JP5727428B2 - Fuel cell with separator and fuel cell - Google Patents

Fuel cell with separator and fuel cell Download PDF

Info

Publication number
JP5727428B2
JP5727428B2 JP2012192303A JP2012192303A JP5727428B2 JP 5727428 B2 JP5727428 B2 JP 5727428B2 JP 2012192303 A JP2012192303 A JP 2012192303A JP 2012192303 A JP2012192303 A JP 2012192303A JP 5727428 B2 JP5727428 B2 JP 5727428B2
Authority
JP
Japan
Prior art keywords
fuel cell
separator
sealing
metal separator
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012192303A
Other languages
Japanese (ja)
Other versions
JP2014049321A (en
Inventor
松谷 渉
渉 松谷
悦也 池田
悦也 池田
誠 栗林
誠 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012192303A priority Critical patent/JP5727428B2/en
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to DK13832876.0T priority patent/DK2892098T3/en
Priority to PCT/JP2013/072743 priority patent/WO2014034608A1/en
Priority to CA2883115A priority patent/CA2883115C/en
Priority to US14/423,610 priority patent/US10122023B2/en
Priority to EP13832876.0A priority patent/EP2892098B1/en
Priority to CN201380045620.0A priority patent/CN104604005B/en
Priority to KR1020157005065A priority patent/KR101669376B1/en
Publication of JP2014049321A publication Critical patent/JP2014049321A/en
Application granted granted Critical
Publication of JP5727428B2 publication Critical patent/JP5727428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は,セパレータ付燃料電池セル,および燃料電池に関する。   The present invention relates to a fuel cell with a separator and a fuel cell.

電解質に固体酸化物を用いた固体酸化物形燃料電池(以下,「SOFC」又は単に「燃料電池」とも記す場合がある)が知られている。SOFCは,例えば,板状の固体電解質層の各面に燃料極と空気極とを備えた燃料電池セルを多数積層したスタック(燃料電池スタック)を有する。燃料極および空気極それぞれに,燃料ガス(例えば,水素)および酸化剤ガス(例えば,空気中の酸素)を供給し,固体電解質層を介して化学反応させることで,電力を発生させる。   A solid oxide fuel cell using a solid oxide as an electrolyte (hereinafter also referred to as “SOFC” or simply “fuel cell”) is known. The SOFC has, for example, a stack (fuel cell stack) in which a large number of fuel cells each having a fuel electrode and an air electrode are stacked on each surface of a plate-like solid electrolyte layer. Electric power is generated by supplying a fuel gas (for example, hydrogen) and an oxidant gas (for example, oxygen in the air) to the fuel electrode and the air electrode, respectively, and causing a chemical reaction through the solid electrolyte layer.

燃料電池セルは,燃料ガスと酸化剤ガスとが存在する区画を区分するセパレータに,接合して,用いられる。この接合に,通例,Agロウ等のロウ材から構成される接合部が用いられ,燃料ガスと酸化剤ガスが隔離される。   The fuel cell is used by being joined to a separator that divides a section where fuel gas and oxidant gas are present. For this joining, usually, a joining portion made of a brazing material such as Ag brazing is used to isolate the fuel gas and the oxidant gas.

ここで,SOFCの稼動時に,燃料極側の水素と空気極側の酸素が,接合部中を拡散,反応し,接合部にボイドを生成することが知られている。接合部でのボイドの生成を防止するために,ガスの拡散速度が遅い各種Ag合金を接合部として用いる技術が開示されている(特許文献1,2参照)。ガスの拡散速度が遅い材料を用いることで,ロウ材の寿命を長くすることができる。   Here, it is known that during operation of the SOFC, hydrogen on the fuel electrode side and oxygen on the air electrode side diffuse and react in the joint, and generate voids in the joint. In order to prevent the formation of voids at the joint, a technique using various Ag alloys having a slow gas diffusion rate as the joint is disclosed (see Patent Documents 1 and 2). By using a material with a slow gas diffusion rate, the life of the brazing material can be extended.

特開2010−207863号公報JP 2010-207863 A 特表2011−522353号公報Special table 2011-522353 gazette

しかしながら,特許文献1,2の技術では,接合部(燃料電池)の長寿命化を図れるものの,例えば,数万時間もの実用的に十分な寿命を確保するのは容易ではなかった。
本発明は,接合部の長寿命化を図った,セパレータ付燃料電池セル,および燃料電池を提供することを目的とする。
However, with the techniques of Patent Documents 1 and 2, although it is possible to extend the life of the joint (fuel cell), it is not easy to ensure a practically sufficient life of, for example, tens of thousands of hours.
It is an object of the present invention to provide a separator-equipped fuel cell and a fuel cell in which the life of the joint is extended.

本発明に係るセパレータ付燃料電池セルは,固体電解質層を空気極および燃料極で挟んで構成される燃料電池セル本体と,表面と裏面とに開口する開口部を有し,Agを含む接合材で構成される接合部を介して,該裏面側が前記燃料電池セル本体に取り付けられる,板状の金属製セパレータと,を具備する,セパレータ付燃料電池セルであって,前記接合部よりも前記開口部側でかつ前記金属製セパレータの裏面と前記セル本体との間に前記開口部の全周にわたって配置され,ガラスを含む封止材を含む封止部と,前記金属製セパレータを挟んで,前記封止部と対向する位置における,前記金属製セパレータの表面上に配置され,前記封止材と同じ材料で構成される拘束部と,を備えることを特徴とする。   A separator-equipped fuel cell according to the present invention includes a fuel cell main body configured by sandwiching a solid electrolyte layer between an air electrode and a fuel electrode, and an opening containing openings on the front and back surfaces, and includes Ag. A separator-equipped fuel cell comprising a plate-like metal separator, the back surface of which is attached to the main body of the fuel cell through a joint constituted by: On the part side and between the back surface of the metal separator and the cell body, and is disposed over the entire circumference of the opening. And a restraining portion that is disposed on the surface of the metal separator at a position facing the sealing portion and is made of the same material as the sealing material.

同じ材料で構成されている(熱膨張係数も同じ)封止部と拘束部とで金属製セパレータを挟んでいるため,燃料電池稼働時の金属製セパレータの変形が抑制される。その結果,封止部が金属製セパレータの変形によって破損して,接合部へ燃料ガスもしくは酸化剤ガスが到達することが抑制される。   Since the metallic separator is sandwiched between the sealing portion and the restraining portion made of the same material (same thermal expansion coefficient), deformation of the metallic separator during operation of the fuel cell is suppressed. As a result, the sealing portion is prevented from being damaged by the deformation of the metallic separator, and the fuel gas or the oxidant gas is prevented from reaching the joint portion.

前記拘束部は,前記開口部の全周にわたって配置されていることが好ましい。
封止部が開口部の全周にわたって配置されている。このため,拘束部を開口部の全周にわたって配置することで,開口部の全周にわたって,金属製セパレータの変形を抑制できる。
It is preferable that the constraining portion is disposed over the entire circumference of the opening.
The sealing part is arrange | positioned over the perimeter of an opening part. For this reason, a deformation | transformation of a metal separator can be suppressed over the perimeter of an opening part by arrange | positioning a restraint part over the perimeter of an opening part.

前記金属製セパレータの開口部側面に配置された連結部によって,前記封止部と前記拘束部とが一体に形成されていることが好ましい。
封止部と拘束部とが一体となることで,金属製セパレータの変形(撓み)のさらなる抑制が可能となる。
また,封止部と拘束部との一体化は,封止部の幅の実質的増大に寄与し,封止部による封止性が向上する。
It is preferable that the sealing portion and the restraining portion are integrally formed by a connecting portion disposed on the side surface of the opening of the metal separator.
Since the sealing portion and the restraining portion are integrated, it is possible to further suppress deformation (deflection) of the metallic separator.
Further, the integration of the sealing portion and the restraining portion contributes to a substantial increase in the width of the sealing portion, and the sealing performance by the sealing portion is improved.

金属製セパレータの熱膨張係数よりも,拘束部を構成する材料の熱膨張係数の方が小さくても良い。
金属製セパレータ,拘束部はそれぞれ,金属,ガラスから構成され,金属製セパレータよりも拘束部の熱膨張係数の方が小さいことが通例である。このような条件でも,拘束部による金属製セパレータの変形(撓み)の抑制が可能である。
The thermal expansion coefficient of the material constituting the restraint portion may be smaller than the thermal expansion coefficient of the metallic separator.
The metallic separator and the restraining part are each made of metal and glass, and the thermal expansion coefficient of the restraining part is usually smaller than that of the metallic separator. Even under such conditions, it is possible to suppress the deformation (deflection) of the metal separator by the restraining portion.

前記接合部と前記封止部との間に,間隙を有しても良い。
接合部と封止部とが接触していなくても,金属製セパレータの変形(撓み)の抑制は可能である。また,間隙にガスが入っていても少量であり,接合部の信頼性等への影響は小さい。
A gap may be provided between the joint portion and the sealing portion.
Even if the joint portion and the sealing portion are not in contact with each other, it is possible to suppress deformation (deflection) of the metal separator. In addition, even if gas is contained in the gap, the amount is small, and the influence on the reliability of the joint is small.

前記封止材の熱膨張係数が,常温から300℃の温度範囲内において,8ppm/K以上12ppm/K以下であることが好ましい。
この範囲の熱膨張係数において,燃料電池稼働時の金属製セパレータの変形の抑制が可能である。
It is preferable that the thermal expansion coefficient of the sealing material is 8 ppm / K or more and 12 ppm / K or less in a temperature range from room temperature to 300 ° C.
With a thermal expansion coefficient in this range, it is possible to suppress deformation of the metal separator during fuel cell operation.

本発明に係る燃料電池スタックは,上記のセパレータ付燃料電池セル,を具備する。
上記のセパレータ付燃料電池セルを用いることで,燃料電池スタック全体としての信頼性が向上する。
A fuel cell stack according to the present invention includes the fuel cell with a separator described above.
By using the fuel cell with a separator described above, the reliability of the entire fuel cell stack is improved.

本発明によれば,金属製セパレータの変形による封止部の破損を抑制することで,接合部のボイドの発生を抑制することで長寿命化を図った,セパレータ付燃料電池セル,および燃料電池を提供できる。   According to the present invention, a fuel cell with a separator, and a fuel cell, in which the failure of the sealing portion due to deformation of the metal separator is suppressed and the generation of voids in the joint portion is suppressed, thereby extending the life. Can provide.

固体酸化物形燃料電池10を表す斜視図である。1 is a perspective view showing a solid oxide fuel cell 10. FIG. 固体酸化物形燃料電池10の模式断面図である。1 is a schematic cross-sectional view of a solid oxide fuel cell 10. FIG. 燃料電池セル40の断面図である。3 is a cross-sectional view of a fuel cell 40. FIG. 燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50)を分解した状態を表す分解斜視図である。It is a disassembled perspective view showing the state which decomposed | disassembled the fuel cell main body 44 and the metal separator 53 (fuel cell 50 with a separator). 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 燃料電池セル40aの断面図である。It is sectional drawing of the fuel cell 40a. 燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50)を分解した状態を表す分解斜視図である。It is a disassembled perspective view showing the state which decomposed | disassembled the fuel cell main body 44 and the metal separator 53 (fuel cell 50 with a separator). 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 製造中のセパレータ付燃料電池セル50を表す断面図である。It is sectional drawing showing the fuel cell 50 with a separator in manufacture. 燃料電池セル40bの断面図である。It is sectional drawing of the fuel battery cell 40b. 燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50)を分解した状態を表す分解斜視図である。It is a disassembled perspective view showing the state which decomposed | disassembled the fuel cell main body 44 and the metal separator 53 (fuel cell 50 with a separator). 固体酸化物形燃料電池10の耐久性試験の結果を表すグラフである。4 is a graph showing the results of a durability test of the solid oxide fuel cell 10.

以下,本発明に係る固体酸化物形燃料電池について図面を用いて説明する。   Hereinafter, a solid oxide fuel cell according to the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は,本発明の第1実施形態に係る固体酸化物形燃料電池(燃料電池スタック)10を表す斜視図である。固体酸化物形燃料電池10は,燃料ガス(例えば,水素)と酸化剤ガス(例えば,空気(詳しくは空気中の酸素))との供給を受けて発電する。
(First embodiment)
FIG. 1 is a perspective view showing a solid oxide fuel cell (fuel cell stack) 10 according to a first embodiment of the present invention. The solid oxide fuel cell 10 generates power by receiving supply of a fuel gas (for example, hydrogen) and an oxidant gas (for example, air (specifically, oxygen in the air)).

固体酸化物形燃料電池10は,エンドプレート11,12,燃料電池セル40(1)〜40(4)が積層され,ボルト21,22(22a,22b),23(23a,23b)およびナット35で固定される。   In the solid oxide fuel cell 10, end plates 11 and 12, fuel cells 40 (1) to 40 (4) are laminated, bolts 21, 22 (22a, 22b), 23 (23a, 23b) and nuts 35. It is fixed with.

図2は,固体酸化物形燃料電池10の模式断面図である。
固体酸化物形燃料電池10は,燃料電池セル40(1)〜40(4)を積層して構成される燃料電池スタックである。ここでは,判り易さのために,4つの燃料電池セル40(1)〜40(4)を積層しているが,一般には,20〜60個程度の燃料電池セル40を積層することが多い。
FIG. 2 is a schematic cross-sectional view of the solid oxide fuel cell 10.
The solid oxide fuel cell 10 is a fuel cell stack configured by stacking fuel cells 40 (1) to 40 (4). Here, for the sake of clarity, four fuel cells 40 (1) to 40 (4) are stacked, but in general, about 20 to 60 fuel cells 40 are often stacked. .

エンドプレート11,12,燃料電池セル40(1)〜40(4)は,ボルト21,22(22a,22b),23(23a,23b)に対応する貫通孔31,32(32a,32b),33(33a,33b)を有する。
エンドプレート11,12は,積層される燃料電池セル40(1)〜40(4)を押圧,保持する保持板であり,かつ燃料電池セル40(1)〜40(4)からの電流の出力端子でもある。
The end plates 11 and 12 and the fuel cells 40 (1) to 40 (4) have through holes 31 and 32 (32a and 32b) corresponding to the bolts 21 and 22 (22a and 22b) and 23 (23a and 23b), 33 (33a, 33b).
The end plates 11 and 12 are holding plates that press and hold the stacked fuel battery cells 40 (1) to 40 (4), and output current from the fuel battery cells 40 (1) to 40 (4). It is also a terminal.

図3は,燃料電池セル40の断面図である。図4は,燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50)を分解した状態を表す分解斜視図である。   FIG. 3 is a cross-sectional view of the fuel battery cell 40. FIG. 4 is an exploded perspective view showing a state in which the fuel cell main body 44 and the metal separator 53 (the separator-equipped fuel cell 50) are disassembled.

図3に示すように,燃料電池セル40は,いわゆる燃料極支持膜形タイプの燃料電池セルであり,インターコネクタ41,45,集電体42,枠部43を備える。   As shown in FIG. 3, the fuel cell 40 is a so-called fuel electrode support membrane type fuel cell, and includes interconnectors 41 and 45, a current collector 42, and a frame part 43.

燃料電池セル本体44は,固体電解質層56を空気極(カソード,空気極層ともいう)55,および,燃料極(アノード,燃料極層ともいう)57で挟んで構成される。固体電解質層56の酸化剤ガス流路47側,燃料ガス流路48側それぞれに,空気極55,燃料極57が配置される。   The fuel cell main body 44 includes a solid electrolyte layer 56 sandwiched between an air electrode (also referred to as a cathode or an air electrode layer) 55 and a fuel electrode (also referred to as an anode or a fuel electrode layer) 57. An air electrode 55 and a fuel electrode 57 are arranged on the oxidant gas flow channel 47 side and the fuel gas flow channel 48 side of the solid electrolyte layer 56, respectively.

空気極55としては,ペロブスカイト系酸化物(例えば,LSCF(ランタンストロンチウムコバルト鉄酸化物),LSM(ランタンストロンチウムマンガン酸化物),各種貴金属及び貴金属とセラミックとのサーメットが使用できる。   As the air electrode 55, perovskite oxides (for example, LSCF (lanthanum strontium cobalt iron oxide), LSM (lanthanum strontium manganese oxide), various noble metals, and cermets of noble metals and ceramics can be used.

固体電解質層56としては,YSZ(イットリア安定化ジルコニア),ScSZ(スカンジア安定化ジルコニア),SDC(サマリウムドープセリア),GDC(ガドリニウムドープセリア),ペロブスカイト系酸化物等の材料が使用できる。   For the solid electrolyte layer 56, materials such as YSZ (yttria stabilized zirconia), ScSZ (scandia stabilized zirconia), SDC (samarium doped ceria), GDC (gadolinium doped ceria), and perovskite oxide can be used.

燃料極57としては,金属が好ましく,Ni及びNiとセラミックとのサーメットやNi基合金が使用できる。   The fuel electrode 57 is preferably a metal, and Ni, Ni-ceramic cermets or Ni-based alloys can be used.

インターコネクタ41,45は,燃料電池セル本体44間の導通を確保し,かつ燃料電池セル本体44間でのガスの混合を防止し得る,導電性(例えば,ステンレス鋼等の金属)を有する板状の部材である。   The interconnectors 41 and 45 are plates having conductivity (for example, a metal such as stainless steel) that can secure conduction between the fuel cell main bodies 44 and prevent gas mixing between the fuel cell main bodies 44. Shaped member.

なお,燃料電池セル本体44間には,1個のインターコネクタ(41若しくは45)のみが配置される(直列に接続される二つの燃料電池セル本体44の間に一つのインターコネクタを共有しているため)。また,最上層および最下層の燃料電池セル本体44それぞれでは,インターコネクタ41,45に替えて,導電性を有するエンドプレート11,12が配置される。   In addition, only one interconnector (41 or 45) is disposed between the fuel cell main bodies 44 (one interconnector is shared between two fuel cell main bodies 44 connected in series). Because). Further, in each of the uppermost and lowermost fuel cell main bodies 44, conductive end plates 11 and 12 are disposed in place of the interconnectors 41 and 45, respectively.

集電体42は,燃料電池セル本体44(空気極55)とインターコネクタ41との間の導通を確保するためのものであり,例えば,ニッケル合金等の金属材料からなる。また,集電体42が,弾性を有していてもよい。   The current collector 42 is for ensuring electrical continuity between the fuel cell main body 44 (air electrode 55) and the interconnector 41, and is made of, for example, a metal material such as a nickel alloy. Further, the current collector 42 may have elasticity.

枠部43は,酸化剤ガス,燃料ガスが流れる開口46を有する。この開口46は,気密に保持され,かつ酸化剤ガスが流れる酸化剤ガス流路47,燃料ガスが流れる燃料ガス流路48に区分される。また,本実施形態の枠部43は,空気極フレーム51,絶縁フレーム52,金属製セパレータ53,燃料極フレーム54で構成される。   The frame portion 43 has an opening 46 through which an oxidant gas and a fuel gas flow. The opening 46 is kept airtight and is divided into an oxidant gas passage 47 through which an oxidant gas flows and a fuel gas passage 48 through which fuel gas flows. Further, the frame portion 43 of this embodiment includes an air electrode frame 51, an insulating frame 52, a metal separator 53, and a fuel electrode frame 54.

空気極フレーム51は,空気極55側に配置される金属製の枠体で,中央部には開口46を有する。該開口46によって,酸化剤ガス流路47を区画する。   The air electrode frame 51 is a metal frame disposed on the air electrode 55 side, and has an opening 46 at the center. An oxidant gas flow path 47 is defined by the opening 46.

絶縁フレーム52は,インターコネクタ41,45間を電気的に絶縁する枠体で,例えば,Alなどのセラミックスやマイカ,バーミキュライトなどが使用でき,中央部には開口46を有する。該開口46によって,酸化剤ガス流路47を区画する。具体的には,絶縁フレーム52は,インターコネクタ41,45の間において,一方の面が空気極フレーム51に,他方の面が金属製セパレータ53に接触して配置されている。この結果,絶縁フレーム52により,インターコネクタ41,45間が電気的に絶縁されている。 The insulating frame 52 is a frame that electrically insulates between the interconnectors 41 and 45. For example, ceramics such as Al 2 O 3 , mica, vermiculite, and the like can be used, and an opening 46 is provided at the center. An oxidant gas flow path 47 is defined by the opening 46. Specifically, the insulating frame 52 is disposed between the interconnectors 41 and 45 such that one surface contacts the air electrode frame 51 and the other surface contacts the metal separator 53. As a result, the interconnectors 41 and 45 are electrically insulated by the insulating frame 52.

金属製セパレータ53は,開口部58を有する枠状の金属製の薄板(例えば,厚さ:0.1mm)であり,燃料電池セル本体44の固体電解質層56に取り付けられ,かつ酸化剤ガスと燃料ガスとの混合を防止する金属製の枠体である。金属製セパレータ53によって,枠部43の開口46内の間隙が,酸化剤ガス流路47と燃料ガス流路48に区切られ,酸化剤ガスと燃料ガスとの混合が防止される。   The metal separator 53 is a frame-shaped metal thin plate (for example, thickness: 0.1 mm) having an opening 58, is attached to the solid electrolyte layer 56 of the fuel cell main body 44, and has an oxidant gas. It is a metal frame that prevents mixing with fuel gas. The metal separator 53 divides the gap in the opening 46 of the frame portion 43 into an oxidant gas flow path 47 and a fuel gas flow path 48, thereby preventing mixing of the oxidant gas and the fuel gas.

金属製セパレータ53には,金属製セパレータ53の上面と下面の間を貫通する貫通孔によって開口部58が形成され,この開口部58内に,燃料電池セル本体44の空気極55が配置される。また,この開口部58に燃料電池セル本体44が接合,封止される。金属製セパレータ53が接合された燃料電池セル本体44を「セパレータ付燃料電池セル50」という。なお,この詳細は後述する。   An opening 58 is formed in the metal separator 53 by a through-hole penetrating between the upper surface and the lower surface of the metal separator 53, and the air electrode 55 of the fuel cell main body 44 is disposed in the opening 58. . Further, the fuel cell main body 44 is joined and sealed in the opening 58. The fuel cell main body 44 to which the metal separator 53 is joined is referred to as a “fuel cell 50 with a separator”. Details of this will be described later.

燃料極フレーム54は,絶縁フレーム52と同様に,燃料極57側に配置される絶縁フレームであり,中央部には開口46を有する。該開口46によって,燃料ガス流路48を区画する。   Like the insulating frame 52, the fuel electrode frame 54 is an insulating frame disposed on the fuel electrode 57 side, and has an opening 46 in the center. A fuel gas flow path 48 is defined by the opening 46.

空気極フレーム51,絶縁フレーム52,金属製セパレータ53,燃料極フレーム54は,ボルト21,22(22a,22b),23(23a,23b)が挿入されるか,もしくは酸化剤ガスか燃料ガスが流通する貫通孔31,32(32a,32b),33(33a,33b)をそれぞれの周辺部に有する。   Bolts 21, 22 (22a, 22b), 23 (23a, 23b) are inserted into the air electrode frame 51, the insulating frame 52, the metal separator 53, and the fuel electrode frame 54, or an oxidant gas or a fuel gas is inserted. The through holes 31, 32 (32a, 32b), 33 (33a, 33b) that circulate are provided in the respective peripheral portions.

(セパレータ付燃料電池セル50の詳細)
本実施形態に係るセパレータ付燃料電池セル50は,接合部61,封止部62,拘束部63を有する。燃料電池セル本体44と金属製セパレータ53の間に接合部61,封止部62が配置される。開口部58に沿って,金属製セパレータ53の下面と固体電解質層56の上面が接合部61で接合され,封止部62で封止される。拘束部63は,封止部62に対応して,金属製セパレータ53の上面に配置される。
(Details of fuel cell 50 with separator)
The separator-equipped fuel cell 50 according to the present embodiment includes a joining portion 61, a sealing portion 62, and a restraining portion 63. A joining portion 61 and a sealing portion 62 are disposed between the fuel cell main body 44 and the metal separator 53. Along the opening 58, the lower surface of the metallic separator 53 and the upper surface of the solid electrolyte layer 56 are joined by the joining portion 61 and sealed by the sealing portion 62. The restricting portion 63 is disposed on the upper surface of the metallic separator 53 corresponding to the sealing portion 62.

接合部61は,Agを含むロウ材から構成され,開口部58に沿って,全周にわたって,燃料電池セル本体44と金属製セパレータ53とを接合する。接合部61(Agロウ)は,例えば,2〜6mmの幅,10〜80μmの厚さを有する。   The joining portion 61 is made of a brazing material containing Ag, and joins the fuel cell body 44 and the metal separator 53 along the opening 58 over the entire circumference. The joining portion 61 (Ag solder) has, for example, a width of 2 to 6 mm and a thickness of 10 to 80 μm.

接合部61の材質として,Agを主成分とする各種のロウ材を採用できる。例えば,ロウ材として,Agと酸化物の混合体,例えば,Ag−Al(AgとAl(アルミナ)の混合体)を利用できる。Agと酸化物の混合体としては,Ag−CuO,Ag−TiO,Ag−Cr,Ag−SiOも挙げることができる。また,ロウ材として,Agと他の金属の合金(例えば,Ag−Ge−Cr,Ag−Ti,Ag−Al)も利用できる。 As the material of the joining portion 61, various brazing materials mainly composed of Ag can be employed. For example, as a brazing material, a mixture of Ag and an oxide, for example, Ag-Al 2 O 3 (a mixture of Ag and Al 2 O 3 (alumina)) can be used. Examples of the mixture of Ag and oxide include Ag—CuO, Ag—TiO 2 , Ag—Cr 2 O 3 , and Ag—SiO 2 . Further, an alloy of Ag and another metal (for example, Ag—Ge—Cr, Ag—Ti, Ag—Al) can be used as the brazing material.

Agを含むロウ材(Agロウ)は,大気雰囲気でもロウ付け温度で酸化し難い。このため,Agロウを用いて,燃料電池セル本体44と金属製セパレータ53とを大気雰囲気で接合でき,工程の効率上,好ましい。   The brazing material containing Ag (Ag brazing) is not easily oxidized at the brazing temperature even in an air atmosphere. For this reason, the fuel cell main body 44 and the metal separator 53 can be joined in an air atmosphere using Ag wax, which is preferable in terms of process efficiency.

封止部62は,開口部58に沿って,全周にわたって,接合部61よりも開口部58側(内周側)に配置され,金属製セパレータ53の開口部58内にある酸化剤ガスと開口部58外にある燃料ガスとの混合を防ぐために燃料電池セル本体44と金属製セパレータ53間を封止する。   The sealing portion 62 is disposed on the opening 58 side (inner peripheral side) of the joining portion 61 along the opening 58 over the entire circumference, and the oxidant gas in the opening 58 of the metallic separator 53 In order to prevent mixing with the fuel gas outside the opening 58, the space between the fuel cell main body 44 and the metal separator 53 is sealed.

封止部62が接合部61よりも開口部58側(内周側)に配置されることから,接合部61が酸化剤ガスに接触することが無くなり,酸化剤ガス流路47側から接合部61への酸素の移動が阻止される。この結果,水素と酸素の反応によって接合部61にボイドが発生して,ガスリークすることを防止できる。
封止部62は,例えば,0.2〜4mmの幅,10〜80μmの厚さを有する。
Since the sealing portion 62 is disposed on the opening 58 side (inner peripheral side) with respect to the joint portion 61, the joint portion 61 does not come into contact with the oxidant gas, and the joint portion is connected from the oxidant gas flow path 47 side. Oxygen transfer to 61 is blocked. As a result, it is possible to prevent a gas leak from occurring in the junction 61 due to the reaction between hydrogen and oxygen.
The sealing part 62 has a width of 0.2 to 4 mm and a thickness of 10 to 80 μm, for example.

拘束部63は,金属製セパレータ53を挟んで,封止部62と対向する位置における,金属製セパレータ53の表面上に,開口部58の全周にわたって,配置される。
拘束部63は,封止部62と同じ材料(熱膨張係数も同じ)で構成され,封止部62と共に,金属製セパレータ53を挟む。この結果,固体酸化物形燃料電池10の稼動時での金属製セパレータ53の変形が抑制される。
The restraining portion 63 is disposed over the entire circumference of the opening 58 on the surface of the metallic separator 53 at a position facing the sealing portion 62 with the metallic separator 53 interposed therebetween.
The restraining part 63 is made of the same material as that of the sealing part 62 (the same thermal expansion coefficient), and sandwiches the metallic separator 53 together with the sealing part 62. As a result, deformation of the metallic separator 53 during operation of the solid oxide fuel cell 10 is suppressed.

なお,「同じ材料」とは,完全に同一のみならず,実質的に同一の材料をも含むものとする。上述した剥がれ(封止性の低下)防止に寄与するのであれば,多少の組成の相違は許容される。例えば,1重量%程度組成比が相違する材料は,実質的に同一の材料として良い。   The “same material” includes not only completely the same material but also substantially the same material. If it contributes to preventing the above-described peeling (decrease in sealing performance), a slight difference in composition is allowed. For example, materials having different composition ratios by about 1% by weight may be substantially the same material.

拘束部63が配置されて無い場合,固体酸化物形燃料電池10の稼働時には,金属製セパレータ53と封止部62とが共に700℃程度に加熱され共に変形する(熱膨張)。ここで,金属製セパレータ53と封止部62とでは熱膨張係数が異なることから,両者の変形量に差が発生し,金属製セパレータ53が反るような変形を与える熱応力が金属製セパレータ53と封止部62との間に発生する。その結果,封止部62と金属製セパレータ53との界面が剥離し,封止部62による封止性が低下する可能性がある。   When the restraint portion 63 is not disposed, the metal separator 53 and the sealing portion 62 are both heated to about 700 ° C. and deformed (thermal expansion) during operation of the solid oxide fuel cell 10. Here, since the metal separator 53 and the sealing portion 62 have different coefficients of thermal expansion, a difference occurs in the amount of deformation between the two, and the thermal stress that causes deformation such that the metal separator 53 warps is caused by the metal separator. It occurs between 53 and the sealing part 62. As a result, the interface between the sealing portion 62 and the metal separator 53 may be peeled off, and the sealing performance by the sealing portion 62 may be reduced.

封止部62と対向する位置に,封止材と同じ材料で構成される拘束部63が配置されていると,固体酸化物形燃料電池10の稼働時に,金属製セパレータ53と封止部62間(金属製セパレータ53の裏面側)に発生する熱応力と,金属製セパレータ53と拘束部63間(金属製セパレータ53の表面側)に発生する熱応力とが釣合う。この結果,金属製セパレータ53の反るような変形が抑制され,金属製セパレータ53と封止部62間の剥がれ(封止部62による封止性の低下)が防止される。   When the restraining portion 63 made of the same material as the sealing material is disposed at a position facing the sealing portion 62, the metal separator 53 and the sealing portion 62 are operated during operation of the solid oxide fuel cell 10. The thermal stress generated between the metallic separator 53 and the thermal stress generated between the metallic separator 53 and the restraining portion 63 (front side of the metallic separator 53) is balanced. As a result, warping deformation of the metal separator 53 is suppressed, and peeling between the metal separator 53 and the sealing portion 62 (decrease in sealing performance by the sealing portion 62) is prevented.

金属製セパレータ53の厚みが厚いと,金属製セパレータ53の剛性が高くなって,燃料電池セル本体44と金属製セパレータ53間の熱膨張差に起因する応力を緩和し難くなり,その結果、燃料電池セル本体44が割れる可能性がある。一方,金属製セパレータ53が薄いと,剛性が低くなるので、熱膨張差に起因する応力を緩和し易くなり、燃料電池セル本体44の割れの発生が抑制されるが,接合部61を構成する接合材と封止部62を構成する封止材との、冷却時における熱膨張差に起因した金属製セパレータ53の反り上がりが発生し易くなる。ここでは,金属製セパレータ53を薄くして,上記接合材と上記封止材の熱膨張差に起因する応力を緩和し易くすると共に,拘束部63によって反りを防止している。   When the metal separator 53 is thick, the rigidity of the metal separator 53 is increased, and it is difficult to relieve stress caused by the difference in thermal expansion between the fuel cell body 44 and the metal separator 53. As a result, the fuel The battery cell main body 44 may break. On the other hand, if the metal separator 53 is thin, the rigidity is lowered, so that it is easy to relieve stress due to the difference in thermal expansion and the occurrence of cracking of the fuel cell main body 44 is suppressed. The metal separator 53 is likely to warp due to the difference in thermal expansion between the bonding material and the sealing material constituting the sealing portion 62 during cooling. Here, the metal separator 53 is thinned to easily relieve stress caused by the difference in thermal expansion between the bonding material and the sealing material, and warpage is prevented by the restraining portion 63.

ここでは,接合部61(ロウ材)と同様に,封止部62を金属製セパレータ53と燃料電池セル本体44の間に配置している。このため,封止部62に印加される応力は,せん断応力であり,封止部62が割れ難くなる。   Here, the sealing portion 62 is disposed between the metallic separator 53 and the fuel cell main body 44 in the same manner as the joining portion 61 (the brazing material). For this reason, the stress applied to the sealing part 62 is a shear stress, and the sealing part 62 is difficult to break.

封止部62の厚みは,その配置箇所からして,接合部61(ロウ材)と同等になる。
拘束部63は薄いと拘束効果が小さいので,封止部62と同等以上の厚さがあるのが好ましい。
The thickness of the sealing portion 62 is equivalent to that of the joint portion 61 (the brazing material) from the arrangement location.
Since the restraining effect is small when the restraining part 63 is thin, it is preferable that the restraining part 63 has a thickness equal to or greater than that of the sealing part 62.

封止部62には,ガラスを含む封止材,具体的には,ガラス,ガラスセラミックス(結晶化ガラス),ガラスとセラミックスの複合物を利用できる。一例として,SCHOTT社製ガラス:G018−311が使用できる。   For the sealing portion 62, a sealing material containing glass, specifically, glass, glass ceramics (crystallized glass), or a composite of glass and ceramics can be used. As an example, glass manufactured by SCHOTT: G018-311 can be used.

封止部62が開口部58の全周にわたって配置されていることから,拘束部63を開口部58の全周にわたって配置することで,開口部58の全周にわたって,金属製セパレータ53の変形を抑制できる。   Since the sealing portion 62 is disposed over the entire circumference of the opening 58, the metal separator 53 can be deformed over the entire circumference of the opening 58 by arranging the restraining portion 63 over the entire circumference of the opening 58. Can be suppressed.

金属製セパレータ53の熱膨張係数よりも,拘束部63を構成する材料の熱膨張係数の方が小さくても良い。
金属製セパレータ53,拘束部63はそれぞれ,金属,ガラスから構成され,金属製セパレータ53よりも拘束部63の熱膨張係数の方が小さいことが通例である。このような条件でも,拘束部63による金属製セパレータ53の変形の抑制が可能である。
The thermal expansion coefficient of the material constituting the restraining portion 63 may be smaller than the thermal expansion coefficient of the metallic separator 53.
Each of the metallic separator 53 and the restraining portion 63 is made of metal and glass, and the thermal expansion coefficient of the restraining portion 63 is usually smaller than that of the metallic separator 53. Even under such conditions, the deformation of the metal separator 53 by the restraining portion 63 can be suppressed.

なお,後述のように,封止材の熱膨張係数が,常温から300℃の温度範囲内において,8ppm/K以上,12ppm/K以下であることが好ましい。   As will be described later, the thermal expansion coefficient of the sealing material is preferably 8 ppm / K or more and 12 ppm / K or less in a temperature range from room temperature to 300 ° C.

以下,上述したセパレータ付燃料電池セル50(金属製セパレータ53が接合された燃料電池セル本体44)の製造方法につき説明する。図5A〜図5Eは,製造中のセパレータ付燃料電池セル50を表す断面図である。   Hereinafter, a manufacturing method of the above-described separator-attached fuel cell 50 (the fuel cell main body 44 to which the metal separator 53 is joined) will be described. 5A to 5E are cross-sectional views showing the separator-equipped fuel cell 50 being manufactured.

まずは例えば,SUH21(18Cr−3Al(Al含有フェライト系ステンレス鋼の一種))からなる板材を打ち抜いて,開口部58を有する金属製セパレータ53を製造した。   First, for example, a plate material made of SUH21 (18Cr-3Al (a kind of Al-containing ferritic stainless steel)) was punched to manufacture a metal separator 53 having an opening 58.

また,燃料極57のグリーンシートの一方の表面に,固体電解質層56のシートを貼り付けて,積層体を形成し,該積層体を一旦焼成した。その後,空気極55の材料を印刷し,焼成して燃料電池セル本体44を作成した。   In addition, a sheet of the solid electrolyte layer 56 was attached to one surface of the green sheet of the fuel electrode 57 to form a laminate, and the laminate was fired once. Thereafter, the material of the air electrode 55 was printed and fired to prepare the fuel cell main body 44.

燃料電池セル本体44と金属製セパレータ53それぞれにロウ材611,612を配置する(図5A参照)。例えば,ペースト状のAgを含むロウ材を所定形状に燃料電池セル本体44の固体電解質層56の上面と金属製セパレータ53の下面に印刷することで,燃料電池セル本体44と金属製セパレータ53それぞれにロウ材611,612を配置した。
なお,ロウ材611,612の配置の手法としては,上記以外に,ディスペンサ等を用いて行ってもよい。
ロウ材611,612は,例えば,2〜6mmの幅,10〜80μmの厚さを有する。
The brazing materials 611 and 612 are disposed on the fuel cell main body 44 and the metal separator 53, respectively (see FIG. 5A). For example, a brazing material containing paste-like Ag is printed in a predetermined shape on the upper surface of the solid electrolyte layer 56 of the fuel cell body 44 and the lower surface of the metal separator 53, so that the fuel cell body 44 and the metal separator 53 respectively. The brazing materials 611 and 612 are disposed on the surface.
In addition, as a method of arranging the brazing materials 611 and 612, a dispenser or the like may be used in addition to the above.
For example, the brazing materials 611 and 612 have a width of 2 to 6 mm and a thickness of 10 to 80 μm.

次いで,燃料電池セル本体44の固体電解質層56の上面に封止材621を配置する(図5B参照)。例えば,封止材としてガラスを含むペーストを印刷することで,燃料電池セル本体44の固体電解質層56の上面に封止材621を配置できる。
封止材621は,例えば,0.2〜4mmの幅,10〜80μmの厚さを有する。
Next, the sealing material 621 is disposed on the upper surface of the solid electrolyte layer 56 of the fuel cell main body 44 (see FIG. 5B). For example, the sealing material 621 can be disposed on the upper surface of the solid electrolyte layer 56 of the fuel cell main body 44 by printing a paste containing glass as the sealing material.
The sealing material 621 has, for example, a width of 0.2 to 4 mm and a thickness of 10 to 80 μm.

なお,封止材621の配置の手法としては,上記以外に,ディスペンサを用いて行ってもよい。
封止材621は,固体電解質層56の上面ではなく,金属製セパレータ53の下面に印刷してもよい。また,封止材621は,固体電解質層56の上面,金属製セパレータ53の下面の双方に配置しても良い。
In addition, as a method of arranging the sealing material 621, a dispenser may be used in addition to the above.
The sealing material 621 may be printed not on the upper surface of the solid electrolyte layer 56 but on the lower surface of the metallic separator 53. Further, the sealing material 621 may be disposed on both the upper surface of the solid electrolyte layer 56 and the lower surface of the metallic separator 53.

ロウ材611,612及び封止材621を溶融し,燃料電池セル本体44と金属製セパレータ53とを接合する(接合部61の形成)と同時に,封止部62を形成する(図5C参照)。ロウ材611,612が配置された燃料電池セル本体44と金属製セパレータ53とを接触させ,例えば,850〜1100℃で加熱することで,ロウ材611,612が溶融し,燃料電池セル本体44と金属製セパレータ53とが接合される。このとき封止材621も同時に溶融し,燃料電池セル本体44と金属製セパレータ53とが封止される。   The brazing materials 611 and 612 and the sealing material 621 are melted, and the fuel cell body 44 and the metal separator 53 are joined (formation of the joining portion 61), and at the same time, the sealing portion 62 is formed (see FIG. 5C). . The fuel cell body 44 on which the brazing materials 611 and 612 are disposed and the metal separator 53 are brought into contact with each other and heated at, for example, 850 to 1100 ° C., so that the brazing materials 611 and 612 are melted and the fuel cell body 44 And the metal separator 53 are joined. At this time, the sealing material 621 is also melted at the same time, and the fuel cell main body 44 and the metal separator 53 are sealed.

金属製セパレータ53の上に封止材621と同じ組成からなる拘束材631を配置する(図5D参照)。例えば,金属製セパレータ53の上面に封止材としてガラスを含むペーストを印刷することで,所定の位置に拘束材631を配置することができる。拘束材631の配置の手法としては,上記以外に,ディスペンサを用いて行ってもよい。
拘束材631は,例えば,0.2〜4mmの幅,10〜200μmの厚さを有し,かつ封止材621よりも厚い。
A constraining material 631 having the same composition as that of the sealing material 621 is disposed on the metal separator 53 (see FIG. 5D). For example, the restraint material 631 can be arranged at a predetermined position by printing a paste containing glass as a sealing material on the upper surface of the metal separator 53. As a method of arranging the restraining material 631, other than the above, a dispenser may be used.
The restraining material 631 has, for example, a width of 0.2 to 4 mm, a thickness of 10 to 200 μm, and is thicker than the sealing material 621.

封止材621および拘束材631を溶融し,拘束部63を形成する(図5E参照)。接合部61で接合され,かつ封止部62で封止され,さらに拘束材631が配置された燃料電池セル本体44と金属製セパレータ53を,例えば,850〜1100℃で加熱することで,拘束材631が溶融し,拘束部63が形成される。   The sealing material 621 and the restraining material 631 are melted to form the restraining portion 63 (see FIG. 5E). The fuel cell body 44 and the metal separator 53, which are joined by the joining portion 61 and sealed by the sealing portion 62 and further provided with the restraining material 631, are restrained by heating at 850 to 1100 ° C., for example. The material 631 is melted, and the restraining portion 63 is formed.

以上の工程を経て,本実施例のセパレータ付燃料電池セル50(金属製セパレータ53が接合された燃料電池セル本体44)を作成した。   Through the above steps, the separator-equipped fuel cell 50 (the fuel cell main body 44 to which the metal separator 53 was joined) of this example was produced.

(固体酸化物形燃料電池(燃料電池スタック)10の製造方法)
例えば,SUH21からなる板材を所定の形状に打ち抜き,空気極フレーム51,燃料極フレーム54を製造した。一方,エンドプレート11,12,インターコネクタ41,45は,例えば,日立金属製ZMG232材からなる板材を所定の形状に打ち抜いて製造できる。絶縁フレーム52は,例えば,マイカよりなる板材を加工して製造できる。
(Method for producing solid oxide fuel cell (fuel cell stack) 10)
For example, the air electrode frame 51 and the fuel electrode frame 54 are manufactured by punching a plate material made of SUH 21 into a predetermined shape. On the other hand, the end plates 11 and 12 and the interconnectors 41 and 45 can be manufactured, for example, by punching a plate made of ZMG232 made of Hitachi Metals into a predetermined shape. The insulating frame 52 can be manufactured by processing a plate material made of mica, for example.

上述した製造方法で作成したセパレータ付燃料電池セル50の燃料電池セル本体44の空気極55側には,金属製セパレータ53上に,絶縁フレーム52と空気極フレーム51とインターコネクタ41の順で,燃料極57側には,燃料極フレーム54とインターコネクタ45の順で,それぞれを配置し,燃料電池セル40を製造できる。   On the air electrode 55 side of the fuel cell main body 44 of the fuel cell 50 with a separator produced by the manufacturing method described above, the insulating frame 52, the air electrode frame 51, and the interconnector 41 are arranged on the metal separator 53 in this order. The fuel cell 40 can be manufactured by arranging the fuel electrode frame 54 and the interconnector 45 in this order on the fuel electrode 57 side.

複数の燃料電池セル40を積層し,最上層と最下層にはエンドプレート11,12が配置し,ボルト21〜23とナット35によって,エンドプレート11,12で複数の燃料電池セル40を挟んで固定し,燃料電池スタック10を作成した。   A plurality of fuel cells 40 are stacked, end plates 11 and 12 are arranged on the uppermost layer and the lowermost layer, and the plurality of fuel cells 40 are sandwiched between the end plates 11 and 12 by bolts 21 to 23 and nuts 35. The fuel cell stack 10 was prepared by fixing.

(第2の実施形態)
第2の実施形態を説明する。図5は,第2の実施形態に係る燃料電池セル40aの断面図である。図6は,第2の実施形態に係る燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50a)を分解した状態を表す分解斜視図である。
(Second Embodiment)
A second embodiment will be described. FIG. 5 is a cross-sectional view of the fuel battery cell 40a according to the second embodiment. FIG. 6 is an exploded perspective view showing a state in which the fuel cell main body 44 and the metal separator 53 (the separator-equipped fuel cell 50a) according to the second embodiment are disassembled.

燃料電池セル40aは,開口部58の側面に配置され,封止部62aの構成材料(封止材)と同じ材料で構成される連結部64を有する。即ち,封止部62aと拘束部63aが連結部64により連結され,一体に形成されている。   The fuel cell 40a includes a connecting portion 64 that is disposed on the side surface of the opening 58 and is made of the same material as the constituent material (sealing material) of the sealing portion 62a. That is, the sealing portion 62a and the restraining portion 63a are connected by the connecting portion 64 and are integrally formed.

封止部62aと拘束部63aとが一体となることで,金属製セパレータ53の変形(撓み)のさらなる抑制が可能となる。既述のように,拘束部63aは,封止部62aと同じ材料(熱膨張係数も同じ)で構成され,封止部62aと共に,金属製セパレータ53を挟むことで,固体酸化物形燃料電池10の稼働時での金属製セパレータ53の変形が抑制される。開口部58に沿って,金属製セパレータ53の上下に加え,開口部58の側面にも,封止部62aの構成材料(封止材)と同じ材料(熱膨張係数も実質的に同じ)が配置されることで,金属製セパレータ53の変形がより効果的に阻止される。   Since the sealing portion 62a and the restraining portion 63a are integrated, it is possible to further suppress deformation (deflection) of the metallic separator 53. As described above, the restraining portion 63a is made of the same material (same thermal expansion coefficient) as the sealing portion 62a, and sandwiches the metal separator 53 together with the sealing portion 62a, so that the solid oxide fuel cell is interposed. The deformation of the metallic separator 53 during the operation of 10 is suppressed. In addition to the upper and lower sides of the metal separator 53 along the opening 58, the side material of the opening 58 is also made of the same material (thermal expansion coefficient is substantially the same) as the constituent material (sealing material) of the sealing portion 62a. By being arranged, deformation of the metal separator 53 is more effectively prevented.

また,封止部62aと拘束部63aとの一体化は,封止部62aの幅,いわゆるシールパスの実質的増大に寄与し,封止部62aによる封止性が向上する。既述のように,封止部62aは,酸化剤ガス流路47から接合部61への酸化剤ガスの移動を阻止するので封止部62aと拘束部63aとが一体化することで,酸化剤ガス流路47から接合部61に至る経路上での,封止部62aの長さ(シールパス)が長くなる。この結果,封止部62aによる封止性がより向上する。   Further, the integration of the sealing portion 62a and the restraining portion 63a contributes to a substantial increase in the width of the sealing portion 62a, so-called seal path, and the sealing performance by the sealing portion 62a is improved. As described above, the sealing portion 62a prevents the oxidant gas from moving from the oxidant gas flow path 47 to the joint portion 61. Therefore, the sealing portion 62a and the restraining portion 63a are integrated to oxidize the sealing portion 62a. The length (seal path) of the sealing portion 62a on the path from the agent gas flow path 47 to the joint portion 61 becomes longer. As a result, the sealing performance by the sealing portion 62a is further improved.

本実施例にセパレータ付燃料電池セル50a(金属製セパレータ53が接合された燃料電池セル本体44)は以下の製造方法で作成した。図8A〜図8Eは,製造中のセパレータ付燃料電池セル50aを表す断面図である。   The fuel cell 50a with a separator (the fuel cell main body 44 to which the metal separator 53 is bonded) was prepared in the present example by the following manufacturing method. 8A to 8E are cross-sectional views showing the separator-equipped fuel cell 50a during manufacture.

接合部61,封止部62,拘束部63を形成する工程以外は,同じ工程にて行ったので,説明は諸略し,ここでは,接合部61,封止部62,拘束部63を形成する工程について説明する。   Since the steps other than the step of forming the bonding portion 61, the sealing portion 62, and the restraining portion 63 were performed in the same step, the description is omitted. Here, the bonding portion 61, the sealing portion 62, and the restraining portion 63 are formed. The process will be described.

燃料電池セル本体44と金属製セパレータ53それぞれにロウ材611,612を配置する(図8A参照)。例えば,ペースト状のAgを含むロウ材を所定形状に燃料電池セル本体44の固体電解質層56の上面と金属製セパレータ53の下面に印刷することで,燃料電池セル本体44と金属製セパレータ53それぞれにロウ材611,612を配置した。
なお,ロウ材611,612の配置の手法としては,上記以外に,ディスペンサ等を用いて行ってもよい。
ロウ材611,612は,例えば,2〜6mmの幅,10〜80μmの厚さを有する。
The brazing materials 611 and 612 are disposed on the fuel cell main body 44 and the metal separator 53, respectively (see FIG. 8A). For example, a brazing material containing paste-like Ag is printed in a predetermined shape on the upper surface of the solid electrolyte layer 56 of the fuel cell body 44 and the lower surface of the metal separator 53, so that the fuel cell body 44 and the metal separator 53 respectively. The brazing materials 611 and 612 are disposed on the surface.
In addition, as a method of arranging the brazing materials 611 and 612, a dispenser or the like may be used in addition to the above.
For example, the brazing materials 611 and 612 have a width of 2 to 6 mm and a thickness of 10 to 80 μm.

ロウ材611,612を溶融し,燃料電池セル本体44と金属製セパレータ53とを接合する(接合部61の形成,図8B参照)。ロウ材611,612が配置された燃料電池セル本体44と金属製セパレータ53とを接触させ,例えば,850〜1100℃で加熱することで,ロウ材611,612が溶融し,燃料電池セル本体44と金属製セパレータ53とが接合される。   The brazing materials 611 and 612 are melted, and the fuel cell main body 44 and the metal separator 53 are joined (formation of the joining portion 61, see FIG. 8B). The fuel cell body 44 on which the brazing materials 611 and 612 are disposed and the metal separator 53 are brought into contact with each other and heated at, for example, 850 to 1100 ° C., so that the brazing materials 611 and 612 are melted and the fuel cell body 44 And the metal separator 53 are joined.

燃料電池セル本体44から金属製セパレータ53の上に封止材621と同じ組成からなる拘束材631を配置する(図8C参照)。例えば,封止材としてガラスを含むペーストをディスペンサ塗布することで,燃料電池セル本体44から金属製セパレータ53にかけて拘束材631を配置できる。なお,拘束材631の配置の手法としては,上記以外に,印刷で行ってもよい。
拘束材631は,例えば,0.2〜4mmの幅,10〜200μmの厚さを有する。
A restraint material 631 having the same composition as that of the sealing material 621 is disposed on the metal separator 53 from the fuel cell main body 44 (see FIG. 8C). For example, the constraining material 631 can be disposed from the fuel cell body 44 to the metal separator 53 by applying a paste containing glass as a sealing material. In addition to the above, the arrangement of the restraining material 631 may be performed by printing.
The restraining material 631 has, for example, a width of 0.2 to 4 mm and a thickness of 10 to 200 μm.

燃料電池セル本体44と金属製セパレータ53との間の間隙に,封止材621を配置する(図8D参照)。例えば,真空脱泡によって,燃料電池セル本体44と金属製セパレータ53との間の気泡を抜くことで,封止材621を配置できる。   A sealing material 621 is disposed in the gap between the fuel cell main body 44 and the metal separator 53 (see FIG. 8D). For example, the sealing material 621 can be disposed by removing bubbles between the fuel cell main body 44 and the metal separator 53 by vacuum defoaming.

真空脱泡するには,例えば,燃料電池セル本体44と金属製セパレータ53を容器内に収容し,真空ポンプ等で空気を抜き,容器内を真空状態とする。このようにすると,燃料電池セル本体44と金属製セパレータ53の間隙内の気泡(空気)が封止材621を通って,容器内に排出される(真空脱泡)。この結果,燃料電池セル本体44と金属製セパレータ53の間隙内が封止材621で満たされる(封止材621の配置)。
なお,このときの気泡の排出には,封止材621の粘度がある程度低いことが好ましい。例えば,封止材621の温度を室温よりも上げて,粘度を低下させることが考えられる。
For vacuum defoaming, for example, the fuel battery cell main body 44 and the metal separator 53 are accommodated in a container, air is evacuated by a vacuum pump or the like, and the container is evacuated. In this way, bubbles (air) in the gap between the fuel cell main body 44 and the metal separator 53 pass through the sealing material 621 and are discharged into the container (vacuum defoaming). As a result, the gap between the fuel cell main body 44 and the metal separator 53 is filled with the sealing material 621 (arrangement of the sealing material 621).
Note that the viscosity of the sealing material 621 is preferably low to some extent for discharging bubbles at this time. For example, it is conceivable that the temperature of the sealing material 621 is raised from room temperature to lower the viscosity.

封止材621および拘束材631を溶融し,封止部62と拘束部63を形成する(図8E参照)。接合部61で接合され,かつ封止材621および拘束材631が配置された燃料電池セル本体44と金属製セパレータ53を,例えば,850〜1100℃で加熱することで,封止材621および拘束材631が溶融し,封止部62と拘束部63が形成される。   The sealing material 621 and the restraining material 631 are melted to form the sealing portion 62 and the restraining portion 63 (see FIG. 8E). The fuel cell main body 44 and the metal separator 53 that are joined at the joint 61 and on which the sealing material 621 and the restraining material 631 are arranged are heated at, for example, 850 to 1100 ° C. The material 631 is melted to form the sealing portion 62 and the restraining portion 63.

以上の工程を経て,本実施例のセパレータ付燃料電池セル50a(金属製セパレータ53が接合された燃料電池セル本体44)を作成した。   Through the above steps, the separator-equipped fuel cell 50a (the fuel cell main body 44 to which the metal separator 53 was joined) of this example was produced.

(第2の実施形態の変形例)
第2の実施形態の変形例を説明する。図9は,第2の実施形態の変形例に係る燃料電池セル40bの断面図である。図10は,第2の実施形態の変形例に係る燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50b)を分解した状態を表す分解斜視図である。
(Modification of the second embodiment)
A modification of the second embodiment will be described. FIG. 9 is a cross-sectional view of a fuel cell 40b according to a modification of the second embodiment. FIG. 10 is an exploded perspective view showing a state in which the fuel cell main body 44 and the metal separator 53 (separator-equipped fuel cell 50b) according to a modification of the second embodiment are disassembled.

燃料電池セル40bでは,接合部61と封止部62bの間に間隙(空間)を有する。このように,接合部61と封止部62bとが接触していなくても,金属製セパレータ53の変形の抑制は可能である。   In the fuel battery cell 40b, a gap (space) is provided between the joint portion 61 and the sealing portion 62b. Thus, even if the joining part 61 and the sealing part 62b are not in contact, the deformation of the metallic separator 53 can be suppressed.

燃料電池セル40a,40bでは,接合部61と封止部62a,62bが開口部58の全周に亘って,接触している,または間隙を有する。その中間の態様として,開口部58の周の一部で接合部61と封止部62a,62bとが接触し,開口部58の周の一部で接合部61と封止部62bとが接触しないことも考えられる。
また,燃料電池セル40のように,連結部64を有しない状態において,接合部61と封止部62の間に間隙(空間)を有しても良い。
In the fuel cells 40a and 40b, the joint portion 61 and the sealing portions 62a and 62b are in contact with each other over the entire circumference of the opening 58 or have a gap. As an intermediate aspect thereof, the joining portion 61 and the sealing portions 62a and 62b are in contact with each other at a part of the circumference of the opening 58, and the joining portion 61 and the sealing portion 62b are in contact with each other at a part of the circumference of the opening 58 It is also possible not to.
Further, a gap (space) may be provided between the joining portion 61 and the sealing portion 62 in a state where the connecting portion 64 is not provided as in the fuel battery cell 40.

(固体酸化物形燃料電池10の耐久試験)
以下,固体酸化物形燃料電池10の耐久試験につき説明する。ここでは,第2の実施形態に対応する形状の固体酸化物形燃料電池10を作成,試験した。
(Durability test of solid oxide fuel cell 10)
Hereinafter, the durability test of the solid oxide fuel cell 10 will be described. Here, a solid oxide fuel cell 10 having a shape corresponding to the second embodiment was created and tested.

〈試料〉
作成した試料(固体酸化物形燃料電池10)を説明する。境界部長さLを変化させて,次の試料を作成した。境界部長さLは,封止材621の酸化剤ガス雰囲気界面と燃料ガス雰囲気界面間の直線距離である。
<sample>
The prepared sample (solid oxide fuel cell 10) will be described. The following sample was prepared by changing the boundary length L. The boundary length L is a linear distance between the oxidant gas atmosphere interface and the fuel gas atmosphere interface of the sealing material 621.

・金属製セパレータ53
金属製セパレータ53の構成材料:フェライト系SUS(SUH21)
・接合部61
接合部61の構成材料(ロウ材):Agロウ
接合部61の厚さ:10〜80μm
接合部61の幅:4mm
接合部61の形成方法: ロウ材を含むペーストを印刷し,大気中で溶融
・封止部62,拘束部63,連結部64
封止部62,拘束部63,連結部64の構成材料: 熱膨張係数10ppm/Kのガラス
Metal separator 53
Component material of metal separator 53: Ferritic SUS (SUH21)
Junction 61
Constituent material of the joint portion 61 (brazing material): Ag braze Thickness of the joint portion 61: 10 to 80 μm
The width of the junction 61: 4 mm
Forming method of the joining part 61: The paste containing the brazing material is printed, and the melting / sealing part 62, the restraining part 63, the connecting part 64 in the atmosphere.
Constituent material of the sealing portion 62, the restraining portion 63, and the connecting portion 64: Glass having a thermal expansion coefficient of 10 ppm / K

〈試験方法〉
燃料ガスとして水素,酸化剤ガスとして大気を用い,金属製セパレータ53が750℃の状態で,500時間,固体酸化物形燃料電池10として,動作させた。
<Test method>
The solid oxide fuel cell 10 was operated for 500 hours with hydrogen as the fuel gas and air as the oxidant gas and the metal separator 53 at 750 ° C.

試験後の試料での接合部61の空孔率を測定した。試料を分解し,接合部61の断面を観察することで,空孔率を測定した。具体的には,光学顕微鏡で断面写真を撮影し,空孔部(黒色)と健全部(白色部)の面積比を算出し,空孔率とした。孔が無いものが空孔率0%となる。   The porosity of the joint 61 in the sample after the test was measured. The porosity was measured by disassembling the sample and observing the cross section of the joint 61. Specifically, a cross-sectional photograph was taken with an optical microscope, and the area ratio between the hole portion (black) and the healthy portion (white portion) was calculated to obtain the porosity. Those having no holes have a porosity of 0%.

図11に,境界長さLと空孔率Rの関係を表す。境界長さLを100μm以上とすることで,空孔率Rを著しく低減できることが判る。このことは,封止部62と拘束部63の連結すること(連結部64)が,封止部62による封止の確実性を向上し,接合部61での空孔の発生防止に有効であることを示す。   FIG. 11 shows the relationship between the boundary length L and the porosity R. It can be seen that the porosity R can be significantly reduced by setting the boundary length L to 100 μm or more. This is because the connection between the sealing portion 62 and the restraining portion 63 (the connecting portion 64) improves the reliability of sealing by the sealing portion 62 and is effective in preventing the generation of holes in the joint portion 61. Indicates that there is.

ここで,熱膨張係数の多少の相違は許容される。常温から300℃の温度範囲内において,8ppm/K以上12ppm/K以下程度の封止材を利用可能である。   Here, some differences in the coefficient of thermal expansion are allowed. A sealing material of about 8 ppm / K or more and 12 ppm / K or less can be used in a temperature range from room temperature to 300 ° C.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
上記実施形態では,アノード支持タイプの燃料電池セルに適用するために,固体電解質層56の上面(空気極55側)に金属製セパレータ53が接合されている。これに対して,例えば,固体電解質支持タイプやカソード支持タイプなどでは,固体電解質層56の下面(燃料極57側)に金属製セパレータ53を接合しても良い。この場合,燃料極57は,固体電解質層56より小さく形成され,かつ開口部58内に配置され,酸化性ガスに晒されないようにされる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.
In the above embodiment, the metal separator 53 is joined to the upper surface (the air electrode 55 side) of the solid electrolyte layer 56 in order to be applied to an anode-supported fuel cell. On the other hand, for example, in the solid electrolyte support type and the cathode support type, the metal separator 53 may be bonded to the lower surface (the fuel electrode 57 side) of the solid electrolyte layer 56. In this case, the fuel electrode 57 is formed smaller than the solid electrolyte layer 56 and is disposed in the opening 58 so as not to be exposed to the oxidizing gas.

10 固体酸化物形燃料電池
10 燃料電池スタック
11,12 エンドプレート
21-23 ボルト
31,32 貫通孔
35 ナット
40 燃料電池セル
41,45 インターコネクタ
42 集電体
43 枠部
44 燃料電池セル本体
45 インターコネクタ
46 開口
47 酸化剤ガス流路
48 燃料ガス流路
50 セパレータ付燃料電池セル
51 空気極フレーム
52 絶縁フレーム
53 金属製セパレータ
54 燃料極フレーム
55 空気極
56 固体電解質層
57 燃料極
58 開口部
61 接合部
611,612 ロウ材
62 封止部
621 封止材
63 拘束部
631 拘束材
64 連結部
DESCRIPTION OF SYMBOLS 10 Solid oxide fuel cell 10 Fuel cell stack 11, 12 End plate 21-23 Bolt 31, 32 Through hole 35 Nut 40 Fuel cell 41, 45 Interconnector 42 Current collector 43 Frame part 44 Fuel cell main body 45 Inter Connector 46 Opening 47 Oxidant gas flow path 48 Fuel gas flow path 50 Fuel cell with separator 51 Air electrode frame 52 Insulating frame 53 Metal separator 54 Fuel electrode frame 55 Air electrode 56 Solid electrolyte layer 57 Fuel electrode 58 Opening 61 Joining Portions 611 and 612 Brazing material 62 Sealing portion 621 Sealing material 63 Restraining portion 631 Restraining material 64 Connecting portion

Claims (7)

固体電解質層を空気極および燃料極で挟んで構成される燃料電池セル本体と,
表面と裏面とに開口する開口部を有し,Agを含む接合材で構成される接合部を介して,該裏面側が前記燃料電池セル本体に取り付けられる,板状の金属製セパレータと,
を具備する,セパレータ付燃料電池セルであって,
前記接合部よりも前記開口部側でかつ前記金属製セパレータの裏面と前記セル本体との間に前記開口部の全周にわたって配置され,ガラスを含む封止材を含む封止部と,
前記金属製セパレータを挟んで,前記封止部と対向する位置における,前記金属製セパレータの表面上に配置され,前記封止材と同じ材料で構成される拘束部と,
を備えることを特徴とするセパレータ付燃料電池セル。
A fuel cell body configured by sandwiching a solid electrolyte layer between an air electrode and a fuel electrode;
A plate-shaped metal separator having openings on the front surface and the back surface, the back surface side being attached to the fuel cell body through a joint portion made of a joining material containing Ag;
A fuel cell with a separator, comprising:
A sealing part that is disposed over the entire periphery of the opening part on the opening part side of the joining part and between the back surface of the metallic separator and the cell body, and includes a sealing material including glass;
A constraining portion that is disposed on the surface of the metallic separator at a position facing the sealing portion across the metallic separator, and is made of the same material as the sealing material;
A fuel cell with a separator, comprising:
前記拘束部が,前記開口部の全周にわたって配置される,
ことを特徴とする請求項1記載のセパレータ付燃料電池セル。
The restraining portion is disposed over the entire circumference of the opening;
The separator-equipped fuel cell according to claim 1.
前記金属製セパレータの開口部側面に配置された連結部によって,前記封止部と前記拘束部とが一体に形成されている,
ことを特徴とする請求項1または2に記載のセパレータ付燃料電池セル。
The sealing portion and the restraining portion are integrally formed by a connecting portion disposed on the side surface of the opening of the metal separator.
The separator-equipped fuel cell according to claim 1 or 2.
金属製セパレータの熱膨張係数よりも,拘束部を構成する材料の熱膨張係数の方が小さい,
ことを特徴とする請求項1乃至3のいずれか1項に記載のセパレータ付燃料電池セル。
The thermal expansion coefficient of the material constituting the restraint is smaller than the thermal expansion coefficient of the metal separator.
The separator-equipped fuel cell according to any one of claims 1 to 3.
前記封止部と前記接合部との間に,間隙を有する,
ことを特徴とする請求項1乃至4のいずれか1項に記載のセパレータ付燃料電池セル本体。
Having a gap between the sealing portion and the joint portion;
The fuel cell body with a separator according to any one of claims 1 to 4, wherein the fuel cell body with a separator is provided.
前記封止材の熱膨張係数が,常温から300℃の温度範囲内において,8ppm/K以上12ppm/K以下である,
ことを特徴とする請求項1乃至5のいずれか1項に記載のセパレータ付燃料電池セル本体。
The thermal expansion coefficient of the sealing material is 8 ppm / K or more and 12 ppm / K or less in a temperature range from room temperature to 300 ° C.,
The fuel cell body with a separator according to any one of claims 1 to 5, wherein
請求項1乃至6のいずれか1項に記載のセパレータ付燃料電池セル本体,
を具備することを特徴とする燃料電池。
A fuel cell body with a separator according to any one of claims 1 to 6,
A fuel cell comprising:
JP2012192303A 2012-08-31 2012-08-31 Fuel cell with separator and fuel cell Active JP5727428B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012192303A JP5727428B2 (en) 2012-08-31 2012-08-31 Fuel cell with separator and fuel cell
PCT/JP2013/072743 WO2014034608A1 (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack
CA2883115A CA2883115C (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack
US14/423,610 US10122023B2 (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack
DK13832876.0T DK2892098T3 (en) 2012-08-31 2013-08-26 FUEL CELL WITH SEPARATOR, METHOD OF PRODUCING SAME, AND FUEL CELL STACK
EP13832876.0A EP2892098B1 (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack
CN201380045620.0A CN104604005B (en) 2012-08-31 2013-08-26 Cell of fuel cell with dividing plate and its manufacture method and fuel cell pack
KR1020157005065A KR101669376B1 (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012192303A JP5727428B2 (en) 2012-08-31 2012-08-31 Fuel cell with separator and fuel cell

Publications (2)

Publication Number Publication Date
JP2014049321A JP2014049321A (en) 2014-03-17
JP5727428B2 true JP5727428B2 (en) 2015-06-03

Family

ID=50608787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012192303A Active JP5727428B2 (en) 2012-08-31 2012-08-31 Fuel cell with separator and fuel cell

Country Status (1)

Country Link
JP (1) JP5727428B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478377B2 (en) * 2014-08-05 2019-03-06 藤森工業株式会社 Storage tray
JP6415371B2 (en) * 2015-03-27 2018-10-31 東邦瓦斯株式会社 Solid oxide fuel cell
JP6442364B2 (en) 2015-06-10 2018-12-19 日本特殊陶業株式会社 Electrochemical reaction unit and fuel cell stack
JP7126924B2 (en) * 2018-10-30 2022-08-29 株式会社豊田中央研究所 Brazing fixing method, structure manufacturing method, and fixing structure
JP7194070B2 (en) * 2019-04-19 2022-12-21 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP6827090B1 (en) * 2019-10-11 2021-02-10 日本碍子株式会社 Fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466960B2 (en) * 1999-05-20 2003-11-17 東京瓦斯株式会社 Flat cell with holding thin frame and fuel cell using the same
JP4027836B2 (en) * 2003-04-16 2007-12-26 東京瓦斯株式会社 Method for producing solid oxide fuel cell
JP5242952B2 (en) * 2007-06-27 2013-07-24 日本特殊陶業株式会社 Solid electrolyte fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014049321A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
KR101669376B1 (en) Fuel cell with separator, method for manufacturing same, and fuel cell stack
JP6595581B2 (en) Electrochemical reaction unit and fuel cell stack
JP5727428B2 (en) Fuel cell with separator and fuel cell
KR101870055B1 (en) Separator-fitted single fuel cell, and fuel cell stack
JP2006202727A (en) Solid electrolyte fuel cell
JP6147606B2 (en) Solid oxide fuel cell stack
WO2016152924A1 (en) Electrochemical reaction unit and fuel cell stack
JP6199697B2 (en) Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof
JP6283330B2 (en) Electrochemical reaction unit and fuel cell stack
JP2006236989A (en) Unit battery cell for fuel battery
JP6169429B2 (en) Fuel cell with separator and fuel cell stack
JP6389133B2 (en) Fuel cell stack
JP5727431B2 (en) Fuel cell with separator and fuel cell
JP4420139B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP2016062655A (en) Separator-fitted single fuel cell
JP2015032557A (en) Solid oxide fuel cell stack and interconnector with separator
JP5727432B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
JP2015088288A (en) Fuel cell stack
JP7147631B2 (en) Solid oxide fuel cell stack and manufacturing method thereof
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP2017152282A (en) Fuel cell power generation unit and fuel cell stack
JP2021044178A (en) Electrochemical reaction cell stack
JP2016039004A (en) Fuel battery
JP5727430B2 (en) Fuel cell with separator and fuel cell
JP6734707B2 (en) Current collecting member-electrochemical reaction single cell composite and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150402

R150 Certificate of patent or registration of utility model

Ref document number: 5727428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250