity can be improved.
  • An electrochemical cell includes: a metal support having a plurality of supply holes formed on a main surface; a first electrode layer formed on the main surface and covering the plurality of supply holes;
  • the cell body includes two electrode layers and an electrolyte layer disposed between the first electrode layer and the second electrode layer.
  • the electrolyte layer covers the surface of the first electrode layer in a cross section perpendicular to the main surface, and covers the inner part at least a predetermined distance from the tip of the first electrode layer in the direction parallel to the main surface, and the main part of the metal support.
  • An outer portion that covers substantially the entire area of the surface exposed from the first electrode layer and is located a predetermined distance or more from the tip of the first electrode layer in the surface direction, and an intermediate portion that is sandwiched between the inner portion and the outer portion in the surface direction. It has a department.
  • the average thickness of the middle part is greater than the average thickness of the inner part.
  • the electrochemical cell according to the second aspect of the present invention is related to the first aspect, and the average thickness of the middle part is larger than the average thickness of the outer part.
  • the electrochemical cell according to the third aspect of the present invention relates to the first or second side, and the predetermined distance is one-half the thickness of the metal support.
  • the electrochemical cell according to the fourth aspect of the present invention relates to any one of the first to third aspects, and the average thickness of the intermediate part is the average thickness of three places dividing the intermediate part into four in the surface direction.
  • the average thickness of the inner part is the average value of the thicknesses at three points that equally divide the part of the inner part up to a predetermined distance from the middle part in the surface direction into four parts.
  • the electrochemical cell according to the fifth aspect of the present invention relates to any one of the second to fourth aspects, and the average thickness of the intermediate portion is the average thickness of three places dividing the intermediate portion into four in the surface direction.
  • the average thickness of the outer portion is the average value of the thicknesses at three locations dividing the outer portion into four equal parts in the surface direction.
  • An electrochemical cell according to a sixth aspect of the present invention relates to any one of the first to fifth aspects, and the first electrode layer has a side surface formed along the thickness direction perpendicular to the surface direction, The sides are uneven.
  • FIG. 1 is a plan view of an electrolysis cell according to an embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 4 is a cross-sectional view of an electrolytic cell according to Modification Example 1.
  • FIG. 1 is a plan view of an electrolytic cell 1 according to an embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • the electrolytic cell 1 is an example of an "electrochemical cell" according to the present invention.
  • the electrolytic cell 1 is formed into a plate shape that extends in the X-axis direction and the Y-axis direction.
  • the electrolytic cell 1 is formed into a rectangle extending in the Y-axis direction in plan view.
  • the planar shape of the electrolytic cell 1 is not particularly limited, and may be a polygon other than a rectangle, an ellipse, a circle, or the like.
  • the electrolytic cell 1 includes a cell main body 10, a metal support 20, and a channel member 30.
  • the cell main body 10 includes a hydrogen electrode layer 6 (cathode), an electrolyte layer 7, a reaction prevention layer 8, and an oxygen electrode layer 9 (anode).
  • the hydrogen electrode layer 6, the electrolyte layer 7, the reaction prevention layer 8, and the oxygen electrode layer 9 are laminated in this order from the metal support 20 side in the Z-axis direction perpendicular to the X-axis direction and the Y-axis direction.
  • the hydrogen electrode layer 6, the electrolyte layer 7, and the oxygen electrode layer 9 are essential structures, and the reaction prevention layer 8 is an optional structure.
  • Hydrogen electrode layer 6 is arranged between metal support 20 and electrolyte layer 7. Hydrogen electrode layer 6 is supported by metal support 20 . Specifically, the hydrogen electrode layer 6 is arranged on the first main surface 20S of the metal support 20. The hydrogen electrode layer 6 covers the plurality of supply holes 21 formed in the first main surface 20S of the metal support 20. A portion of the hydrogen electrode layer 6 may enter into each supply hole 21 .
  • the hydrogen electrode layer 6 is an example of the "first electrode layer" according to the present invention.
  • Raw material gas is supplied to the hydrogen electrode 6 through each supply hole 21 .
  • the source gas contains at least H 2 O.
  • the hydrogen electrode 6 When the source gas contains only H 2 O, the hydrogen electrode 6 generates H 2 from the source gas according to the electrochemical reaction of water electrolysis shown in equation (1) below.
  • ⁇ Hydrogen electrode 6 H 2 O + 2e - ⁇ H 2 + O 2 - (1)
  • the hydrogen electrode 6 extracts H 2 and CO from the raw material gas according to the electrochemical reaction of co-electrolysis shown in the following equations (2), (3), and (4). and O 2- is produced.
  • ⁇ Hydrogen electrode 6 CO 2 +H 2 O+4e - ⁇ CO+H 2 +2O 2-...
  • ⁇ Electrochemical reaction of H 2 O H 2 O + 2e - ⁇ H 2 + O 2 - (3)
  • ⁇ Electrochemical reaction of CO 2 CO 2 +2e - ⁇ CO + O 2 -... (4)
  • the hydrogen electrode layer 6 is made of a porous material having electron conductivity.
  • the hydrogen electrode layer 6 may have oxide ion conductivity.
  • the hydrogen electrode layer 6 is made of, for example, 8 mol% yttria-stabilized zirconia (8YSZ), calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ), gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), (La ,Sr)(Cr, Mn)O3, (La,Sr)TiO3, Sr2(Fe,Mo)2O6 , ( La , Sr) VO3 , (La,Sr) FeO3 , and among these It can be composed of a mixed material combining two or more of them, or a composite of one or more of these and NiO.
  • the value of the thermal expansion coefficient of the hydrogen electrode layer 6 is not particularly limited, but can be, for example, 12 ⁇ 10 ⁇ 6 /°C or more and 20 ⁇ 10 ⁇ 6 /°C or less.
  • the porosity of the hydrogen electrode layer 6 is not particularly limited, but can be, for example, 5% or more and 70% or less.
  • the thickness of the hydrogen electrode layer 6 is not particularly limited, but may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the method for forming the hydrogen electrode layer 6 is not particularly limited, and may include a baking method, a spray coating method (thermal spray method, aerosol deposition method, aerosol gas deposition method, powder jet deposition method, particle jet deposition method, cold spray method, etc.) ), PVD method (sputtering method, pulsed laser deposition method, etc.), CVD method, etc. can be used.
  • a baking method a spray coating method (thermal spray method, aerosol deposition method, aerosol gas deposition method, powder jet deposition method, particle jet deposition method, cold spray method, etc.)
  • PVD method sputtering method, pulsed laser deposition method, etc.
  • CVD method etc.
  • Electrolyte layer 7 is arranged between hydrogen electrode layer 6 and oxygen electrode layer 9.
  • the reaction prevention layer 8 is arranged between the electrolyte layer 7 and the oxygen electrode layer 9
  • the electrolyte layer 7 is arranged between the hydrogen electrode layer 6 and the reaction prevention layer 8
  • the reaction prevention layer 8 is arranged between the hydrogen electrode layer 6 and the reaction prevention layer 8. 6 and reaction prevention layer 8, respectively.
  • the electrolyte layer 7 covers the hydrogen electrode layer 6 and also covers the region of the first main surface 20S of the metal support 20 that is exposed from the hydrogen electrode layer 6. As shown in FIG. 1, the electrolyte layer 7 covers the entire surface of the hydrogen electrode layer 6 in plan view. As shown in FIG. 1, it is preferable that the electrolyte layer 7 covers the entire region of the first main surface 20S exposed from the hydrogen electrode layer 6 in plan view, but a part of the first main surface 20S may be exposed from the electrolyte layer 7. The detailed structure of the electrolyte layer 7 will be described later.
  • the electrolyte layer 7 transmits O 2 ⁇ generated in the hydrogen electrode layer 6 to the oxygen electrode layer 9 side.
  • the electrolyte layer 7 is made of a dense material having oxide ion conductivity.
  • the electrolyte layer 7 is made of, for example, YSZ (yttria-stabilized zirconia, e.g. 8YSZ), GDC (gadolinium-doped ceria), ScSZ (scandia-stabilized zirconia), SDC (samarium solid solution ceria), LSGM (lanthanum gallate), or the like. be able to.
  • the value of the thermal expansion coefficient of the electrolyte layer 7 is not particularly limited, but may be, for example, 10 ⁇ 10 ⁇ 6 /°C or more and 12 ⁇ 10 ⁇ 6 /°C or less.
  • the porosity of the electrolyte layer 7 is not particularly limited, but can be, for example, 0.1% or more and 7% or less.
  • the thickness of the electrolyte layer 7 is not particularly limited, but may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the method for forming the electrolyte layer 7 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
  • Reaction prevention layer 8 is arranged between electrolyte layer 7 and oxygen electrode layer 9.
  • the reaction prevention layer 8 is arranged on the opposite side of the hydrogen electrode layer 6 with respect to the electrolyte layer 7.
  • the reaction prevention layer 8 prevents the constituent elements of the electrolyte layer 7 from reacting with the constituent elements of the oxygen electrode layer 9 to form a layer with high electrical resistance.
  • the reaction prevention layer 8 is made of an oxide ion conductive material.
  • the reaction prevention layer 8 can be made of GDC, SDC, or the like.
  • the porosity of the reaction prevention layer 8 is not particularly limited, but may be, for example, 0.1% or more and 50% or less.
  • the thickness of the reaction prevention layer 8 is not particularly limited, but may be, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the method for forming the reaction prevention layer 8 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
  • the oxygen electrode layer 9 is arranged on the opposite side of the hydrogen electrode layer 6 with respect to the electrolyte layer 7.
  • the reaction prevention layer 8 since the reaction prevention layer 8 is disposed between the electrolyte layer 7 and the oxygen electrode layer 9, the oxygen electrode layer 9 is connected to the reaction prevention layer 8.
  • the reaction prevention layer 8 is not disposed between the electrolyte layer 7 and the oxygen electrode layer 9, the oxygen electrode layer 9 is connected to the electrolyte layer 7.
  • the oxygen electrode layer 9 is an example of the "second electrode layer" according to the present invention.
  • the oxygen electrode layer 9 generates O 2 from O 2 ⁇ transmitted from the hydrogen electrode layer 6 through the electrolyte layer 7 according to the chemical reaction of equation (2) below.
  • ⁇ Oxygen electrode layer 9 2O 2- ⁇ O 2 +4e - (2)
  • the oxygen electrode layer 9 is made of a porous material having oxide ion conductivity and electron conductivity.
  • the oxygen electrode layer 9 is made of, for example, (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr). ) CoO 3 and an oxide ion conductive material (GDC, etc.).
  • the porosity of the oxygen electrode layer 9 is not particularly limited, but can be, for example, 20% or more and 60% or less.
  • the thickness of the oxygen electrode layer 9 is not particularly limited, but may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the method of forming the oxygen electrode layer 9 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
  • the metal support 20 supports the cell main body 10 .
  • the metal support 20 is formed into a plate shape.
  • the metal support 20 may have a flat plate shape or a curved plate shape.
  • the thickness of the metal support 20 is not particularly limited as long as it can maintain the strength of the electrolytic cell 1, and may be, for example, 0.1 mm or more and 2.0 mm or less.
  • the metal support 20 has a plurality of supply holes 21, a first main surface 20S, and a second main surface 20T.
  • the first main surface 20S is an example of the "main surface” according to the present invention.
  • Each supply hole 21 is formed on the first main surface 20S.
  • Each supply hole 21 penetrates the metal support 20 from the first main surface 20S to the second main surface 20T.
  • Each supply hole 21 opens on the first main surface 20S and the second main surface 20T, respectively.
  • the opening of the first main surface 20S of each supply hole 21 is covered with the hydrogen electrode layer 6. That is, each supply hole 21 is formed in a region of the first main surface 20S that is joined to the hydrogen electrode layer 6.
  • Each supply hole 21 is connected to a flow path 30a between the metal support 20 and the flow path member 30.
  • Each supply hole 21 can be formed by mechanical processing (for example, punching process), laser processing, chemical processing (for example, etching process), or the like. Furthermore, when the metal support 20 is made of porous metal, each supply hole 21 may be an open pore of the porous metal. Each supply hole 21 may be perpendicular to the first main surface 20S, may not be perpendicular to the first main surface 20S, and may not be linear.
  • the cell main body portion 10 is joined to the first main surface 20S.
  • the flow path member 30 is joined to the second main surface 20T.
  • the first main surface 20S is provided on the opposite side of the second main surface 20T.
  • the metal support 20 is made of a metal material.
  • the metal support 20 is made of an alloy material containing Cr (chromium).
  • Examples of such metal materials include Fe--Cr alloy steel (such as stainless steel) and Ni--Cr alloy steel.
  • the content of Cr in the metal support 20 is not particularly limited, but can be 4% by mass or more and 30% by mass or less.
  • the metal support 20 may contain Ti (titanium) or Zr (zirconium).
  • the content of Ti in the metal support 20 is not particularly limited, but can be set to 0.01 mol% or more and 1.0 mol% or less.
  • the Al content in the metal support 20 is not particularly limited, but can be set to 0.01 mol% or more and 0.4 mol% or less.
  • the metal support 20 may contain Ti as TiO 2 (titania) or Zr as ZrO 2 (zirconia).
  • the value of the thermal expansion coefficient of the metal support 20 is not particularly limited, it can be, for example, 10 ⁇ 10 ⁇ 6 /°C or more and 20 ⁇ 10 ⁇ 6 /°C or less.
  • the metal support 20 may have an oxide film formed by oxidation of the constituent elements of the metal support 20 on its surface.
  • a typical example of the oxide film is a chromium oxide film.
  • the chromium oxide film covers at least a portion of the surface of the metal support 20. Further, the chromium oxide film may cover at least a portion of the inner wall surface of each supply hole 21.
  • the flow path member 30 is joined to the second main surface 20T of the metal support 20.
  • the channel member 30 forms a channel 30a between it and the metal support 20.
  • a raw material gas is supplied to the flow path 30a.
  • the raw material gas supplied to the flow path 30a is supplied to the hydrogen electrode layer 6 of the cell main body 10 via each supply hole 21 of the metal support 20.
  • the flow path member 30 can be made of an alloy material, for example.
  • the flow path member 30 may be formed of the same material as the metal support 20.
  • the channel member 30 may be substantially integral with the metal support 20.
  • the flow path member 30 has a frame 31 and an interconnector 32.
  • the frame body 31 is an annular member that surrounds the sides of the flow path 30a.
  • the frame 31 is joined to the second main surface 20T of the metal support 20.
  • the interconnector 32 is a plate-like member for electrically connecting an external power source or another electrolytic cell to the electrolytic cell 1 in series.
  • the interconnector 32 is joined to the frame 31.
  • the frame 31 and the interconnector 32 are separate members, but the frame 31 and the interconnector 32 may be an integrated member.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 3 is a cross section perpendicular to the first main surface 20S of the metal support 20.
  • FIG. 3 a cross section of the outer peripheral portion of the electrolytic cell 1 is illustrated.
  • the electrolyte layer 7 has an inner part 71, an outer part 72, and an intermediate part 73.
  • the inner part 71 is surrounded by the intermediate part 73, and the intermediate part 73 is surrounded by the outer part 72.
  • the inner part 71 covers the surface of the hydrogen electrode layer 6 and is spaced from the tip P6 of the hydrogen electrode layer 6 by a predetermined distance D1 or more in the plane direction.
  • the inner part 71 is a part of the electrolyte layer 7 on the first reference line L1 and inside the first reference line L1.
  • the inside means the side from the tip P20 of the first main surface 20S toward the tip P6 of the hydrogen electrode layer 6 in the planar direction.
  • the first reference line L1 is a straight line that is parallel to the second reference line L2 and set a predetermined distance D1 inward from the second reference line L2.
  • the second reference line L2 is a straight line that passes through the tip P6 of the hydrogen electrode layer 6 and is perpendicular to the first main surface 20S.
  • the predetermined distance D1 is one half of the thickness Ta of the metal support 20 on the second reference line L2. The reason why the predetermined distance D1 is defined based on the thickness Ta of the metal support 20 is to specify the portion of the hydrogen electrode layer 6 close to the tip P6 as the intermediate portion 73.
  • the second reference line L2 a straight line obtained by straightening the first main surface 20S using the least squares method on a cross-sectional image (for example, a SEM image) is used as the first main surface 20S.
  • a cross-sectional image for example, a SEM image
  • the tip P6 of the hydrogen electrode layer 6 is located on the first main surface 20S, but the tip P6 of the hydrogen electrode layer 6 may be separated from the first main surface 20S.
  • the outer portion 72 covers substantially the entire region of the first main surface 20S that is exposed from the hydrogen electrode layer 6, and is spaced from the tip P6 of the hydrogen electrode layer 6 by a predetermined distance D1 or more in the surface direction. Covering substantially the entire region of the first main surface 20S exposed from the hydrogen electrode layer 6 means that the outer portion 72 covers the first main surface 20S up to the tip P20.
  • the outer portion 72 is a portion of the electrolyte layer 7 on and outside the third reference line L3.
  • the outer side means the side from the tip P6 of the hydrogen electrode layer 6 toward the tip P20 of the first main surface 20S in the plane direction.
  • the third reference line L3 is a straight line that is parallel to the second reference line L2 and set outward from the second reference line L2 by a predetermined distance D1.
  • the intermediate portion 73 is sandwiched between the inner portion 71 and the outer portion 72 in the plane direction.
  • the intermediate portion 73 is a portion of the electrolyte layer 7 between the first reference line L1 and the third reference line L3.
  • the intermediate part 73 is arranged outside the inner part 71 and inside the outer part 72.
  • the intermediate portion 73 is continuous with both the inner portion 71 and the outer portion 72.
  • the boundary between the intermediate portion 73 and the inner portion 71 is defined by the first reference line L1.
  • the boundary between the intermediate portion 73 and the outer portion 72 is defined by the third reference line L3.
  • the center of the intermediate portion 73 in the surface direction is defined by the second reference line L2.
  • the average thickness of the intermediate portion 73 is greater than the average thickness of the inner portion 71.
  • the average thickness of the intermediate portion 73 is the average value of the thicknesses T1, T2, and T3 at three locations that divide the intermediate portion 73 into four equal parts in the surface direction.
  • the thicknesses T1, T2, and T3 of the intermediate portion 73 are the thicknesses measured at three locations that equally divide the area between the first reference line L1 and the third reference line L3 into four in the surface direction.
  • thickness means thickness in the Z-axis direction (thickness direction).
  • the average thickness of the inner portion 71 is the average value of the thicknesses T4, T5, and T6 at three points that equally divide the portion of the inner portion 71 from the first reference line L1 to a predetermined distance D1 in the surface direction into four parts.
  • the thicknesses T4, T5, and T6 of the inner side portion 71 are the thicknesses measured at three locations that equally divide the space between the first reference line L1 and the fourth reference line L4 into four in the surface direction.
  • the fourth reference line L4 is a line symmetrical to the second reference line L2 with respect to the first reference line L1.
  • the fourth reference line L4 is a straight line that is parallel to the first reference line L1 and is set inward from the second reference line L2 by twice the predetermined distance D1.
  • the predetermined distance D1 is one half of the thickness Ta of the metal support 20 on the first reference line L1.
  • the average thickness of the intermediate portion 73 is not particularly limited, but may be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the average thickness of the inner portion 71 is not particularly limited, but may be, for example, 3 ⁇ m or more and 50 ⁇ m or less. Further, the average thickness of the intermediate portion 73 is greater than the average thickness of the outer portion 72. The average thickness of the intermediate portion 73 is measured as described above.
  • the average thickness of the outer portion 72 is the average value of the thicknesses T7, T8, and T9 at three locations that divide the outer portion 72 into four equal parts.
  • the thicknesses T7, T8, and T9 of the outer portion 72 are the thicknesses measured at three locations that equally divide the area from the third reference line L3 to the tip P7 of the electrolyte layer 7 into four in the surface direction.
  • the tip P7 of the electrolyte layer 7 is located outside the tip P20 of the first main surface 20S in the plane direction, but is located on the tip P20 of the first main surface 20S or on the first main surface It may be located inside the tip P20 of 20S.
  • the average thickness of the outer portion 72 is not particularly limited, but may be, for example, 3 ⁇ m or more and 50 ⁇ m or less.
  • the average thickness of the outer part 72 may be larger or smaller than the average thickness of the inner part 71, or may be the same as the average thickness of the inner part 71.
  • the outer part 72 may have a protrusion 72a.
  • the protruding portion 72a is a portion of the outer portion 72 that protrudes to the outside of the first main surface 20S of the metal support 20. That is, the protruding portion 72a is a portion of the outer portion 72 located outside the tip P20 of the first main surface 20S.
  • the protruding portion 72a of the outer portion 72 covers at least a portion of the side surface 20U of the metal support 20. Thereby, the side surface 20U can be covered with the protrusion 72a, so that heat radiation from the metal support 20 can be further suppressed.
  • the electrolyte layer 7 has an inner part 71, an outer part 72, and an intermediate part 73.
  • the inner part 71 covers the surface of the hydrogen electrode layer 6 and is spaced from the tip P6 of the hydrogen electrode layer 6 by a predetermined distance D1 or more in the plane direction.
  • the outer portion 72 covers substantially the entire region of the first main surface 20S that is exposed from the hydrogen electrode layer 6, and is spaced from the tip P6 of the hydrogen electrode layer 6 by a predetermined distance D1 or more in the surface direction.
  • the intermediate portion 73 is sandwiched between the inner portion 71 and the outer portion 72 in the plane direction. The average thickness of the intermediate portion 73 is greater than the average thickness of the inner portion 71.
  • the outer portion 72 improves not only the rigidity of the metal support 20 but also the rigidity of the dense electrolyte layer 7. can also be applied to the outer periphery of the electrolytic cell 1. Therefore, the rigidity of the electrolytic cell 1 as a whole can be improved.
  • the average thickness of the intermediate portion 73 is larger than the average thickness of the inner portion 71, it is possible to suppress the occurrence of cracks in the electrolyte layer 7 starting near the tip P6 of the hydrogen electrode layer 6. Specifically, it is as follows.
  • the temperature of the metal support 20 made of a metal material increases more easily than that of the cell main body 10 made of ceramic.
  • the temperature of the hydrogen electrode layer 6 in contact with the metal support 20 tends to rise, but the temperature of the portion of the electrolyte layer 7 disposed on the hydrogen electrode layer 6 is difficult to rise. Therefore, thermal stress is generated between the portion of the electrolyte layer 7 disposed on the hydrogen electrode layer 6 and the hydrogen electrode layer 6 . Further, the temperature of the portion of the electrolyte layer 7 that contacts the metal support 20 tends to rise, but the temperature of the portion of the electrolyte layer 7 disposed on the hydrogen electrode layer 6 does not easily rise.
  • thermal stress tends to concentrate near the tip P6 of the hydrogen electrode layer 6, but as mentioned above, by making the average thickness of the intermediate part 73 larger than the average thickness of the inner part 71, the strength of the intermediate part 73 is increased. There is. Therefore, it is possible to suppress the occurrence of cracks starting in the vicinity of the tip P6 of the hydrogen electrode layer 6 in the intermediate portion 73. If cracks occur in the intermediate portion 73, part of the function of the electrolyte layer 7 will be lost, so it is important to suppress cracks in the intermediate portion 73.
  • the average thickness of the intermediate portion 73 is greater than the average thickness of the outer portion 72. Therefore, it is easier to increase the thickness of the intermediate portion 73, so that the strength of the intermediate portion 73 can be sufficiently increased. Therefore, it is possible to further suppress the occurrence of cracks starting near the tip P6 of the hydrogen electrode layer 6 in the intermediate portion 73.
  • the thickness of the hydrogen electrode layer 6 gradually becomes thinner as it approaches the tip P6, but the thickness is not limited to this.
  • the thickness of the hydrogen electrode layer 6 may be substantially constant throughout. Even in this case, by setting the first to fourth reference lines L1 to L4 based on the tip P6 of the hydrogen electrode layer 6, the inner part 71, the outer part 72, and the intermediate part 73 are defined, and these lines are also defined. The average thickness of can be determined.
  • the hydrogen electrode layer 6 has a side surface 6S formed along the Z-axis direction, it is preferable that unevenness is formed on the side surface 6S. As a result, the strength of the interface between the hydrogen electrode layer 6 and the electrolyte layer 7 can be increased, so that damage caused by thermal stress during temperature rise and fall can be reduced.
  • the average thickness of the intermediate part 73 is larger than the average thickness of the inner part 71 in the cross section shown in FIG.
  • the configuration shown in FIG. 3 is preferably observed in all cross sections of the outer circumferential portion of the electrolytic cell 1, but it is sufficient if it can be observed in at least one cross section of the outer circumferential portion of the electrolytic cell 1. This is because if the configuration shown in FIG. 3 is observed even in one cross section, it is possible to suppress the occurrence of cracks in the intermediate portion 73 at least at that location.
  • the hydrogen electrode layer 6 functions as a cathode and the oxygen electrode layer 9 functions as an anode, but even if the hydrogen electrode layer 6 functions as an anode and the oxygen electrode layer 9 functions as a cathode, good.
  • the constituent materials of the hydrogen electrode layer 6 and the oxygen electrode layer 9 are exchanged, and the raw material gas is caused to flow over the outer surface of the hydrogen electrode layer 6.
  • the electrolytic cell 1 has been described as an example of an electrochemical cell, but the electrochemical cell is not limited to an electrolytic cell.
  • An electrochemical cell consists of an element with a pair of electrodes arranged so that an electromotive force is generated from the overall redox reaction, and an element that converts chemical energy into electrical energy. It is a generic term. Therefore, electrochemical cells include, for example, fuel cells that use oxide ions or protons as carriers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

An electrolyte layer (7) comprises an inner part (71), an outer part (72) and a middle part (73). The inner part (71) covers the surface of a hydrogen electrode layer (6) and is estranged from the tip (P6) of the hydrogen electrode layer (6) in the surface direction by at least a set distance (D1). The outer part (72) covers approximately all of a region of a first main surface (20S) that is exposed from the hydrogen electrode layer (6) and is estranged from the tip (P6) of the hydrogen electrode layer (6) in the surface direction by at least the set distance (D1). The middle part (73) lies between the inner part (71) and the outer part (72), in the surface direction. The average thickness of the middle part (73) is greater than the average thickness of the inner part (71).

Description

電気化学セルelectrochemical cell
 本発明は、電気化学セルに関する。 The present invention relates to an electrochemical cell.
 電気化学セル(電解セル、燃料電池など)において、金属支持体によってセル本体部を支持する構造が知られている。例えば、特許文献1に記載された電気化学セルは、第1電極層、電解質層、及び第2電極層がこの順で金属支持体の主面上に積層されたセル本体部を備える。電解質層は、第1電極層を覆っており、その端部はセル本体部の主面に接続されている。 In electrochemical cells (electrolytic cells, fuel cells, etc.), a structure in which the cell body is supported by a metal support is known. For example, the electrochemical cell described in Patent Document 1 includes a cell main body in which a first electrode layer, an electrolyte layer, and a second electrode layer are laminated in this order on the main surface of a metal support. The electrolyte layer covers the first electrode layer and has an end connected to the main surface of the cell body.
特開2020-155337号JP2020-155337
 しかしながら、特許文献1に記載の電気化学セルでは、金属支持体の外周部が電解質層から露出しているため、電気化学セルの外周部の剛性は、金属支持体だけの剛性に委ねられている。 However, in the electrochemical cell described in Patent Document 1, the outer periphery of the metal support is exposed from the electrolyte layer, so the rigidity of the outer periphery of the electrochemical cell is left to the rigidity of the metal support alone. .
 本発明の課題は、剛性を向上可能な電気化学セルを提供することにある。 An object of the present invention is to provide an electrochemical cell whose rigidity can be improved.
 本発明の第1の側面に係る電気化学セルは、主面に形成された複数の供給孔を有する金属支持体と、主面上に形成され複数の供給孔を覆う第1電極層と、第2電極層と、第1電極層及び第2電極層の間に配置される電解質層とを有するセル本体部とを備える。電解質層は、主面に垂直な断面において、第1電極層の表面を覆い、主面に平行な面方向において第1電極層の先端から所定距離以上離れた内側部と、金属支持体の主面のうち第1電極層から露出する領域の略全部を覆い、面方向において第1電極層の先端から所定距離以上離れた外側部と、面方向において内側部と外側部の間に挟まれる中間部とを有する。中間部の平均厚みは、内側部の平均厚みより大きい。 An electrochemical cell according to a first aspect of the present invention includes: a metal support having a plurality of supply holes formed on a main surface; a first electrode layer formed on the main surface and covering the plurality of supply holes; The cell body includes two electrode layers and an electrolyte layer disposed between the first electrode layer and the second electrode layer. The electrolyte layer covers the surface of the first electrode layer in a cross section perpendicular to the main surface, and covers the inner part at least a predetermined distance from the tip of the first electrode layer in the direction parallel to the main surface, and the main part of the metal support. An outer portion that covers substantially the entire area of the surface exposed from the first electrode layer and is located a predetermined distance or more from the tip of the first electrode layer in the surface direction, and an intermediate portion that is sandwiched between the inner portion and the outer portion in the surface direction. It has a department. The average thickness of the middle part is greater than the average thickness of the inner part.
 本発明の第2の側面に係る電気化学セルは、第1の側面に係り、中間部の平均厚みは、外側部の平均厚みより大きい。 The electrochemical cell according to the second aspect of the present invention is related to the first aspect, and the average thickness of the middle part is larger than the average thickness of the outer part.
 本発明の第3の側面に係る電気化学セルは、第1又は第2の側面に係り、所定距離は、金属支持体の厚みの2分の1である。 The electrochemical cell according to the third aspect of the present invention relates to the first or second side, and the predetermined distance is one-half the thickness of the metal support.
 本発明の第4の側面に係る電気化学セルは、第1乃至第3いずれかの側面に係り、中間部の平均厚みは、面方向において中間部を4等分する3か所における厚みの平均値であり、内側部の平均厚みは、内側部のうち面方向において中間部から所定距離までの部分を4等分する3か所における厚みの平均値である。 The electrochemical cell according to the fourth aspect of the present invention relates to any one of the first to third aspects, and the average thickness of the intermediate part is the average thickness of three places dividing the intermediate part into four in the surface direction. The average thickness of the inner part is the average value of the thicknesses at three points that equally divide the part of the inner part up to a predetermined distance from the middle part in the surface direction into four parts.
 本発明の第5の側面に係る電気化学セルは、第2乃至第4いずれかの側面に係り、中間部の平均厚みは、面方向において中間部を4等分する3か所における厚みの平均値であり、外側部の平均厚みは、面方向において外側部を4等分する3か所における厚みの平均値である。 The electrochemical cell according to the fifth aspect of the present invention relates to any one of the second to fourth aspects, and the average thickness of the intermediate portion is the average thickness of three places dividing the intermediate portion into four in the surface direction. The average thickness of the outer portion is the average value of the thicknesses at three locations dividing the outer portion into four equal parts in the surface direction.
 本発明の第6の側面に係る電気化学セルは、第1乃至第5いずれかの側面に係り、第1電極層は、面方向に垂直な厚み方向に沿って形成される側面を有し、側面には凹凸が形成されている。 An electrochemical cell according to a sixth aspect of the present invention relates to any one of the first to fifth aspects, and the first electrode layer has a side surface formed along the thickness direction perpendicular to the surface direction, The sides are uneven.
 本発明によれば、剛性を向上可能な電気化学セルを提供することができる。 According to the present invention, it is possible to provide an electrochemical cell whose rigidity can be improved.
図1は、実施形態に係る電解セルの平面図である。FIG. 1 is a plan view of an electrolysis cell according to an embodiment. 図2は、図1のA-A断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 図3は、図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図4は、変形例1に係る電解セルの断面図である。FIG. 4 is a cross-sectional view of an electrolytic cell according to Modification Example 1.
 (電解セル1)
 図1は、実施形態に係る電解セル1の平面図である。図2は、図1のA-A断面図である。電解セル1は、本発明に係る「電気化学セル」の一例である。
(Electrolysis cell 1)
FIG. 1 is a plan view of an electrolytic cell 1 according to an embodiment. FIG. 2 is a sectional view taken along line AA in FIG. The electrolytic cell 1 is an example of an "electrochemical cell" according to the present invention.
 電解セル1は、X軸方向及びY軸方向に広がる板状に形成される。本実施形態において、電解セル1は、平面視においてY軸方向に延びる長方形に形成される。ただし、電解セル1の平面形状は特に限られず、長方形以外の多角形、楕円形、円形などであってもよい。 The electrolytic cell 1 is formed into a plate shape that extends in the X-axis direction and the Y-axis direction. In this embodiment, the electrolytic cell 1 is formed into a rectangle extending in the Y-axis direction in plan view. However, the planar shape of the electrolytic cell 1 is not particularly limited, and may be a polygon other than a rectangle, an ellipse, a circle, or the like.
 図2に示すように、電解セル1は、セル本体部10、金属支持体20、及び流路部材30を備える。 As shown in FIG. 2, the electrolytic cell 1 includes a cell main body 10, a metal support 20, and a channel member 30.
 [セル本体部10]
 セル本体部10は、水素極層6(カソード)、電解質層7、反応防止層8、及び酸素極層9(アノード)を有する。水素極層6、電解質層7、反応防止層8、及び酸素極層9は、X軸方向及びY軸方向に垂直なZ軸方向において、この順で金属支持体20側から積層されている。水素極層6、電解質層7、及び酸素極層9は必須の構成であり、反応防止層8は任意の構成である。
[Cell body part 10]
The cell main body 10 includes a hydrogen electrode layer 6 (cathode), an electrolyte layer 7, a reaction prevention layer 8, and an oxygen electrode layer 9 (anode). The hydrogen electrode layer 6, the electrolyte layer 7, the reaction prevention layer 8, and the oxygen electrode layer 9 are laminated in this order from the metal support 20 side in the Z-axis direction perpendicular to the X-axis direction and the Y-axis direction. The hydrogen electrode layer 6, the electrolyte layer 7, and the oxygen electrode layer 9 are essential structures, and the reaction prevention layer 8 is an optional structure.
 [水素極層6]
 水素極層6は、金属支持体20及び電解質層7の間に配置される。水素極層6は、金属支持体20によって支持される。詳細には、水素極層6は、金属支持体20の第1主面20S上に配置される。水素極層6は、金属支持体20の第1主面20Sに形成された複数の供給孔21を覆う。水素極層6の一部は、各供給孔21内に入り込んでいてよい。水素極層6は、本発明に係る「第1電極層」の一例である。
[Hydrogen pole layer 6]
Hydrogen electrode layer 6 is arranged between metal support 20 and electrolyte layer 7. Hydrogen electrode layer 6 is supported by metal support 20 . Specifically, the hydrogen electrode layer 6 is arranged on the first main surface 20S of the metal support 20. The hydrogen electrode layer 6 covers the plurality of supply holes 21 formed in the first main surface 20S of the metal support 20. A portion of the hydrogen electrode layer 6 may enter into each supply hole 21 . The hydrogen electrode layer 6 is an example of the "first electrode layer" according to the present invention.
 水素極6には、各供給孔21を介して原料ガスが供給される。原料ガスは、少なくともHOを含む。 Raw material gas is supplied to the hydrogen electrode 6 through each supply hole 21 . The source gas contains at least H 2 O.
 原料ガスがHOのみを含む場合、水素極6は、下記(1)式に示す水電解の電気化学反応に従って、原料ガスからHを生成する。
 ・水素極6:HO+2e→H+O2-・・・(1)
When the source gas contains only H 2 O, the hydrogen electrode 6 generates H 2 from the source gas according to the electrochemical reaction of water electrolysis shown in equation (1) below.
・Hydrogen electrode 6: H 2 O + 2e - → H 2 + O 2 - (1)
 原料ガスがHOに加えてCOを含む場合、水素極6は、下記(2)、(3)、(4)式に示す共電解の電気化学反応に従って、原料ガスからH、CO及びO2-を生成する。
 ・水素極6:CO+HO+4e→CO+H+2O2-・・・(2)
 ・HOの電気化学反応:HO+2e→H+O2-・・・(3)
 ・COの電気化学反応:CO+2e→CO+O2-・・・(4)
When the raw material gas contains CO 2 in addition to H 2 O, the hydrogen electrode 6 extracts H 2 and CO from the raw material gas according to the electrochemical reaction of co-electrolysis shown in the following equations (2), (3), and (4). and O 2- is produced.
・Hydrogen electrode 6: CO 2 +H 2 O+4e - →CO+H 2 +2O 2-... (2)
・Electrochemical reaction of H 2 O: H 2 O + 2e - → H 2 + O 2 - (3)
・Electrochemical reaction of CO 2 : CO 2 +2e - → CO + O 2 -... (4)
 水素極層6は、電子伝導性を有する多孔質材料によって構成される。水素極層6は、酸化物イオン伝導性を有していてよい。水素極層6は、例えば、8mol%イットリア安定化ジルコニア(8YSZ)、カルシア安定化ジルコニア(CSZ)、スカンジア安定化ジルコニア(ScSZ)、ガドリニウムドープセリア(GDC)、サマリウムドープセリア(SDC)、(La,Sr)(Cr,Mn)O、(La,Sr)TiO、Sr(Fe,Mo)、(La,Sr)VO、(La,Sr)FeO、及びこれらのうち2つ以上を組み合わせた混合材料、或いは、これらのうち1つ以上とNiOとの複合物によって構成することができる。 The hydrogen electrode layer 6 is made of a porous material having electron conductivity. The hydrogen electrode layer 6 may have oxide ion conductivity. The hydrogen electrode layer 6 is made of, for example, 8 mol% yttria-stabilized zirconia (8YSZ), calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ), gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), (La ,Sr)(Cr, Mn)O3, (La,Sr)TiO3, Sr2(Fe,Mo)2O6 , ( La , Sr) VO3 , (La,Sr) FeO3 , and among these It can be composed of a mixed material combining two or more of them, or a composite of one or more of these and NiO.
 水素極層6の熱膨張係数の値は特に限られないが、例えば12×10―6/℃以上20×10-6/℃以下とすることができる。 The value of the thermal expansion coefficient of the hydrogen electrode layer 6 is not particularly limited, but can be, for example, 12×10 −6 /°C or more and 20×10 −6 /°C or less.
 水素極層6の気孔率は特に制限されないが、例えば5%以上70%以下とすることができる。水素極層6の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。 The porosity of the hydrogen electrode layer 6 is not particularly limited, but can be, for example, 5% or more and 70% or less. The thickness of the hydrogen electrode layer 6 is not particularly limited, but may be, for example, 1 μm or more and 100 μm or less.
 水素極層6の形成方法は特に制限されず、焼成法、スプレーコーティング法(溶射法、エアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法など)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを用いることができる。 The method for forming the hydrogen electrode layer 6 is not particularly limited, and may include a baking method, a spray coating method (thermal spray method, aerosol deposition method, aerosol gas deposition method, powder jet deposition method, particle jet deposition method, cold spray method, etc.) ), PVD method (sputtering method, pulsed laser deposition method, etc.), CVD method, etc. can be used.
 [電解質層7]
 電解質層7は、水素極層6及び酸素極層9の間に配置される。本実施形態では、電解質層7及び酸素極層9の間に反応防止層8が配置されているので、電解質層7は、水素極層6及び反応防止層8の間に配置され、水素極層6及び反応防止層8それぞれに接続される。
[Electrolyte layer 7]
Electrolyte layer 7 is arranged between hydrogen electrode layer 6 and oxygen electrode layer 9. In this embodiment, since the reaction prevention layer 8 is arranged between the electrolyte layer 7 and the oxygen electrode layer 9, the electrolyte layer 7 is arranged between the hydrogen electrode layer 6 and the reaction prevention layer 8, and the reaction prevention layer 8 is arranged between the hydrogen electrode layer 6 and the reaction prevention layer 8. 6 and reaction prevention layer 8, respectively.
 電解質層7は、水素極層6を覆うとともに、金属支持体20の第1主面20Sのうち水素極層6から露出する領域を覆う。図1に示すように、電解質層7は、平面視において、水素極層6の表面の全体を覆っている。図1に示すように、電解質層7は、平面視において、第1主面20Sのうち水素極層6から露出する領域の全体を覆っていることが好ましいが、第1主面20Sの一部が電解質層7から露出していてもよい。電解質層7の詳細な構成については後述する。 The electrolyte layer 7 covers the hydrogen electrode layer 6 and also covers the region of the first main surface 20S of the metal support 20 that is exposed from the hydrogen electrode layer 6. As shown in FIG. 1, the electrolyte layer 7 covers the entire surface of the hydrogen electrode layer 6 in plan view. As shown in FIG. 1, it is preferable that the electrolyte layer 7 covers the entire region of the first main surface 20S exposed from the hydrogen electrode layer 6 in plan view, but a part of the first main surface 20S may be exposed from the electrolyte layer 7. The detailed structure of the electrolyte layer 7 will be described later.
 電解質層7は、水素極層6において生成されたO2-を酸素極層9側に伝達させる。電解質層7は、酸化物イオン伝導性を有する緻密質材料によって構成される。電解質層7は、例えば、YSZ(イットリア安定化ジルコニア、例えば8YSZ)、GDC(ガドリニウムドープセリア)、ScSZ(スカンジア安定化ジルコニア)、SDC(サマリウム固溶セリア)、LSGM(ランタンガレート)などによって構成することができる。 The electrolyte layer 7 transmits O 2− generated in the hydrogen electrode layer 6 to the oxygen electrode layer 9 side. The electrolyte layer 7 is made of a dense material having oxide ion conductivity. The electrolyte layer 7 is made of, for example, YSZ (yttria-stabilized zirconia, e.g. 8YSZ), GDC (gadolinium-doped ceria), ScSZ (scandia-stabilized zirconia), SDC (samarium solid solution ceria), LSGM (lanthanum gallate), or the like. be able to.
 電解質層7の熱膨張係数の値は特に限られないが、例えば10×10―6/℃以上12×10―6/℃以下とすることができる。 The value of the thermal expansion coefficient of the electrolyte layer 7 is not particularly limited, but may be, for example, 10×10 −6 /°C or more and 12×10 −6 /°C or less.
 電解質層7の気孔率は特に制限されないが、例えば0.1%以上7%以下とすることができる。電解質層7の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。 The porosity of the electrolyte layer 7 is not particularly limited, but can be, for example, 0.1% or more and 7% or less. The thickness of the electrolyte layer 7 is not particularly limited, but may be, for example, 1 μm or more and 100 μm or less.
 電解質層7の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などを用いることができる。 The method for forming the electrolyte layer 7 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
 [反応防止層8]
 反応防止層8は、電解質層7及び酸素極層9の間に配置される。反応防止層8は、電解質層7を基準として水素極層6の反対側に配置される。反応防止層8は、電解質層7の構成元素が酸素極層9の構成元素と反応して電気抵抗の大きい層が形成されることを抑制する。
[Reaction prevention layer 8]
Reaction prevention layer 8 is arranged between electrolyte layer 7 and oxygen electrode layer 9. The reaction prevention layer 8 is arranged on the opposite side of the hydrogen electrode layer 6 with respect to the electrolyte layer 7. The reaction prevention layer 8 prevents the constituent elements of the electrolyte layer 7 from reacting with the constituent elements of the oxygen electrode layer 9 to form a layer with high electrical resistance.
 反応防止層8は、酸化物イオン伝導性材料によって構成される。反応防止層8は、GDC、SDCなどによって構成することができる。 The reaction prevention layer 8 is made of an oxide ion conductive material. The reaction prevention layer 8 can be made of GDC, SDC, or the like.
 反応防止層8の気孔率は特に制限されないが、例えば0.1%以上50%以下とすることができる。反応防止層8の厚みは特に制限されないが、例えば1μm以上50μm以下とすることができる。 The porosity of the reaction prevention layer 8 is not particularly limited, but may be, for example, 0.1% or more and 50% or less. The thickness of the reaction prevention layer 8 is not particularly limited, but may be, for example, 1 μm or more and 50 μm or less.
 反応防止層8の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などを用いることができる。 The method for forming the reaction prevention layer 8 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
 [酸素極層9]
 酸素極層9は、電解質層7を基準として水素極層6の反対側に配置される。本実施形態では、電解質層7及び酸素極層9の間に反応防止層8が配置されているので、酸素極層9は反応防止層8に接続される。電解質層7及び酸素極層9の間に反応防止層8が配置されない場合、酸素極層9は電解質層7に接続される。酸素極層9は、本発明に係る「第2電極層」の一例である。
[Oxygen electrode layer 9]
The oxygen electrode layer 9 is arranged on the opposite side of the hydrogen electrode layer 6 with respect to the electrolyte layer 7. In this embodiment, since the reaction prevention layer 8 is disposed between the electrolyte layer 7 and the oxygen electrode layer 9, the oxygen electrode layer 9 is connected to the reaction prevention layer 8. When the reaction prevention layer 8 is not disposed between the electrolyte layer 7 and the oxygen electrode layer 9, the oxygen electrode layer 9 is connected to the electrolyte layer 7. The oxygen electrode layer 9 is an example of the "second electrode layer" according to the present invention.
 酸素極層9は、下記(2)式の化学反応に従って、水素極層6から電解質層7を介して伝達されるO2-からOを生成する。
 ・酸素極層9:2O2-→O+4e・・・(2)
The oxygen electrode layer 9 generates O 2 from O 2− transmitted from the hydrogen electrode layer 6 through the electrolyte layer 7 according to the chemical reaction of equation (2) below.
・Oxygen electrode layer 9: 2O 2- →O 2 +4e - (2)
 酸素極層9は、酸化物イオン伝導性及び電子伝導性を有する多孔質材料によって構成される。酸素極層9は、例えば(La,Sr)(Co,Fe)O、(La,Sr)FeO、La(Ni,Fe)O、(La,Sr)CoO、及び(Sm,Sr)CoOのうち1つ以上と酸化物イオン伝導材料(GDCなど)との複合材料によって構成することができる。 The oxygen electrode layer 9 is made of a porous material having oxide ion conductivity and electron conductivity. The oxygen electrode layer 9 is made of, for example, (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr). ) CoO 3 and an oxide ion conductive material (GDC, etc.).
 酸素極層9の気孔率は特に制限されないが、例えば20%以上60%以下とすることができる。酸素極層9の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。 The porosity of the oxygen electrode layer 9 is not particularly limited, but can be, for example, 20% or more and 60% or less. The thickness of the oxygen electrode layer 9 is not particularly limited, but may be, for example, 1 μm or more and 100 μm or less.
 酸素極層9の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などを用いることができる。 The method of forming the oxygen electrode layer 9 is not particularly limited, and a baking method, a spray coating method, a PVD method, a CVD method, etc. can be used.
 [金属支持体20]
 金属支持体20は、セル本体部10を支持する。金属支持体20は、板状に形成される。金属支持体20は、平板状であってもよいし、曲板状であってもよい。金属支持体20は電解セル1の強度を保つことができればよく、その厚みは特に制限されないが、例えば0.1mm以上2.0mm以下とすることができる。
[Metal support 20]
The metal support 20 supports the cell main body 10 . The metal support 20 is formed into a plate shape. The metal support 20 may have a flat plate shape or a curved plate shape. The thickness of the metal support 20 is not particularly limited as long as it can maintain the strength of the electrolytic cell 1, and may be, for example, 0.1 mm or more and 2.0 mm or less.
 図2に示すように、金属支持体20は、複数の供給孔21、第1主面20S及び第2主面20Tを有する。第1主面20Sは、本発明に係る「主面」の一例である。 As shown in FIG. 2, the metal support 20 has a plurality of supply holes 21, a first main surface 20S, and a second main surface 20T. The first main surface 20S is an example of the "main surface" according to the present invention.
 各供給孔21は、第1主面20Sに形成される。各供給孔21は、第1主面20Sから第2主面20Tまで金属支持体20を貫通する。各供給孔21は、第1主面20S及び第2主面20Tそれぞれに開口する。各供給孔21の第1主面20Sの開口は、水素極層6によって覆われる。すなわち、各供給孔21は、第1主面20Sのうち水素極層6に接合される領域に形成される。各供給孔21は、金属支持体20及び流路部材30の間の流路30aに繋がる。 Each supply hole 21 is formed on the first main surface 20S. Each supply hole 21 penetrates the metal support 20 from the first main surface 20S to the second main surface 20T. Each supply hole 21 opens on the first main surface 20S and the second main surface 20T, respectively. The opening of the first main surface 20S of each supply hole 21 is covered with the hydrogen electrode layer 6. That is, each supply hole 21 is formed in a region of the first main surface 20S that is joined to the hydrogen electrode layer 6. Each supply hole 21 is connected to a flow path 30a between the metal support 20 and the flow path member 30.
 各供給孔21は、機械加工(例えば、パンチング加工)、レーザ加工、或いは、化学加工(例えば、エッチング加工)などによって形成することができる。また、金属支持体20が多孔質金属によって構成される場合、各供給孔21は多孔質金属の開気孔であってよい。各供給孔21は、第1主面20Sに対して垂直であってもよいし、第1主面20Sに対して垂直でなくてもよいし、直線状でなくてもよい。 Each supply hole 21 can be formed by mechanical processing (for example, punching process), laser processing, chemical processing (for example, etching process), or the like. Furthermore, when the metal support 20 is made of porous metal, each supply hole 21 may be an open pore of the porous metal. Each supply hole 21 may be perpendicular to the first main surface 20S, may not be perpendicular to the first main surface 20S, and may not be linear.
 第1主面20Sには、セル本体部10が接合される。第2主面20Tには、流路部材30が接合される。第1主面20Sは、第2主面20Tの反対側に設けられる。 The cell main body portion 10 is joined to the first main surface 20S. The flow path member 30 is joined to the second main surface 20T. The first main surface 20S is provided on the opposite side of the second main surface 20T.
 金属支持体20は、金属材料によって構成される。例えば、金属支持体20は、Cr(クロム)を含有する合金材料によって構成される。このような金属材料としては、Fe-Cr系合金鋼(ステンレス鋼など)やNi-Cr系合金鋼などが挙げられる。金属支持体20におけるCrの含有率は特に制限されないが、4質量%以上30質量%以下とすることができる。 The metal support 20 is made of a metal material. For example, the metal support 20 is made of an alloy material containing Cr (chromium). Examples of such metal materials include Fe--Cr alloy steel (such as stainless steel) and Ni--Cr alloy steel. The content of Cr in the metal support 20 is not particularly limited, but can be 4% by mass or more and 30% by mass or less.
 金属支持体20は、Ti(チタン)やZr(ジルコニウム)を含有していてもよい。金属支持体20におけるTiの含有率は特に制限されないが、0.01mol%以上1.0mol%以下とすることができる。金属支持体20におけるAlの含有率は特に制限されないが、0.01mol%以上0.4mol%以下とすることができる。金属支持体20は、TiをTiO(チタニア)として含有していてもよいし、ZrをZrO(ジルコニア)として含有していてもよい。 The metal support 20 may contain Ti (titanium) or Zr (zirconium). The content of Ti in the metal support 20 is not particularly limited, but can be set to 0.01 mol% or more and 1.0 mol% or less. The Al content in the metal support 20 is not particularly limited, but can be set to 0.01 mol% or more and 0.4 mol% or less. The metal support 20 may contain Ti as TiO 2 (titania) or Zr as ZrO 2 (zirconia).
 金属支持体20の熱膨張係数の値は特に限られないが、例えば10×10―6/℃以上20×10―6/℃以下とすることができる。 Although the value of the thermal expansion coefficient of the metal support 20 is not particularly limited, it can be, for example, 10×10 −6 /°C or more and 20×10 −6 /°C or less.
 金属支持体20は、金属支持体20の構成元素が酸化することによって形成される酸化皮膜を表面に有していてよい。酸化膜としては、例えば酸化クロム膜が代表的である。酸化クロム膜は、金属支持体20の表面の少なくとも一部を覆う。また、酸化クロム膜は、各供給孔21の内壁面の少なくとも一部を覆っていてもよい。 The metal support 20 may have an oxide film formed by oxidation of the constituent elements of the metal support 20 on its surface. A typical example of the oxide film is a chromium oxide film. The chromium oxide film covers at least a portion of the surface of the metal support 20. Further, the chromium oxide film may cover at least a portion of the inner wall surface of each supply hole 21.
 [流路部材30]
 流路部材30は、金属支持体20の第2主面20Tに接合される。流路部材30は、金属支持体20との間に流路30aを形成する。流路30aには、原料ガスが供給される。流路30aに供給された原料ガスは、金属支持体20の各供給孔21を介して、セル本体部10の水素極層6に供給される。
[Flow path member 30]
The flow path member 30 is joined to the second main surface 20T of the metal support 20. The channel member 30 forms a channel 30a between it and the metal support 20. A raw material gas is supplied to the flow path 30a. The raw material gas supplied to the flow path 30a is supplied to the hydrogen electrode layer 6 of the cell main body 10 via each supply hole 21 of the metal support 20.
 流路部材30は、例えば、合金材料によって構成することができる。流路部材30は、金属支持体20と同様の材料によって形成されていてよい。この場合、流路部材30は、金属支持体20と実質的に一体であってよい。 The flow path member 30 can be made of an alloy material, for example. The flow path member 30 may be formed of the same material as the metal support 20. In this case, the channel member 30 may be substantially integral with the metal support 20.
 流路部材30は、枠体31及びインターコネクタ32を有する。枠体31は、流路30aの側方を取り囲む環状部材である。枠体31は、金属支持体20の第2主面20Tに接合される。インターコネクタ32は、外部電源又は他の電解セルを電解セル1と電気的に直列に接続するための板状部材である。インターコネクタ32は、枠体31に接合される。 The flow path member 30 has a frame 31 and an interconnector 32. The frame body 31 is an annular member that surrounds the sides of the flow path 30a. The frame 31 is joined to the second main surface 20T of the metal support 20. The interconnector 32 is a plate-like member for electrically connecting an external power source or another electrolytic cell to the electrolytic cell 1 in series. The interconnector 32 is joined to the frame 31.
 本実施形態では、枠体31とインターコネクタ32が別部材となっているが、枠体31とインターコネクタ32は一体の部材であってよい。 In this embodiment, the frame 31 and the interconnector 32 are separate members, but the frame 31 and the interconnector 32 may be an integrated member.
 [電解質層7の構成]
 図3は、図2の部分拡大図である。図3は、金属支持体20の第1主面20Sに垂直な断面である。図3では、電解セル1の外周部の断面が図示されている。
[Configuration of electrolyte layer 7]
FIG. 3 is a partially enlarged view of FIG. 2. FIG. 3 is a cross section perpendicular to the first main surface 20S of the metal support 20. In FIG. 3, a cross section of the outer peripheral portion of the electrolytic cell 1 is illustrated.
 図3に示すように、電解質層7は、内側部71、外側部72及び中間部73を有する。金属支持体20の第1主面20Sに平行な面方向(図3に示すX軸方向)において、内側部71は中間部73によって取り囲まれ、中間部73は外側部72によって取り囲まれている。 As shown in FIG. 3, the electrolyte layer 7 has an inner part 71, an outer part 72, and an intermediate part 73. In the plane direction parallel to the first main surface 20S of the metal support 20 (X-axis direction shown in FIG. 3), the inner part 71 is surrounded by the intermediate part 73, and the intermediate part 73 is surrounded by the outer part 72.
 内側部71は、水素極層6の表面を覆い、かつ、面方向において水素極層6の先端P6から所定距離D1以上離れている。内側部71は、電解質層7のうち、第1基準線L1上及び第1基準線L1より内側の部分である。本明細書において、内側とは、面方向において第1主面20Sの先端P20から水素極層6の先端P6に向かう側を意味する。 The inner part 71 covers the surface of the hydrogen electrode layer 6 and is spaced from the tip P6 of the hydrogen electrode layer 6 by a predetermined distance D1 or more in the plane direction. The inner part 71 is a part of the electrolyte layer 7 on the first reference line L1 and inside the first reference line L1. In this specification, the inside means the side from the tip P20 of the first main surface 20S toward the tip P6 of the hydrogen electrode layer 6 in the planar direction.
 第1基準線L1は、第2基準線L2と平行であり、かつ、第2基準線L2から所定距離D1だけ内側に設定される直線である。第2基準線L2は、水素極層6の先端P6を通り、かつ、第1主面20Sに垂直な直線である。所定距離D1は、第2基準線L2上における金属支持体20の厚みTaの2分の1である。金属支持体20の厚みTaを基準として所定距離D1を規定するのは、水素極層6の先端P6に近接する部分を中間部73として特定するためである。 The first reference line L1 is a straight line that is parallel to the second reference line L2 and set a predetermined distance D1 inward from the second reference line L2. The second reference line L2 is a straight line that passes through the tip P6 of the hydrogen electrode layer 6 and is perpendicular to the first main surface 20S. The predetermined distance D1 is one half of the thickness Ta of the metal support 20 on the second reference line L2. The reason why the predetermined distance D1 is defined based on the thickness Ta of the metal support 20 is to specify the portion of the hydrogen electrode layer 6 close to the tip P6 as the intermediate portion 73.
 なお、第2基準線L2を規定する場合、断面画像(例えば、SEM画像)上において、第1主面20Sを最小二乗法により直線化して得られる直線を第1主面20Sとして用いる。また、図3では、水素極層6の先端P6が第1主面20S上に位置しているが、水素極層6の先端P6は第1主面20Sから離れていてもよい。 Note that when defining the second reference line L2, a straight line obtained by straightening the first main surface 20S using the least squares method on a cross-sectional image (for example, a SEM image) is used as the first main surface 20S. Further, in FIG. 3, the tip P6 of the hydrogen electrode layer 6 is located on the first main surface 20S, but the tip P6 of the hydrogen electrode layer 6 may be separated from the first main surface 20S.
 外側部72は、第1主面20Sのうち水素極層6から露出する領域の略全部を覆い、かつ、面方向において水素極層6の先端P6から所定距離D1以上離れている。第1主面20Sのうち水素極層6から露出する領域の略全部を覆うとは、外側部72が第1主面20Sの先端P20まで覆っていることを意味する。外側部72は、電解質層7のうち、第3基準線L3上及び第3基準線L3より外側の部分である。本明細書において、外側とは、面方向において水素極層6の先端P6から第1主面20Sの先端P20に向かう側を意味する。第3基準線L3は、第2基準線L2と平行であり、かつ、第2基準線L2から所定距離D1だけ外側に設定される直線である。 The outer portion 72 covers substantially the entire region of the first main surface 20S that is exposed from the hydrogen electrode layer 6, and is spaced from the tip P6 of the hydrogen electrode layer 6 by a predetermined distance D1 or more in the surface direction. Covering substantially the entire region of the first main surface 20S exposed from the hydrogen electrode layer 6 means that the outer portion 72 covers the first main surface 20S up to the tip P20. The outer portion 72 is a portion of the electrolyte layer 7 on and outside the third reference line L3. In this specification, the outer side means the side from the tip P6 of the hydrogen electrode layer 6 toward the tip P20 of the first main surface 20S in the plane direction. The third reference line L3 is a straight line that is parallel to the second reference line L2 and set outward from the second reference line L2 by a predetermined distance D1.
 中間部73は、面方向において内側部71と外側部72の間に挟まれている。中間部73は、電解質層7のうち、第1基準線L1と第3基準線L3の間の部分である。中間部73は、内側部71の外側かつ外側部72の内側に配置される。中間部73は、内側部71と外側部72の両方に連なる。中間部73と内側部71の境界は、第1基準線L1によって規定される。中間部73と外側部72の境界は、第3基準線L3によって規定される。面方向における中間部73の中央は、第2基準線L2によって規定される。 The intermediate portion 73 is sandwiched between the inner portion 71 and the outer portion 72 in the plane direction. The intermediate portion 73 is a portion of the electrolyte layer 7 between the first reference line L1 and the third reference line L3. The intermediate part 73 is arranged outside the inner part 71 and inside the outer part 72. The intermediate portion 73 is continuous with both the inner portion 71 and the outer portion 72. The boundary between the intermediate portion 73 and the inner portion 71 is defined by the first reference line L1. The boundary between the intermediate portion 73 and the outer portion 72 is defined by the third reference line L3. The center of the intermediate portion 73 in the surface direction is defined by the second reference line L2.
 ここで、中間部73の平均厚みは、内側部71の平均厚みより大きい。 Here, the average thickness of the intermediate portion 73 is greater than the average thickness of the inner portion 71.
 中間部73の平均厚みは、面方向において中間部73を4等分する3か所における厚みT1,T2,T3の平均値である。中間部73の厚みT1,T2,T3は、第1基準線L1及び第3基準線L3の間を面方向に4等分する3か所において測定される厚みである。本明細書において、厚みとは、Z軸方向(厚み方向)における厚みを意味する。 The average thickness of the intermediate portion 73 is the average value of the thicknesses T1, T2, and T3 at three locations that divide the intermediate portion 73 into four equal parts in the surface direction. The thicknesses T1, T2, and T3 of the intermediate portion 73 are the thicknesses measured at three locations that equally divide the area between the first reference line L1 and the third reference line L3 into four in the surface direction. In this specification, thickness means thickness in the Z-axis direction (thickness direction).
 内側部71の平均厚みは、内側部71のうち面方向において第1基準線L1から所定距離D1までの部分を4等分する3か所における厚みT4、T5,T6の平均値である。内側部71の厚みT4、T5,T6は、第1基準線L1及び第4基準線L4の間を面方向に4等分する3か所において測定される厚みである。第4基準線L4は、第1基準線L1を基準として、第2基準線L2と線対称な線である。第4基準線L4は、第1基準線L1と平行であり、かつ、第2基準線L2から所定距離D1の2倍だけ内側に設定される直線である。上述の通り、所定距離D1は、第1基準線L1上における金属支持体20の厚みTaの2分の1である。 The average thickness of the inner portion 71 is the average value of the thicknesses T4, T5, and T6 at three points that equally divide the portion of the inner portion 71 from the first reference line L1 to a predetermined distance D1 in the surface direction into four parts. The thicknesses T4, T5, and T6 of the inner side portion 71 are the thicknesses measured at three locations that equally divide the space between the first reference line L1 and the fourth reference line L4 into four in the surface direction. The fourth reference line L4 is a line symmetrical to the second reference line L2 with respect to the first reference line L1. The fourth reference line L4 is a straight line that is parallel to the first reference line L1 and is set inward from the second reference line L2 by twice the predetermined distance D1. As described above, the predetermined distance D1 is one half of the thickness Ta of the metal support 20 on the first reference line L1.
 中間部73の平均厚みは特に限られないが、例えば10μm以上100μm以下とすることができる。内側部71の平均厚みは特に限られないが、例えば3μm以上50μm以下とすることができる。また、中間部73の平均厚みは、外側部72の平均厚みより大きい。中間部73の平均厚みは、上述した通りに測定される。 The average thickness of the intermediate portion 73 is not particularly limited, but may be, for example, 10 μm or more and 100 μm or less. The average thickness of the inner portion 71 is not particularly limited, but may be, for example, 3 μm or more and 50 μm or less. Further, the average thickness of the intermediate portion 73 is greater than the average thickness of the outer portion 72. The average thickness of the intermediate portion 73 is measured as described above.
 外側部72の平均厚みは、外側部72を4等分する3か所における厚みT7、T8,T9の平均値である。外側部72の厚みT7、T8,T9は、第3基準線L3から電解質層7の先端P7までを面方向に4等分する3か所において測定される厚みである。本実施形態では、面方向において、電解質層7の先端P7は、第1主面20Sの先端P20より外側に位置しているが、第1主面20Sの先端P20上、又は、第1主面20Sの先端P20より内側に位置していてもよい。 The average thickness of the outer portion 72 is the average value of the thicknesses T7, T8, and T9 at three locations that divide the outer portion 72 into four equal parts. The thicknesses T7, T8, and T9 of the outer portion 72 are the thicknesses measured at three locations that equally divide the area from the third reference line L3 to the tip P7 of the electrolyte layer 7 into four in the surface direction. In this embodiment, the tip P7 of the electrolyte layer 7 is located outside the tip P20 of the first main surface 20S in the plane direction, but is located on the tip P20 of the first main surface 20S or on the first main surface It may be located inside the tip P20 of 20S.
 外側部72の平均厚みは特に限られないが、例えば3μm以上50μm以下とすることができる。外側部72の平均厚みは、内側部71の平均厚みより大きくても小さくてもよく、また、内側部71の平均厚みと同じであってもよい。 The average thickness of the outer portion 72 is not particularly limited, but may be, for example, 3 μm or more and 50 μm or less. The average thickness of the outer part 72 may be larger or smaller than the average thickness of the inner part 71, or may be the same as the average thickness of the inner part 71.
 図3に示すように、外側部72は、突出部72aを有していてもよい。突出部72aは、外側部72のうち金属支持体20の第1主面20Sの外側にはみ出た部分である。すなわち、突出部72aは、外側部72のうち第1主面20Sの先端P20より外側に位置する部分である。 As shown in FIG. 3, the outer part 72 may have a protrusion 72a. The protruding portion 72a is a portion of the outer portion 72 that protrudes to the outside of the first main surface 20S of the metal support 20. That is, the protruding portion 72a is a portion of the outer portion 72 located outside the tip P20 of the first main surface 20S.
 図示しないが、外側部72の突出部72aは、金属支持体20の側面20Uの少なくとも一部を覆っていることが好ましい。これによって、側面20Uを突出部72aで被覆できるため、金属支持体20からの放熱をさらに抑制することができる。 Although not shown, it is preferable that the protruding portion 72a of the outer portion 72 covers at least a portion of the side surface 20U of the metal support 20. Thereby, the side surface 20U can be covered with the protrusion 72a, so that heat radiation from the metal support 20 can be further suppressed.
 (特徴) (Features)
 (1)電解質層7は、図3に示すように、内側部71、外側部72及び中間部73を有する。内側部71は、水素極層6の表面を覆い、かつ、面方向において水素極層6の先端P6から所定距離D1以上離れている。外側部72は、第1主面20Sのうち水素極層6から露出する領域の略全部を覆い、かつ、面方向において水素極層6の先端P6から所定距離D1以上離れている。中間部73は、面方向において内側部71と外側部72の間に挟まれている。中間部73の平均厚みは、内側部71の平均厚みより大きい。 (1) As shown in FIG. 3, the electrolyte layer 7 has an inner part 71, an outer part 72, and an intermediate part 73. The inner part 71 covers the surface of the hydrogen electrode layer 6 and is spaced from the tip P6 of the hydrogen electrode layer 6 by a predetermined distance D1 or more in the plane direction. The outer portion 72 covers substantially the entire region of the first main surface 20S that is exposed from the hydrogen electrode layer 6, and is spaced from the tip P6 of the hydrogen electrode layer 6 by a predetermined distance D1 or more in the surface direction. The intermediate portion 73 is sandwiched between the inner portion 71 and the outer portion 72 in the plane direction. The average thickness of the intermediate portion 73 is greater than the average thickness of the inner portion 71.
 このように、外側部72が第1主面20Sのうち水素極層6から露出する領域の略全部を覆っていることによって、金属支持体20の剛性だけでなく緻密質な電解質層7の剛性をも電解セル1の外周部に付与することができる。従って、電解セル1全体の剛性を向上させることができる。 In this way, by covering substantially the entire region of the first main surface 20S that is exposed from the hydrogen electrode layer 6, the outer portion 72 improves not only the rigidity of the metal support 20 but also the rigidity of the dense electrolyte layer 7. can also be applied to the outer periphery of the electrolytic cell 1. Therefore, the rigidity of the electrolytic cell 1 as a whole can be improved.
 また、中間部73の平均厚みが内側部71の平均厚みより大きいため、水素極層6の先端P6付近を起点とするクラックが電解質層7に発生することを抑制できる。具体的には、次の通りである。 Furthermore, since the average thickness of the intermediate portion 73 is larger than the average thickness of the inner portion 71, it is possible to suppress the occurrence of cracks in the electrolyte layer 7 starting near the tip P6 of the hydrogen electrode layer 6. Specifically, it is as follows.
 電解セル1の起動時、金属材料によって構成される金属支持体20は、セラミックスによって構成されるセル本体部10よりも昇温しやすい。このとき、金属支持体20と接触する水素極層6の温度は上昇しやすいが、電解質層7のうち水素極層6上に配置される部分の温度は上昇しにくい。そのため、電解質層7のうち水素極層6上に配置される部分と水素極層6との間に熱応力が生じる。また、電解質層7のうち金属支持体20と接触する部分の温度は上昇しやすいが、電解質層7のうち水素極層6上に配置される部分の温度は上昇しにくい。そのため、水素極層6の先端P6付近に熱応力が集中しやすいが、上述の通り、中間部73の平均厚みを内側部71の平均厚みより大きくすることによって中間部73の強度が増大されている。従って、水素極層6の先端P6付近を起点とするクラックが中間部73に発生することを抑制できる。中間部73にクラックが生じれば電解質層7の機能の一部が失われてしまうため、中間部73のクラックを抑制することは重要である。 When the electrolytic cell 1 is started, the temperature of the metal support 20 made of a metal material increases more easily than that of the cell main body 10 made of ceramic. At this time, the temperature of the hydrogen electrode layer 6 in contact with the metal support 20 tends to rise, but the temperature of the portion of the electrolyte layer 7 disposed on the hydrogen electrode layer 6 is difficult to rise. Therefore, thermal stress is generated between the portion of the electrolyte layer 7 disposed on the hydrogen electrode layer 6 and the hydrogen electrode layer 6 . Further, the temperature of the portion of the electrolyte layer 7 that contacts the metal support 20 tends to rise, but the temperature of the portion of the electrolyte layer 7 disposed on the hydrogen electrode layer 6 does not easily rise. Therefore, thermal stress tends to concentrate near the tip P6 of the hydrogen electrode layer 6, but as mentioned above, by making the average thickness of the intermediate part 73 larger than the average thickness of the inner part 71, the strength of the intermediate part 73 is increased. There is. Therefore, it is possible to suppress the occurrence of cracks starting in the vicinity of the tip P6 of the hydrogen electrode layer 6 in the intermediate portion 73. If cracks occur in the intermediate portion 73, part of the function of the electrolyte layer 7 will be lost, so it is important to suppress cracks in the intermediate portion 73.
 (2)中間部73の平均厚みは、外側部72の平均厚みより大きい。従って、中間部73の厚みをより厚くしやすいため、中間部73の強度を十分増大できる。そのため、水素極層6の先端P6付近を起点とするクラックが中間部73に発生することをより抑制できる。 (2) The average thickness of the intermediate portion 73 is greater than the average thickness of the outer portion 72. Therefore, it is easier to increase the thickness of the intermediate portion 73, so that the strength of the intermediate portion 73 can be sufficiently increased. Therefore, it is possible to further suppress the occurrence of cracks starting near the tip P6 of the hydrogen electrode layer 6 in the intermediate portion 73.
 (実施形態の変形例)
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
(Modified example of embodiment)
Although the embodiments of the present invention have been described above, the present invention is not limited to these, and various changes can be made without departing from the spirit of the present invention.
 [変形例1]
 上記実施形態において、水素極層6の厚みは、図3に示したように、先端P6に近づくほど徐々に薄くなることとしたが、これに限られない。例えば、図4に示すように、水素極層6の厚みは全体的に略一定であってもよい。この場合であっても、水素極層6の先端P6を基準として第1乃至第4基準線L1~L4を設定することによって、内側部71、外側部72及び中間部73を規定するとともに、これらの平均厚みを求めることができる。
[Modification 1]
In the above embodiment, as shown in FIG. 3, the thickness of the hydrogen electrode layer 6 gradually becomes thinner as it approaches the tip P6, but the thickness is not limited to this. For example, as shown in FIG. 4, the thickness of the hydrogen electrode layer 6 may be substantially constant throughout. Even in this case, by setting the first to fourth reference lines L1 to L4 based on the tip P6 of the hydrogen electrode layer 6, the inner part 71, the outer part 72, and the intermediate part 73 are defined, and these lines are also defined. The average thickness of can be determined.
 図4に示すように、水素極層6がZ軸方向に沿って形成される側面6Sを有する場合、側面6Sには凹凸が形成されていることが好ましい。これによって、水素極層6と電解質層7の界面強度を高めることができるため、昇降温時の熱応力による破損を低減することができる。 As shown in FIG. 4, when the hydrogen electrode layer 6 has a side surface 6S formed along the Z-axis direction, it is preferable that unevenness is formed on the side surface 6S. As a result, the strength of the interface between the hydrogen electrode layer 6 and the electrolyte layer 7 can be increased, so that damage caused by thermal stress during temperature rise and fall can be reduced.
 [変形例2]
 上記実施形態では、図3に示した一断面において、中間部73の平均厚みが内側部71の平均厚みより大きいことを説明した。図3に示した構成は、電解セル1の外周部の全ての断面において観察されることが好ましいが、電解セル1の外周部の少なくとも一断面において観察できればよい。図3に示した構成が一断面でも観察されるのであれば、少なくとも当該箇所では中間部73にクラックが発生することを抑制できるからである。
[Modification 2]
In the above embodiment, it has been explained that the average thickness of the intermediate part 73 is larger than the average thickness of the inner part 71 in the cross section shown in FIG. The configuration shown in FIG. 3 is preferably observed in all cross sections of the outer circumferential portion of the electrolytic cell 1, but it is sufficient if it can be observed in at least one cross section of the outer circumferential portion of the electrolytic cell 1. This is because if the configuration shown in FIG. 3 is observed even in one cross section, it is possible to suppress the occurrence of cracks in the intermediate portion 73 at least at that location.
 [変形例3]
 上記実施形態において、水素極層6はカソードとして機能し、酸素極層9はアノードとして機能することとしたが、水素極層6がアノードとして機能し、酸素極層9がカソードとして機能してもよい。この場合、水素極層6と酸素極層9の構成材料を入れ替えるとともに、水素極層6の外表面に原料ガスを流す。
[Modification 3]
In the above embodiment, the hydrogen electrode layer 6 functions as a cathode and the oxygen electrode layer 9 functions as an anode, but even if the hydrogen electrode layer 6 functions as an anode and the oxygen electrode layer 9 functions as a cathode, good. In this case, the constituent materials of the hydrogen electrode layer 6 and the oxygen electrode layer 9 are exchanged, and the raw material gas is caused to flow over the outer surface of the hydrogen electrode layer 6.
 [変形例4]
 上記実施形態では、電気化学セルの一例として電解セル1について説明したが、電気化学セルは電解セルに限られない。電気化学セルとは、電気エネルギーを化学エネルギーに変えるため、全体的な酸化還元反応から起電力が生じるように一対の電極が配置された素子と、化学エネルギーを電気エネルギーに変えるための素子との総称である。従って、電気化学セルには、例えば、酸化物イオン或いはプロトンをキャリアとする燃料電池が含まれる。
[Modification 4]
In the above embodiment, the electrolytic cell 1 has been described as an example of an electrochemical cell, but the electrochemical cell is not limited to an electrolytic cell. An electrochemical cell consists of an element with a pair of electrodes arranged so that an electromotive force is generated from the overall redox reaction, and an element that converts chemical energy into electrical energy. It is a generic term. Therefore, electrochemical cells include, for example, fuel cells that use oxide ions or protons as carriers.
1   セル
6   水素極層
7   電解質層
71  内側部
72  外側部
73  中間部
8   反応防止層
9   酸素極層
10  セル本体部
20  金属支持体
20S 第1主面
21  供給孔
30  流路部材
30a 流路
L1~L4  第1乃至第4基準線
P20  第1主面の先端
P6  水素極層の先端
D1  所定距離
1 Cell 6 Hydrogen electrode layer 7 Electrolyte layer 71 Inner part 72 Outer part 73 Intermediate part 8 Reaction prevention layer 9 Oxygen electrode layer 10 Cell body part 20 Metal support 20S First main surface 21 Supply hole 30 Channel member 30a Channel L1 ~L4 First to fourth reference line P20 Tip of first main surface P6 Tip of hydrogen electrode layer D1 Predetermined distance

Claims (6)

  1.  主面に形成された複数の供給孔を有する金属支持体と、
     前記主面上に形成され、前記複数の供給孔を覆う第1電極層と、第2電極層と、前記第1電極層及び前記第2電極層の間に配置される電解質層とを有するセル本体部と、
    を備え、
     前記電解質層は、前記主面に垂直な断面において、
     前記第1電極層の表面を覆い、前記主面に平行な面方向において前記第1電極層の先端から所定距離以上離れた内側部と、
     前記金属支持体の前記主面のうち前記第1電極層から露出する領域の略全部を覆い、前記面方向において前記第1電極層の先端から所定距離以上離れた外側部と、
     前記面方向において前記内側部と前記外側部の間に挟まれる中間部と、
    を有し、
     前記中間部の平均厚みは、前記内側部の平均厚みより大きい、
    電気化学セル。
    a metal support having a plurality of supply holes formed on the main surface;
    A cell having a first electrode layer formed on the main surface and covering the plurality of supply holes, a second electrode layer, and an electrolyte layer disposed between the first electrode layer and the second electrode layer. The main body and
    Equipped with
    The electrolyte layer has, in a cross section perpendicular to the main surface,
    an inner part that covers the surface of the first electrode layer and is spaced a predetermined distance or more from the tip of the first electrode layer in a plane direction parallel to the main surface;
    an outer portion that covers substantially the entire area of the main surface of the metal support that is exposed from the first electrode layer and is spaced a predetermined distance or more from the tip of the first electrode layer in the surface direction;
    an intermediate part sandwiched between the inner part and the outer part in the surface direction;
    has
    The average thickness of the intermediate part is greater than the average thickness of the inner part.
    electrochemical cell.
  2.  前記中間部の平均厚みは、前記外側部の平均厚みより大きい、
    請求項1に記載の電気化学セル。
    The average thickness of the intermediate portion is greater than the average thickness of the outer portion.
    An electrochemical cell according to claim 1.
  3.  前記所定距離は、前記金属支持体の厚みの2分の1である、
    請求項1に記載の電気化学セル。
    the predetermined distance is one-half the thickness of the metal support;
    An electrochemical cell according to claim 1.
  4.  前記中間部の平均厚みは、前記面方向において前記中間部を4等分する3か所における厚みの平均値であり、
     前記内側部の平均厚みは、前記内側部のうち前記面方向において前記中間部から前記所定距離までの部分を4等分する3か所における厚みの平均値である、
    請求項1に記載の電気化学セル。
    The average thickness of the intermediate portion is the average value of the thickness at three locations dividing the intermediate portion into four equal parts in the surface direction,
    The average thickness of the inner part is the average value of the thickness at three places that equally divide the part of the inner part from the intermediate part to the predetermined distance in the surface direction,
    An electrochemical cell according to claim 1.
  5.  前記中間部の平均厚みは、前記面方向において前記中間部を4等分する3か所における厚みの平均値であり、
     前記外側部の平均厚みは、前記面方向において前記外側部を4等分する3か所における厚みの平均値である、
    請求項2に記載の電気化学セル。
    The average thickness of the intermediate portion is the average value of the thickness at three locations dividing the intermediate portion into four equal parts in the surface direction,
    The average thickness of the outer portion is an average value of thicknesses at three locations dividing the outer portion into four equal parts in the surface direction.
    An electrochemical cell according to claim 2.
  6.  前記第1電極層は、前記面方向に垂直な厚み方向に沿って形成される側面を有し、
     前記側面には凹凸が形成されている、
    請求項1乃至5のいずれかに記載の電気化学セル。
    The first electrode layer has a side surface formed along a thickness direction perpendicular to the surface direction,
    unevenness is formed on the side surface;
    An electrochemical cell according to any one of claims 1 to 5.
PCT/JP2023/005529 2022-03-08 2023-02-16 Electrochemical cell WO2023171299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024506001A JPWO2023171299A1 (en) 2022-03-08 2023-02-16

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022035316 2022-03-08
JP2022-035316 2022-03-08
JP2022150108 2022-09-21
JP2022-150108 2022-09-21

Publications (1)

Publication Number Publication Date
WO2023171299A1 true WO2023171299A1 (en) 2023-09-14

Family

ID=87936792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005529 WO2023171299A1 (en) 2022-03-08 2023-02-16 Electrochemical cell

Country Status (2)

Country Link
JP (1) JPWO2023171299A1 (en)
WO (1) WO2023171299A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158297A (en) * 2003-11-20 2005-06-16 Nissan Motor Co Ltd Solid electrolyte fuel cell
JP2006324190A (en) * 2005-05-20 2006-11-30 Shinko Electric Ind Co Ltd Solid oxide fuel cell and its manufacturing method
JP2011204505A (en) * 2010-03-26 2011-10-13 Ngk Insulators Ltd Fuel battery cell
JP2016072216A (en) * 2014-09-30 2016-05-09 Toto株式会社 Solid oxide fuel cell stack
JP2016154096A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Solid oxide fuel battery and manufacturing method for solid oxide fuel battery
JP2020095984A (en) * 2020-03-23 2020-06-18 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158297A (en) * 2003-11-20 2005-06-16 Nissan Motor Co Ltd Solid electrolyte fuel cell
JP2006324190A (en) * 2005-05-20 2006-11-30 Shinko Electric Ind Co Ltd Solid oxide fuel cell and its manufacturing method
JP2011204505A (en) * 2010-03-26 2011-10-13 Ngk Insulators Ltd Fuel battery cell
JP2016072216A (en) * 2014-09-30 2016-05-09 Toto株式会社 Solid oxide fuel cell stack
JP2016154096A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Solid oxide fuel battery and manufacturing method for solid oxide fuel battery
JP2020095984A (en) * 2020-03-23 2020-06-18 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element

Also Published As

Publication number Publication date
JPWO2023171299A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US6048636A (en) Electrode substrate for fuel cell
JP2019216076A (en) Cell stack
JP3914990B2 (en) Cylindrical fuel cell
JP5809159B2 (en) ASSEMBLY FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5785135B2 (en) Method for producing current collecting member for solid oxide fuel cell and current collecting member for solid oxide fuel cell
WO2023171299A1 (en) Electrochemical cell
JP7394189B1 (en) electrochemical cell
WO2023171297A1 (en) Electrochemical cell
WO2023171276A1 (en) Electrochemical cell
JP6134085B1 (en) Electrochemical cell
JP7394190B1 (en) electrochemical cell
WO2023176241A1 (en) Electrochemical cell
JP7280991B1 (en) electrochemical cell
WO2024101163A1 (en) Electrochemical cell
WO2024143271A1 (en) Electrochemical cell
WO2024143292A1 (en) Electrochemical cell
JP6527990B1 (en) Alloy member, cell stack and cell stack device
JP7333439B1 (en) electrochemical cell
WO2024143264A1 (en) Electrochemical cell
WO2024122286A1 (en) Electrochemical cell
WO2023188936A1 (en) Electrochemical cell
WO2024122334A1 (en) Electrochemical cell
WO2023176242A1 (en) Electrochemical cell
JP2019215991A (en) Alloy member, cell stack, and cell stack device
WO2024116971A1 (en) Electrochemical cell and electrochemical cell with separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024506001

Country of ref document: JP