WO2018173134A1 - Electrochemical cell stack - Google Patents

Electrochemical cell stack Download PDF

Info

Publication number
WO2018173134A1
WO2018173134A1 PCT/JP2017/011369 JP2017011369W WO2018173134A1 WO 2018173134 A1 WO2018173134 A1 WO 2018173134A1 JP 2017011369 W JP2017011369 W JP 2017011369W WO 2018173134 A1 WO2018173134 A1 WO 2018173134A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrochemical cell
electrode gas
sealing
holes
Prior art date
Application number
PCT/JP2017/011369
Other languages
French (fr)
Japanese (ja)
Inventor
啓輔 中澤
理子 犬塚
吉野 正人
憲和 長田
隆利 浅田
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2017/011369 priority Critical patent/WO2018173134A1/en
Priority to JP2019506594A priority patent/JP6818870B2/en
Publication of WO2018173134A1 publication Critical patent/WO2018173134A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Embodiments of the present invention relate to an electrochemical cell stack.
  • the electrochemical cell is a laminate of a hydrogen electrode, an electrolyte, and an oxygen electrode, and can be used as a fuel cell or an electrolytic cell.
  • the fuel cell obtains electric energy by reacting a hydrogen electrode gas (for example, hydrogen) and an oxygen electrode gas (for example, oxygen).
  • the electrolysis cell electrolyzes water (water vapor) to obtain hydrogen.
  • solid oxide electrochemical cells solid oxide fuel cells (SOFC), solid oxide electrolytic cells (SOEC)
  • SOFC solid oxide fuel cells
  • SOEC solid oxide electrolytic cells
  • a plurality of electrochemical cells are often stacked to form an electrochemical cell stack.
  • it is necessary to improve the gas sealing property of the electrochemical cell stack and it is preferable that the gas in the stack does not flow out or the hydrogen electrode gas and the oxygen electrode gas are not mixed inside the stack.
  • the problem to be solved by the present invention is to provide an electrochemical cell stack with improved sealing performance.
  • the electrochemical cell stack includes a separator, an electrochemical cell, first and second sealing plates, and a cover plate.
  • the separator includes a main surface, a concave portion disposed on the main surface, first and second through holes sandwiching the concave portion, and first and second holes disposed around the first and second through holes.
  • the electrochemical cell is disposed in the recess and has a hydrogen electrode, an electrolyte layer, and an oxygen electrode.
  • the first and second sealing plates are disposed in the first and second counterbore holes.
  • the cover plate covers the outer periphery of the first and second sealing plates.
  • FIG. 1 is a cross-sectional view showing a cross section of a flat electrochemical cell stack according to the first embodiment.
  • 2A and 2B are exploded cross-sectional views showing the cross-section of this flat electrochemical cell stack.
  • FIG. 1A shows a state in which the flat electrochemical cell stack is cut along a line segment connecting hydrogen electrode gas flow paths 21 and 22 described later.
  • FIG. 1A shows an oxygen electrode gas flow path 31 described later.
  • 32 represents a state where the flat electrochemical cell stack is cut.
  • 2A and 2B are exploded cross-sectional views corresponding to (a) and (b) of FIG. 1, respectively.
  • the flat plate electrochemical cell stack includes cells 11 (11a and 11b), end plates 12 (12a and 12b), separators 13 (13a to 13c), sealing plates 14 (14a to 14d), and a sheet-like sealing material 15 (15a). To 15c).
  • a sheet-shaped sealing material 15a, a separator 13a, a sheet-shaped sealing material 15b, a separator 13b, a sheet-shaped sealing material 15c, a separator 13c, and an insulating material 16 are arranged in this order.
  • the end plates 12a and 12b, the separators 13a to 13c, and the insulating material 16 have bolt holes B and are fastened up and down with fasteners (bolts and nuts).
  • the end plates 12a, 12b and the like may be tightened without using the bolt holes B and bolts.
  • the end plates 12a and 12b, the separators 13a to 13c, and the insulating material 16 can be fastened and fixed by a press mechanism.
  • two cells 11a and 11b are stacked using three separators 13a to 13c.
  • a large number (for example, several tens) of cells 11 can be stacked by using a large number of separators 13. That is, a plurality (multiple) of combinations of the sheet-like sealing material 15b, the cell 11a, and the separator 13b can be stacked.
  • the end plate 12a, the sealing plates 14a to 14d, and the separators 13a to 13c have through holes serving as the hydrogen electrode gas flow paths 21 and 22 and the oxygen electrode gas flow paths 31 and 32, respectively.
  • the cell 11 (11a, 11b) is installed in the recess 131 of the separator 13 (13b, 13c) as described later.
  • a current collector (not shown) may be disposed between them.
  • the cell 11 is, for example, a hydrogen electrode-supported flat plate electrochemical cell in which a hydrogen electrode, an electrolyte layer, and an oxygen electrode are sequentially laminated on a porous support. Note that the order of the hydrogen electrode and the oxygen electrode may be interchanged. In this case, the cell 11 is an oxygen electrode supported flat plate electrochemical cell. Further, the gas flowing through the hydrogen electrode gas channels 21 to 25 and the oxygen electrode gas channels 31 to 35 is switched.
  • the hydrogen electrode and the oxygen electrode are porous electrical conductors, and the electrolyte layer is an ionic conductor that does not conduct electricity.
  • the hydrogen electrode can generally be composed of a mixed sintered body (cermet) of metal and solid oxide (for example, Ni—YSZ (yttria stabilized zirconia), Ni—ScSZ (scandia stabilized zirconia)).
  • the oxygen electrode can be composed of a perovskite oxide or an oxide (for example, a LaSrMn oxide, a LaSrCo oxide, a LaSrCoFe oxide, or a LaSrFe oxide) in which a partial site thereof is substituted.
  • the oxygen electrode may be composed of a mixture with a solid oxide used in the electrolyte layer (for example, LSM-YSZ, LSM-ScSZ, LSC-SDC, LSC-GDC).
  • the electrolyte layer can be composed of a solid oxide having oxygen ion conductivity at the operating temperature (600 to 1000 ° C.) of the cell 11 (for example, a dense stabilized zirconia, perovskite oxide, or ceria-based solid solution molded body).
  • hydrogen electrode gas G1 (H 2 ) and oxygen electrode gas G2 (O 2 ) are supplied to the hydrogen electrode and the oxygen electrode, respectively.
  • the oxygen electrode gas G2 (O 2 ) takes in electrons (e ⁇ ) to become oxygen ions, and the oxygen ions move to the electrolyte layer.
  • the hydrogen electrode gas G1 (H 2 ) reacts with oxygen ions that have moved through the electrolyte layer to generate H 2 O and electrons (e ⁇ ). In this way, the cell 11 generates power.
  • the separators 13 (13a to 13c) are arranged above and below the cells 11 (11a and 11b), and electrically connect them, and spatially partition each cell 11.
  • the constituent material of the separator 13 is preferably conductive at the operating temperature (600 to 1000 ° C.) of the cell 11 and has a thermal expansion coefficient close to that of the cell 11.
  • the separators 13a to 13b are different from each other in relation to the end plates 12a and 12b. That is, the separator 13 is divided into separators 13a and 13c on the side of the end plates 12a and 12b, and a separator 13b between the end plates 12a and 12b.
  • FIGS. 4A and 4B show the state of the separator 13b viewed from below.
  • 3A and 4A show the state of only the separator 13b
  • FIGS. 3B and 4B show the state where the cell 11 (11a) and the sealing plates 14 (14a to 14d) are attached to the separator 13b.
  • the cell 11 (11a), the sealing plates 14 (14a to 14d), and the sheet-like sealing material 15 (15b, 15c) are attached to the separator 13b.
  • the separator 13 b has the hydrogen electrode gas flow paths 21 and 22, the oxygen electrode gas flow paths 31 and 32, four through holes, and an arbitrary number (here, 12) of bolt holes B. .
  • the four through holes are arranged symmetrically on the separator 13b in the vertical and horizontal directions, but other arrangements are possible.
  • the separator 13b includes a recess 131, countersink holes 132 to 135, hydrogen electrode gas flow paths 23 to 25, oxygen electrode gas flow paths. 33-35.
  • the recess 131 is formed on the upper surface (main surface) of the separator 13b and accommodates the cell 11 (11a).
  • the hydrogen electrode gas G1 is supplied to the lower surface of the cell 11a by the hydrogen electrode gas passage 24 formed in the recess 131.
  • the oxygen electrode gas G2 is supplied to the upper surface of the cell 11 (11b) by the oxygen electrode gas flow path 34 formed on the lower surface (second main surface) of the separator 13 (13b).
  • the countersink holes 132 to 135 are arranged two on the upper surface and the lower surface of the separator 13b.
  • Countersink holes 132 and 133 (first and second countersink holes) on the upper surface side are around the through holes of the hydrogen electrode gas flow paths 21 and 22, and countersunk holes 134 and 135 on the lower surface side are oxygen electrodes. It arrange
  • the hydrogen electrode gas flow paths 23 to 25 are formed on the upper surface of the separator 13b, and connect between the hydrogen electrode gas flow paths 21, 22.
  • the oxygen electrode gas flow paths 33 to 35 are formed on the lower surface of the separator 13b and connect between the oxygen electrode gas flow paths 31 and 32.
  • the hydrogen electrode gas flow path 23 is formed between the counterbore hole 132 and the hydrogen electrode gas flow path 21 (through hole). That is, a part of the hydrogen electrode gas flow channel 21 expands to become the hydrogen electrode gas flow channel 23.
  • the hydrogen electrode gas flow path 25 is formed between the counterbore hole 133 and the hydrogen electrode gas flow path 22 (through hole). That is, a part of the hydrogen electrode gas flow path 22 expands to become the hydrogen electrode gas flow path 25.
  • the hydrogen electrode gas flow path 24 is formed on the recess 131 and is, for example, a plurality of grooves connecting the hydrogen electrode gas flow paths 23 and 25.
  • the hydrogen electrode gas flow path 24 faces the lower surface of the cell 11 (11a) and supplies the hydrogen electrode gas G1 to the cell 11.
  • the oxygen electrode gas flow path 33 is formed between the counterbore hole 134 and the oxygen electrode gas flow path 31 (through hole). That is, a part of the oxygen electrode gas flow channel 31 is expanded to form the oxygen electrode gas flow channel 33.
  • the oxygen electrode gas flow path 35 is formed between the counterbore hole 135 and the oxygen electrode gas flow path 32 (through hole). That is, a part of the oxygen electrode gas flow channel 32 expands to become the oxygen electrode gas flow channel 35.
  • the oxygen electrode gas flow path 34 is formed on the lower surface of the separator 13b and is, for example, a plurality of grooves that connect the oxygen electrode gas flow paths 33 and 35.
  • the oxygen electrode gas flow path 34 faces the upper surface of the cell 11 (11b), and supplies the oxygen electrode gas G2 to the cell 11.
  • the shapes of the oxygen electrode gas flow paths 31 to 35 are substantially the same as those of the hydrogen electrode gas flow paths 21 to 25, but the shapes may be different.
  • the hydrogen electrode gas G1 passes from the hydrogen electrode gas channel 21 through the hydrogen electrode gas channels 23 to 25 in order, and exits from the hydrogen electrode gas channel 22.
  • the hydrogen electrode gas channel 23 branches the hydrogen electrode gas G ⁇ b> 1 from above into the lower and hydrogen electrode gas channels 24.
  • the hydrogen electrode gas flow path 25 joins the hydrogen electrode gas G1 from the lower side and the hydrogen electrode gas flow path 24 and flows it upward.
  • the oxygen electrode gas G2 passes from the oxygen electrode gas channel 31 through the oxygen electrode gas channels 33 to 35 in order, and exits from the oxygen electrode gas channel 32.
  • the oxygen electrode gas flow path 33 branches the oxygen electrode gas G ⁇ b> 2 from above into the lower and oxygen electrode gas flow paths 34.
  • the oxygen electrode gas channel 35 joins the oxygen electrode gas G2 from the lower side and the oxygen electrode gas channel 34 and flows it upward.
  • the sealing plates 14a to 14d are disposed in the counterbore holes 132 to 135, respectively, and seal the hydrogen electrode gas flow paths 23, 25 and the oxygen electrode gas flow paths 33, 35.
  • the sealing plates 14a to 14d have openings corresponding to the hydrogen electrode gas flow paths 21 and 22, and the oxygen electrode gas flow paths 33 and 35, respectively.
  • the sealing plate 14 is made of a thin plate (a metal plate having a thickness of about 0.1 to 1.0 mm, for example, a stainless steel plate having a thickness of 0.3 mm).
  • the sealing plates 14a and 14b are disposed on the upper surface side of the separator 13b, and the upper surface is preferably substantially the same height as the upper surfaces of the separator 13b and the cell 11a. .
  • the sealing plates 14c and 14d are disposed on the lower surface side of the separator 13b, and the lower surface is preferably substantially the same height as the lower surface of the separator 13b.
  • substantially the same height means, for example, that the step between the sealing plate 14 and the upper surface (or lower surface) of the separator 13 is 0.1 mm or less (more preferably 0.05 mm or less).
  • the sealing plate 14 may be joined to the separator 13b by welding or the like.
  • the sheet-like sealing materials 15a to 15c are respectively disposed between the end plate 12a and the separator 13a, between the separators 13a and 13b, and between the separators 13b and 13c, and have a function of gas sealing and insulation therebetween.
  • the sheet-like sealing material 15 is preferably made of a material (for example, mica or vermiculite) having gas leakage properties and electrical insulation properties at the operating temperature (600 to 1000 ° C.) of the cell 11.
  • the sheet-like sealing materials 15a to 15c cover plates have openings 151 to 155.
  • the opening 151 corresponds to the electrode area of the cells 11a and 11b (the region where the cell 11 is electrically connected to the separator 13), and the openings 152 to 155 are the openings (hydrogen electrode gas flow channel 21 of the sealing plates 14a to 14d). , 22 and the oxygen electrode gas flow path 33, 35).
  • the sheet-like sealing material 15b covers the outer periphery of each of the cell 11a and the sealing plates 14a and 14b and exposes the centers thereof from the openings 151 to 153.
  • the sheet-like sealing material 15b covers the boundaries (gap) between the sealing plates 14a and 14b and the separator 13b, between the sealing plates 14a and 14b and the cell 11a, and between the separator 13b and the cell 11a.
  • the sheet-like sealing material 15b covers the outer periphery of each of the sealing plates 14c and 14d (third and fourth sealing plates) disposed on the lower surface side of the separator 13a.
  • the separator 13a is disposed above the sheet-like sealing material 15b. In addition, you may arrange
  • the sheet-shaped sealing material 15c covers the outer periphery of the sealing plates 14c and 14d and the oxygen electrode gas flow path 34, and exposes the centers thereof from the openings 151, 154, and 155.
  • the sheet-like sealing material 15c covers the boundary between the sealing plates 14c and 14d and the separator 13b.
  • the sealing plate 14 Since the sealing plate 14 is thin, even if the bolt is tightened, almost no pressure is applied to a portion that is not in contact with the separator 13. For this reason, even if only this part is sealed with the sheet-like sealing material 15, gas leaks may occur. Since the sheet-like sealing material 15b covers the outer periphery of each of the cells 11a and the sealing plates 14a and 14b, pressure is uniformly applied to the sheet-like sealing material 15b and eventually the sealing plate 14, and gas leakage can be prevented.
  • FIG. 5A and 5B show a state in which the separator 13a is viewed from above.
  • FIG. 5A shows the state of only the separator 13a
  • FIG. 5B shows the state where the sheet-like sealing material 15a is attached to the separator 13a.
  • the separator 13a has four through holes and bolt holes B, which are hydrogen electrode gas flow paths 21 and 22, oxygen electrode gas flow paths 31 and 32 (third and fourth through holes). Further, counter holes 134 and 135 (third and fourth counter holes), oxygen electrode gas flow paths 33 to 35, and sealing plates 14 (14c and 14d: first) are formed on the lower surface (second main surface). 3, 4th sealing board) is arrange
  • the sheet-like sealing material 15b covers the outer periphery of each of the sealing plates 14c and 14d (third and fourth sealing plates) and exposes the centers thereof from the openings 154 and 155.
  • the sheet-like sealing material 15b covers the boundary between the sealing plates 14c and 14d and the separator 13a.
  • the upper surface (third main surface) of the separator 13a does not have the countersink holes 132, 133, the hydrogen electrode gas flow paths 23 to 25, and the sealing plate 14.
  • the separator 13c has the bolt hole B because the cell 11 is not disposed thereunder, but the hydrogen electrode gas flow paths 21, 22 and the oxygen electrode gas flow paths 31, 32 are unnecessary. Further, countersink holes 132 and 134, hydrogen electrode gas flow paths 23 to 25, and sealing plate 14 are arranged on the upper surface. On the other hand, the counterbore holes 134 and 135, the oxygen electrode gas flow paths 33 to 35, and the sealing plate 14 are not disposed on the lower surface.
  • Sheet-like sealing materials 15a and 15c are disposed between the end plate 12a and the separator 13a and between the end plate 12b and the separator 13c, respectively.
  • the lower surface of the end plate 12a sandwiching the sheet-like sealing materials 15a and 15c, the upper surface of the separator 13a, the lower surface of the separator 13c, and the upper surface of the end plate 12b have a hydrogen electrode gas channel 24, an oxygen electrode gas channel 34, and the like. It is flat.
  • the sheet-like sealing material 15a (second cover plate) has substantially the same shape as the lower sheet-like sealing materials 15b and 15c, and is arranged at substantially the same position.
  • the sheet-like sealing material 15a does not contact the sealing plate 14 and does not directly prevent gas leakage.
  • the sheet-like sealing materials 15a to 15c are uniformly pressurized, and gas leakage can be suppressed.
  • the sheet-like sealing materials 15a to 15c are substantially the same shape and substantially the same position means that, for example, the horizontal overlay accuracy of the sheet-like sealing material 15b and the sealing-like sealing materials 15a to 15c in FIG.
  • the following (more preferably, 1 mm or less) shall be said.
  • the sheet-like sealing material 15 is disposed between the upper and lower separators 13 to cover the boundary between the sealing plate 14, the cell 11, and the separator 13, thereby improving the gas sealing property. Furthermore, by making the plurality of sheet-like sealing materials 15 have substantially the same shape and are arranged at substantially the same position, the uniformity of the surface pressure and, consequently, the gas sealing property is further improved.
  • FIG. 6 is a cross-sectional view illustrating a cross section of a flat cell stack according to the second embodiment.
  • 6A shows a state in which the flat cell stack is cut by a line segment connecting the hydrogen electrode gas flow paths 21 and 22, and
  • FIG. 6B shows a line segment connecting the oxygen electrode gas flow paths 31 and 32. Represents a state in which the flat cell stack is cut.
  • thin plates 17a and 17b are disposed between the sheet-like sealing materials 15b and 15c and the separators 13b and 13c.
  • the thickness of the thin plate 17 (plate-like member) is preferably about 0.05 mm to 0.3 mm.
  • the thin plate 17 covers the separators 13b and 13c except for the electrode areas of the cells 11a and 11b, the hydrogen electrode gas channels 21 and 22, the oxygen electrode gas channels 31 and 32, and the bolt hole B. That is, the thin plate 17 has openings 171 corresponding to the electrode areas of the cells 11a and 11b, hydrogen electrode gas flow paths 21 and 22, oxygen electrode gas flow paths 31 and 32, and openings corresponding to the bolt holes B. Since the thin plates 17a and 17b cover the gaps between the cells 11a and 11b and the sealing plates 14a and 14b, gas leakage can be further suppressed.
  • a liquid sealing material for example, a pasty sealing material
  • the liquid sealing material may be applied not only to the sheet-like sealing material 15 but also to the thin plate 17 and the separator 13.
  • glassy materials or materials that crystallize at a high temperature can be used as the liquid sealing material. These liquid sealing materials exhibit sealing properties by heat treatment at a high temperature after application.
  • the sealing performance can be improved.

Abstract

An electrochemical cell stack according to one embodiment of the present invention is provided with a separator, an electrochemical cell, a first and second sealing plate, and a cover plate. The separator has, on a main surface, a recessed section disposed on the main surface, first and second through holes sandwiching the recessed section, and first and second counterbored holes disposed around the first and second through holes. The electrochemical cell is disposed in the recessed section, and has a hydrogen electrode, an electrolyte layer, and an oxygen electrode. The first and second sealing plates are disposed in the first and second counterbored holes. The cover plate covers the outer periphery of the first and second sealing plates.

Description

電気化学セルスタックElectrochemical cell stack
 本発明の実施形態は、電気化学セルスタックに関する。 Embodiments of the present invention relate to an electrochemical cell stack.
 電気化学セルは、水素極、電解質、酸素極の積層体であり、燃料電池あるいは電解セルとして利用できる。燃料電池は、水素極ガス(例えば、水素)と酸素極ガス(例えば、酸素)を反応させて、電気エネルギーを得る。電解セルは、水(水蒸気)を電気分解して、水素を得る。
 電気化学セルの中でも、効率などの観点から、電解質に固体酸化物を用いる固体酸化物形電気化学セル(固体酸化物形燃料電池(SOFC)、固体酸化物形電解セル(SOEC))が注目されている。
The electrochemical cell is a laminate of a hydrogen electrode, an electrolyte, and an oxygen electrode, and can be used as a fuel cell or an electrolytic cell. The fuel cell obtains electric energy by reacting a hydrogen electrode gas (for example, hydrogen) and an oxygen electrode gas (for example, oxygen). The electrolysis cell electrolyzes water (water vapor) to obtain hydrogen.
Among electrochemical cells, solid oxide electrochemical cells (solid oxide fuel cells (SOFC), solid oxide electrolytic cells (SOEC)) that use solid oxides as electrolytes are attracting attention from the viewpoint of efficiency. ing.
 出力を向上させるため、複数の電気化学セルを積層して電気化学セルスタックとすることが多い。
 このとき、電気化学セルスタックのガスシール性を高めることが必要で、スタック内のガスが外部に流出したり、水素極ガスと酸素極ガスがスタック内部で混合したりしないことが好ましい。
In order to improve output, a plurality of electrochemical cells are often stacked to form an electrochemical cell stack.
At this time, it is necessary to improve the gas sealing property of the electrochemical cell stack, and it is preferable that the gas in the stack does not flow out or the hydrogen electrode gas and the oxygen electrode gas are not mixed inside the stack.
特許第5701697号公報Japanese Patent No. 5701497 特開2005-174658号公報JP 2005-174658 A 特開平6-325779号報告Report of JP-A-6-325779
 本発明が解決しようとする課題は、シール性の向上を図った電気化学セルスタックを提供することである。 The problem to be solved by the present invention is to provide an electrochemical cell stack with improved sealing performance.
 実施形態に係る電気化学セルスタックは、セパレータ、電気化学セル、第1、第2の封止板、カバー板と、を具備する。セパレータは、主面、前記主面上に配置される凹部、前記凹部を挟む第1、第2の貫通孔、前記第1、第2の貫通孔の周囲に配置される第1、第2の座繰り穴を有する。電気化学セルは、前記凹部に配置され、水素極、電解質層、および酸素極を有する。第1、第2の封止板は、前記第1、第2の座繰り穴に配置される。カバー板は、前記第1、第2の封止板の外周を覆う。 The electrochemical cell stack according to the embodiment includes a separator, an electrochemical cell, first and second sealing plates, and a cover plate. The separator includes a main surface, a concave portion disposed on the main surface, first and second through holes sandwiching the concave portion, and first and second holes disposed around the first and second through holes. Has counterbore holes. The electrochemical cell is disposed in the recess and has a hydrogen electrode, an electrolyte layer, and an oxygen electrode. The first and second sealing plates are disposed in the first and second counterbore holes. The cover plate covers the outer periphery of the first and second sealing plates.
第1の実施形態に係る平板型電気化学セルスタックの断面図である。It is sectional drawing of the flat type electrochemical cell stack which concerns on 1st Embodiment. 平板型電気化学セルスタックの分解断面図である。It is an exploded sectional view of a flat type electrochemical cell stack. 平板型電気化学セルスタックの分解断面図である。It is an exploded sectional view of a flat type electrochemical cell stack. セパレータ13bの上面図である。It is a top view of the separator 13b. セパレータ13bの上面図である。It is a top view of the separator 13b. セパレータ13bの上面図である。It is a top view of the separator 13b. セパレータ13bの下面図である。It is a bottom view of the separator 13b. セパレータ13bの下面図である。It is a bottom view of the separator 13b. セパレータ13aの上面図である。It is a top view of the separator 13a. セパレータ13aの上面図である。It is a top view of the separator 13a. 第2の実施形態に係る平板型電気化学セルスタックの断面図である。It is sectional drawing of the flat type electrochemical cell stack which concerns on 2nd Embodiment.
 以下、平板型電気化学セルスタックの実施形態について、図面を参照して説明する。
(第1の実施形態)
 図1は、第1の実施形態に係る平板型電気化学セルスタックの断面を表す断面図である。図2A,図2Bは、この平板型電気化学セルスタックの断面を分解して表す分解断面図である。
Hereinafter, an embodiment of a flat plate electrochemical cell stack will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view showing a cross section of a flat electrochemical cell stack according to the first embodiment. 2A and 2B are exploded cross-sectional views showing the cross-section of this flat electrochemical cell stack.
 図1の(a)は後述の水素極ガス流路21,22を結ぶ線分で平板型電気化学セルスタックを切断した状態を表し、図1の(a)は後述の酸素極ガス流路31,32を結ぶ線分で平板型電気化学セルスタックを切断した状態を表す。
 図2A、図2Bはそれぞれ、図1の(a)、(b)に対応する分解断面図である。
FIG. 1A shows a state in which the flat electrochemical cell stack is cut along a line segment connecting hydrogen electrode gas flow paths 21 and 22 described later. FIG. 1A shows an oxygen electrode gas flow path 31 described later. , 32 represents a state where the flat electrochemical cell stack is cut.
2A and 2B are exploded cross-sectional views corresponding to (a) and (b) of FIG. 1, respectively.
 平板型電気化学セルスタックは、セル11(11a,11b),エンドプレート12(12a,12b)、セパレータ13(13a~13c),封止板14(14a~14d),シート状シール材15(15a~15c)を有する。 The flat plate electrochemical cell stack includes cells 11 (11a and 11b), end plates 12 (12a and 12b), separators 13 (13a to 13c), sealing plates 14 (14a to 14d), and a sheet-like sealing material 15 (15a). To 15c).
 エンドプレート12a,12bの間に、シート状シール材15a,セパレータ13a,シート状シール材15b,セパレータ13b,シート状シール材15c,セパレータ13c,絶縁材16が順に配置されている。 Between the end plates 12a and 12b, a sheet-shaped sealing material 15a, a separator 13a, a sheet-shaped sealing material 15b, a separator 13b, a sheet-shaped sealing material 15c, a separator 13c, and an insulating material 16 are arranged in this order.
 エンドプレート12a,12b,セパレータ13a~13c,絶縁材16は、ボルト穴Bを有し、締結具(ボルト、ナット)で上下に締め付けられる。
 ここで、ボルト穴Bやボルトを使用せずに、エンドプレート12a、12b等を締め付けてもよい。例えば、プレス機構によって、エンドプレート12a,12b,セパレータ13a~13c、絶縁材16を上下に締め付け、固定できる。
The end plates 12a and 12b, the separators 13a to 13c, and the insulating material 16 have bolt holes B and are fastened up and down with fasteners (bolts and nuts).
Here, the end plates 12a, 12b and the like may be tightened without using the bolt holes B and bolts. For example, the end plates 12a and 12b, the separators 13a to 13c, and the insulating material 16 can be fastened and fixed by a press mechanism.
 ここでは、3つのセパレータ13a~13cを用いて、2つのセル11a,11bを積層している。実際には、多数のセパレータ13を用いて、多数(例えば、数十)のセル11を積層できる。すなわち、シート状シール材15b、セル11a,セパレータ13bの組み合わせを複数(多数)積層できる。 Here, two cells 11a and 11b are stacked using three separators 13a to 13c. Actually, a large number (for example, several tens) of cells 11 can be stacked by using a large number of separators 13. That is, a plurality (multiple) of combinations of the sheet-like sealing material 15b, the cell 11a, and the separator 13b can be stacked.
 エンドプレート12a、封止板14a~14d,セパレータ13a~13cは、水素極ガス流路21,22、酸素極ガス流路31,32たる貫通孔を有する。 The end plate 12a, the sealing plates 14a to 14d, and the separators 13a to 13c have through holes serving as the hydrogen electrode gas flow paths 21 and 22 and the oxygen electrode gas flow paths 31 and 32, respectively.
 セル11(11a,11b)は、後述のようにセパレータ13(13b,13c)の凹部131内に設置される。なお、セル11とセパレータ13の電気的導通をより確実にするため、これらの間に図示していない集電材を配置してもよい。 The cell 11 (11a, 11b) is installed in the recess 131 of the separator 13 (13b, 13c) as described later. In addition, in order to make electrical continuity between the cell 11 and the separator 13 more reliable, a current collector (not shown) may be disposed between them.
 セル11は、例えば、多孔質の支持体上に、水素極、電解質層、酸素極が順に積層された水素極支持型の平板状電気化学セルである。
 なお、水素極と酸素極の順序を入れ換えてもよい。この場合、セル11は酸素極支持型の平板状電気化学セルである。また、水素極ガス流路21~25、酸素極ガス流路31~35に流すガスが入れ替わる。
The cell 11 is, for example, a hydrogen electrode-supported flat plate electrochemical cell in which a hydrogen electrode, an electrolyte layer, and an oxygen electrode are sequentially laminated on a porous support.
Note that the order of the hydrogen electrode and the oxygen electrode may be interchanged. In this case, the cell 11 is an oxygen electrode supported flat plate electrochemical cell. Further, the gas flowing through the hydrogen electrode gas channels 21 to 25 and the oxygen electrode gas channels 31 to 35 is switched.
 水素極、酸素極は、多孔質の電気伝導体であり、電解質層は電気を通さないイオン伝導体である。
 水素極には、一般に金属と固体酸化物の混合焼結体(サーメット)(例えば、Ni-YSZ(イットリア安定化ジルコニア)、Ni-ScSZ(スカンジア安定化ジルコニア))から構成できる。
 酸素極は、一般にペロブスカイト型酸化物やこれらの一部サイトを置換した酸化物(例えば、LaSrMn酸化物、LaSrCo酸化物、LaSrCoFe酸化物、LaSrFe酸化物)から構成できる。酸素極は、電解質層に用いている固体酸化物との混合体(例えば、LSM-YSZ、LSM-ScSZ、LSC-SDC、LSC-GDC)から構成してもよい。
 電解質層は、セル11の動作温度(600~1000℃)において酸素イオン導電性を有する固体酸化物(例えば、緻密な安定化ジルコニアやペロブスカイト型酸化物、セリア系固溶体の成形体)から構成できる。
The hydrogen electrode and the oxygen electrode are porous electrical conductors, and the electrolyte layer is an ionic conductor that does not conduct electricity.
The hydrogen electrode can generally be composed of a mixed sintered body (cermet) of metal and solid oxide (for example, Ni—YSZ (yttria stabilized zirconia), Ni—ScSZ (scandia stabilized zirconia)).
In general, the oxygen electrode can be composed of a perovskite oxide or an oxide (for example, a LaSrMn oxide, a LaSrCo oxide, a LaSrCoFe oxide, or a LaSrFe oxide) in which a partial site thereof is substituted. The oxygen electrode may be composed of a mixture with a solid oxide used in the electrolyte layer (for example, LSM-YSZ, LSM-ScSZ, LSC-SDC, LSC-GDC).
The electrolyte layer can be composed of a solid oxide having oxygen ion conductivity at the operating temperature (600 to 1000 ° C.) of the cell 11 (for example, a dense stabilized zirconia, perovskite oxide, or ceria-based solid solution molded body).
 燃料電池の場合、水素極、酸素極それぞれに、水素極ガスG1(H)、酸素極ガスG2(O)が供給される。酸素極で、酸素極ガスG2(O)が電子(e)を取り込んで、酸素イオンとなり、酸素イオンは電解質層へと移動する。水素極で、水素極ガスG1(H)と、電解質層を移動してきた酸素イオンが反応し、HOと電子(e)が生成する。このようにして、セル11は発電する。 In the case of a fuel cell, hydrogen electrode gas G1 (H 2 ) and oxygen electrode gas G2 (O 2 ) are supplied to the hydrogen electrode and the oxygen electrode, respectively. At the oxygen electrode, the oxygen electrode gas G2 (O 2 ) takes in electrons (e ) to become oxygen ions, and the oxygen ions move to the electrolyte layer. At the hydrogen electrode, the hydrogen electrode gas G1 (H 2 ) reacts with oxygen ions that have moved through the electrolyte layer to generate H 2 O and electrons (e ). In this way, the cell 11 generates power.
 セパレータ13(13a~13c)は、セル11(11a,11b)の上下に配置され、これらを電気的に接続すると共に、各セル11を空間的に区分する。
 セパレータ13の構成材料は、セル11の動作温度(600~1000℃)で導電性があり、セル11と熱膨張係数が近いことが望ましい。
The separators 13 (13a to 13c) are arranged above and below the cells 11 (11a and 11b), and electrically connect them, and spatially partition each cell 11.
The constituent material of the separator 13 is preferably conductive at the operating temperature (600 to 1000 ° C.) of the cell 11 and has a thermal expansion coefficient close to that of the cell 11.
 セパレータ13a~13bは、エンドプレート12a、12bとの関係で、互いに形状が異なる。すなわち、セパレータ13は、エンドプレート12a、12b側のセパレータ13a、13c、エンドプレート12a、12bの中間のセパレータ13bに区分される。 The separators 13a to 13b are different from each other in relation to the end plates 12a and 12b. That is, the separator 13 is divided into separators 13a and 13c on the side of the end plates 12a and 12b, and a separator 13b between the end plates 12a and 12b.
 先にセパレータ13b(セパレータ)の詳細を説明する。
 図3A~図3Cは、セパレータ13bを上方から見た状態を表し、図4A、図4Bは、セパレータ13bを下方から見た状態を表す。
 図3A,図4Aは,セパレータ13bのみの状態を表し、図3B,図4Bは,セパレータ13bにセル11(11a)および封止板14(14a~14d)を取り付けた状態を表し、図3Cは,セパレータ13bにセル11(11a)、封止板14(14a~14d)、シート状シール材15(15b、15c)を取り付けた状態を表わす。
First, details of the separator 13b (separator) will be described.
3A to 3C show the state of the separator 13b viewed from above, and FIGS. 4A and 4B show the state of the separator 13b viewed from below.
3A and 4A show the state of only the separator 13b, and FIGS. 3B and 4B show the state where the cell 11 (11a) and the sealing plates 14 (14a to 14d) are attached to the separator 13b. The cell 11 (11a), the sealing plates 14 (14a to 14d), and the sheet-like sealing material 15 (15b, 15c) are attached to the separator 13b.
 既述のように、セパレータ13bは、水素極ガス流路21,22、酸素極ガス流路31,32である4つの貫通孔および任意の数(ここでは、12個)のボルト穴Bを有する。4つの貫通孔は、セパレータ13b上に上下左右対称に配置されているが、他の配置も可能である。 As described above, the separator 13 b has the hydrogen electrode gas flow paths 21 and 22, the oxygen electrode gas flow paths 31 and 32, four through holes, and an arbitrary number (here, 12) of bolt holes B. . The four through holes are arranged symmetrically on the separator 13b in the vertical and horizontal directions, but other arrangements are possible.
 セパレータ13bは、ボルト穴Bおよび4つの貫通孔(第1、第2の貫通孔)に加えて、凹部131,座繰り穴132~135、水素極ガス流路23~25,酸素極ガス流路33~35を有する。 In addition to the bolt hole B and the four through holes (first and second through holes), the separator 13b includes a recess 131, countersink holes 132 to 135, hydrogen electrode gas flow paths 23 to 25, oxygen electrode gas flow paths. 33-35.
 凹部131は、セパレータ13bの上面(主面)に形成され、セル11(11a)が収納される。後述のように、凹部131に形成される水素極ガス流路24によって、セル11aの下面に水素極ガスG1が供給される。また、セパレータ13(13b)の下面(第2の主面)に形成される酸素極ガス流路34によって、セル11(11b)の上面に酸素極ガスG2が供給される。 The recess 131 is formed on the upper surface (main surface) of the separator 13b and accommodates the cell 11 (11a). As will be described later, the hydrogen electrode gas G1 is supplied to the lower surface of the cell 11a by the hydrogen electrode gas passage 24 formed in the recess 131. Further, the oxygen electrode gas G2 is supplied to the upper surface of the cell 11 (11b) by the oxygen electrode gas flow path 34 formed on the lower surface (second main surface) of the separator 13 (13b).
 座繰り穴132~135は、セパレータ13bの上面、下面に2つずつ配置される。上面側の座繰り穴132、133(第1、第2の座繰り穴)は、水素極ガス流路21,22の貫通孔の周囲に、下面側の座繰り穴134、135は、酸素極ガス流路31,32の貫通孔の周囲に配置され、上下面と段差をなす。 The countersink holes 132 to 135 are arranged two on the upper surface and the lower surface of the separator 13b. Countersink holes 132 and 133 (first and second countersink holes) on the upper surface side are around the through holes of the hydrogen electrode gas flow paths 21 and 22, and countersunk holes 134 and 135 on the lower surface side are oxygen electrodes. It arrange | positions around the through-hole of the gas flow paths 31 and 32, and makes a level | step difference with an up-and-down surface.
 水素極ガス流路23~25は、セパレータ13bの上面に形成され、水素極ガス流路21,22間を接続する。一方、酸素極ガス流路33~35は、セパレータ13bの下面に形成され、酸素極ガス流路31,32間を接続する。 The hydrogen electrode gas flow paths 23 to 25 are formed on the upper surface of the separator 13b, and connect between the hydrogen electrode gas flow paths 21, 22. On the other hand, the oxygen electrode gas flow paths 33 to 35 are formed on the lower surface of the separator 13b and connect between the oxygen electrode gas flow paths 31 and 32.
 水素極ガス流路23は、座繰り穴132と水素極ガス流路21(貫通孔)の間に形成されている。すなわち、水素極ガス流路21の一部が広がって水素極ガス流路23となる。
 水素極ガス流路25は、座繰り穴133と水素極ガス流路22(貫通孔)の間に形成されている。すなわち、水素極ガス流路22の一部が広がって水素極ガス流路25となる。
The hydrogen electrode gas flow path 23 is formed between the counterbore hole 132 and the hydrogen electrode gas flow path 21 (through hole). That is, a part of the hydrogen electrode gas flow channel 21 expands to become the hydrogen electrode gas flow channel 23.
The hydrogen electrode gas flow path 25 is formed between the counterbore hole 133 and the hydrogen electrode gas flow path 22 (through hole). That is, a part of the hydrogen electrode gas flow path 22 expands to become the hydrogen electrode gas flow path 25.
 座繰り穴132、水素極ガス流路23によって、セパレータ13bの上面に2段の段差(2段の凹部)が形成される。また、座繰り穴133、水素極ガス流路25によって、セパレータ13bの上面に2段の段差(2段の凹部)が形成される。 By the counterbore hole 132 and the hydrogen electrode gas flow path 23, two steps (two steps) are formed on the upper surface of the separator 13b. Further, the countersink hole 133 and the hydrogen electrode gas flow path 25 form two steps (two steps of recesses) on the upper surface of the separator 13b.
 水素極ガス流路24は、凹部131上に形成され、水素極ガス流路23、25を接続する、例えば、複数の溝である。水素極ガス流路24は、セル11(11a)の下面と対向し、セル11に水素極ガスG1を供給する。 The hydrogen electrode gas flow path 24 is formed on the recess 131 and is, for example, a plurality of grooves connecting the hydrogen electrode gas flow paths 23 and 25. The hydrogen electrode gas flow path 24 faces the lower surface of the cell 11 (11a) and supplies the hydrogen electrode gas G1 to the cell 11.
 酸素極ガス流路33は、座繰り穴134と酸素極ガス流路31(貫通孔)の間に形成されている。すなわち、酸素極ガス流路31の一部が広がって酸素極ガス流路33となる。
 酸素極ガス流路35は、座繰り穴135と酸素極ガス流路32(貫通孔)の間に形成されている。すなわち、酸素極ガス流路32の一部が広がって酸素極ガス流路35となる。
The oxygen electrode gas flow path 33 is formed between the counterbore hole 134 and the oxygen electrode gas flow path 31 (through hole). That is, a part of the oxygen electrode gas flow channel 31 is expanded to form the oxygen electrode gas flow channel 33.
The oxygen electrode gas flow path 35 is formed between the counterbore hole 135 and the oxygen electrode gas flow path 32 (through hole). That is, a part of the oxygen electrode gas flow channel 32 expands to become the oxygen electrode gas flow channel 35.
 座繰り穴134、酸素極ガス流路33によって、セパレータ13bの下面に2段の段差(2段の凹部)が形成される。また、座繰り穴135、酸素極ガス流路35によって、セパレータ13bの下面に2段の段差(2段の凹部)が形成される。 By the counterbore 134 and the oxygen electrode gas flow path 33, two steps (two steps) are formed on the lower surface of the separator 13b. In addition, the countersink hole 135 and the oxygen electrode gas flow path 35 form two steps (two steps) on the lower surface of the separator 13b.
 酸素極ガス流路34は、セパレータ13bの下面上に形成され、酸素極ガス流路33、35を接続する、例えば、複数の溝である。酸素極ガス流路34は、セル11(11b)の上面と対向し、セル11に酸素極ガスG2を供給する。 The oxygen electrode gas flow path 34 is formed on the lower surface of the separator 13b and is, for example, a plurality of grooves that connect the oxygen electrode gas flow paths 33 and 35. The oxygen electrode gas flow path 34 faces the upper surface of the cell 11 (11b), and supplies the oxygen electrode gas G2 to the cell 11.
 ここでは、酸素極ガス流路31~35の形状は、水素極ガス流路21~25と略同一としているが、形状を異ならせてもよい。 Here, the shapes of the oxygen electrode gas flow paths 31 to 35 are substantially the same as those of the hydrogen electrode gas flow paths 21 to 25, but the shapes may be different.
 水素極ガスG1は、水素極ガス流路21から水素極ガス流路23~25を順に通り、水素極ガス流路22から出る。水素極ガス流路23は、上方からの水素極ガスG1を下方および水素極ガス流路24に分岐する。水素極ガス流路25は、下方および水素極ガス流路24からの水素極ガスG1を合流させ、上方に流す。 The hydrogen electrode gas G1 passes from the hydrogen electrode gas channel 21 through the hydrogen electrode gas channels 23 to 25 in order, and exits from the hydrogen electrode gas channel 22. The hydrogen electrode gas channel 23 branches the hydrogen electrode gas G <b> 1 from above into the lower and hydrogen electrode gas channels 24. The hydrogen electrode gas flow path 25 joins the hydrogen electrode gas G1 from the lower side and the hydrogen electrode gas flow path 24 and flows it upward.
 酸素極ガスG2は、酸素極ガス流路31から酸素極ガス流路33~35を順に通り、酸素極ガス流路32から出る。酸素極ガス流路33は、上方からの酸素極ガスG2を下方および酸素極ガス流路34に分岐する。酸素極ガス流路35は、下方および酸素極ガス流路34からの酸素極ガスG2を合流させ、上方に流す。 The oxygen electrode gas G2 passes from the oxygen electrode gas channel 31 through the oxygen electrode gas channels 33 to 35 in order, and exits from the oxygen electrode gas channel 32. The oxygen electrode gas flow path 33 branches the oxygen electrode gas G <b> 2 from above into the lower and oxygen electrode gas flow paths 34. The oxygen electrode gas channel 35 joins the oxygen electrode gas G2 from the lower side and the oxygen electrode gas channel 34 and flows it upward.
 封止板14a~14dはそれぞれ、座繰り穴132~135内に配置され、水素極ガス流路23,25,酸素極ガス流路33、35を封止する。封止板14a~14dはそれぞれ、水素極ガス流路21、22,酸素極ガス流路33、35に対応する開口を有する。
 封止板14は、薄板(0.1~1.0mm程度の金属板、例えば、0.3mm厚のステンレス鋼板)からなる。
The sealing plates 14a to 14d are disposed in the counterbore holes 132 to 135, respectively, and seal the hydrogen electrode gas flow paths 23, 25 and the oxygen electrode gas flow paths 33, 35. The sealing plates 14a to 14d have openings corresponding to the hydrogen electrode gas flow paths 21 and 22, and the oxygen electrode gas flow paths 33 and 35, respectively.
The sealing plate 14 is made of a thin plate (a metal plate having a thickness of about 0.1 to 1.0 mm, for example, a stainless steel plate having a thickness of 0.3 mm).
 封止板14a、14b(第1、第2の封止板)は、セパレータ13bの上面側に配置され、その上面は、セパレータ13bやセル11aの上面と略同一の高さであることが好ましい。封止板14c、14dは、セパレータ13bの下面側に配置され、その下面は、セパレータ13bの下面と略同一の高さであることが好ましい。
 なお、略同一高さとは、例えば、封止板14とセパレータ13上面(または下面)との段差が0.1mm以下(より好ましくは、0.05mm以下)であることをいうものとする。
 封止板14は、溶接等によって、セパレータ13bと接合してもよい。
The sealing plates 14a and 14b (first and second sealing plates) are disposed on the upper surface side of the separator 13b, and the upper surface is preferably substantially the same height as the upper surfaces of the separator 13b and the cell 11a. . The sealing plates 14c and 14d are disposed on the lower surface side of the separator 13b, and the lower surface is preferably substantially the same height as the lower surface of the separator 13b.
Note that “substantially the same height” means, for example, that the step between the sealing plate 14 and the upper surface (or lower surface) of the separator 13 is 0.1 mm or less (more preferably 0.05 mm or less).
The sealing plate 14 may be joined to the separator 13b by welding or the like.
 シート状シール材15a~15cはそれぞれ、エンドプレート12aとセパレータ13aの間、セパレータ13a、13bの間、セパレータ13b、13cの間に配置され、これらの間でのガスシールおよび絶縁の機能を有する。
 シート状シール材15は、セル11の動作温度(600~1000℃)において、ガスリーク性、電気的な絶縁性を有する材料(例えば、マイカまたはバーミキュライト)から構成することが好ましい。
The sheet-like sealing materials 15a to 15c are respectively disposed between the end plate 12a and the separator 13a, between the separators 13a and 13b, and between the separators 13b and 13c, and have a function of gas sealing and insulation therebetween.
The sheet-like sealing material 15 is preferably made of a material (for example, mica or vermiculite) having gas leakage properties and electrical insulation properties at the operating temperature (600 to 1000 ° C.) of the cell 11.
 シート状シール材15a~15c(カバー板)は、開口151~155を有する。開口151は、セル11a,11bの電極エリア(セル11がセパレータ13と電気的に導通する領域)に対応し、開口152~155は、封止板14a~14dの開口(水素極ガス流路21、22,酸素極ガス流路33、35)に対応する。 The sheet-like sealing materials 15a to 15c (cover plates) have openings 151 to 155. The opening 151 corresponds to the electrode area of the cells 11a and 11b (the region where the cell 11 is electrically connected to the separator 13), and the openings 152 to 155 are the openings (hydrogen electrode gas flow channel 21 of the sealing plates 14a to 14d). , 22 and the oxygen electrode gas flow path 33, 35).
 シート状シール材15bは、セル11a、封止板14a、14bそれぞれの外周を覆うと共に、これらの中央を開口151~153から露出させる。シート状シール材15bは、封止板14a、14bとセパレータ13b間、封止板14a,14bとセル11a間、およびセパレータ13bとセル11a間の境界(隙間)を覆う。
 なお、後述のように、シート状シール材15bは、セパレータ13aの下面側に配置される封止板14c、14d(第3、第4の封止板)それぞれの外周を覆う。
The sheet-like sealing material 15b covers the outer periphery of each of the cell 11a and the sealing plates 14a and 14b and exposes the centers thereof from the openings 151 to 153. The sheet-like sealing material 15b covers the boundaries (gap) between the sealing plates 14a and 14b and the separator 13b, between the sealing plates 14a and 14b and the cell 11a, and between the separator 13b and the cell 11a.
As will be described later, the sheet-like sealing material 15b covers the outer periphery of each of the sealing plates 14c and 14d (third and fourth sealing plates) disposed on the lower surface side of the separator 13a.
 シート状シール材15bの上方に、セパレータ13aが配置される。なお、セル11aの上面とセパレータ13aの間に図示していない集電材を配置してもよい。 The separator 13a is disposed above the sheet-like sealing material 15b. In addition, you may arrange | position the electrical power collector which is not illustrated between the upper surface of the cell 11a, and the separator 13a.
 シート状シール材15cは、封止板14c、14d、および酸素極ガス流路34の外周を覆うと共に、これらの中央を開口151、154,155から露出させる。シート状シール材15cは、封止板14c、14dとセパレータ13b間の境界を覆う。 The sheet-shaped sealing material 15c covers the outer periphery of the sealing plates 14c and 14d and the oxygen electrode gas flow path 34, and exposes the centers thereof from the openings 151, 154, and 155. The sheet-like sealing material 15c covers the boundary between the sealing plates 14c and 14d and the separator 13b.
 封止板14は薄いために、ボルトを締めても、セパレータ13と接していない箇所にはほとんど圧力がかからない。このため、この箇所のみをシート状シール材15でシールしてもガスリークの畏れがある。
 シート状シール材15bは、セル11a、封止板14a、14bそれぞれの外周を覆うことから、シート状シール材15b、ひいては封止板14に圧力が均一にかかり、ガスのリークを防止できる。
Since the sealing plate 14 is thin, even if the bolt is tightened, almost no pressure is applied to a portion that is not in contact with the separator 13. For this reason, even if only this part is sealed with the sheet-like sealing material 15, gas leaks may occur.
Since the sheet-like sealing material 15b covers the outer periphery of each of the cells 11a and the sealing plates 14a and 14b, pressure is uniformly applied to the sheet-like sealing material 15b and eventually the sealing plate 14, and gas leakage can be prevented.
 セパレータ13a(第2のセパレータ)の詳細を説明する。
 図5A、図5Bは、セパレータ13aを上方から見た状態を表す。
 図5Aは,セパレータ13aのみの状態を表し、図5Bは,セパレータ13aにシート状シール材15aを取り付けた状態を表わす。
Details of the separator 13a (second separator) will be described.
5A and 5B show a state in which the separator 13a is viewed from above.
FIG. 5A shows the state of only the separator 13a, and FIG. 5B shows the state where the sheet-like sealing material 15a is attached to the separator 13a.
 セパレータ13aは、水素極ガス流路21,22、酸素極ガス流路31,32(第3、第4の貫通孔)である4つの貫通孔およびボルト穴Bを有する。また、その下面(第2の主面)には座繰り穴134、135(第3、第4の座繰り穴)、酸素極ガス流路33~35、封止板14(14c、14d:第3、第4の封止板)が配置される。 The separator 13a has four through holes and bolt holes B, which are hydrogen electrode gas flow paths 21 and 22, oxygen electrode gas flow paths 31 and 32 (third and fourth through holes). Further, counter holes 134 and 135 (third and fourth counter holes), oxygen electrode gas flow paths 33 to 35, and sealing plates 14 (14c and 14d: first) are formed on the lower surface (second main surface). 3, 4th sealing board) is arrange | positioned.
 シート状シール材15b(カバー板)は、封止板14c、14d(第3、第4の封止板)それぞれの外周を覆うと共に、これらの中央を開口154,155から露出させる。シート状シール材15bは、封止板14c、14dとセパレータ13a間の境界を覆う。 The sheet-like sealing material 15b (cover plate) covers the outer periphery of each of the sealing plates 14c and 14d (third and fourth sealing plates) and exposes the centers thereof from the openings 154 and 155. The sheet-like sealing material 15b covers the boundary between the sealing plates 14c and 14d and the separator 13a.
 一方、セパレータ13aの上面(第3の主面)は、座繰り穴132、133、水素極ガス流路23~25、封止板14を有しない。 On the other hand, the upper surface (third main surface) of the separator 13a does not have the countersink holes 132, 133, the hydrogen electrode gas flow paths 23 to 25, and the sealing plate 14.
 セパレータ13cは、その下にセル11が配置されないことから、ボルト穴Bを有するものの、水素極ガス流路21,22、酸素極ガス流路31,32は不要となる。また、その上面には座繰り穴132、134、水素極ガス流路23~25、封止板14が配置される。一方、その下面には、座繰り穴134、135、酸素極ガス流路33~35、封止板14が配置されない。 The separator 13c has the bolt hole B because the cell 11 is not disposed thereunder, but the hydrogen electrode gas flow paths 21, 22 and the oxygen electrode gas flow paths 31, 32 are unnecessary. Further, countersink holes 132 and 134, hydrogen electrode gas flow paths 23 to 25, and sealing plate 14 are arranged on the upper surface. On the other hand, the counterbore holes 134 and 135, the oxygen electrode gas flow paths 33 to 35, and the sealing plate 14 are not disposed on the lower surface.
 エンドプレート12aとセパレータ13aの間およびエンドプレート12bとセパレータ13cの間それぞれに、シート状シール材15a、15cが配置される。シート状シール材15a、15cを挟むエンドプレート12aの下面、セパレータ13aの上面、およびセパレータ13cの下面、エンドプレート12bの上面は、水素極ガス流路24,酸素極ガス流路34などを有せず平坦である。 Sheet- like sealing materials 15a and 15c are disposed between the end plate 12a and the separator 13a and between the end plate 12b and the separator 13c, respectively. The lower surface of the end plate 12a sandwiching the sheet- like sealing materials 15a and 15c, the upper surface of the separator 13a, the lower surface of the separator 13c, and the upper surface of the end plate 12b have a hydrogen electrode gas channel 24, an oxygen electrode gas channel 34, and the like. It is flat.
 シート状シール材15a(第2のカバー板)は、下方のシート状シール材15b、15cと略同一形状を有し、略同一位置に配置される。シート状シール材15aは、封止板14と接触せず、ガスリークを直接的に防止することはない。しかし、シート状シール材15a~15cを略同一形状とし、略同一位置に配置することで、シート状シール材15a~15cに均一に圧力がかかるようになり、ガスのリークを抑えることができる。 The sheet-like sealing material 15a (second cover plate) has substantially the same shape as the lower sheet- like sealing materials 15b and 15c, and is arranged at substantially the same position. The sheet-like sealing material 15a does not contact the sealing plate 14 and does not directly prevent gas leakage. However, by setting the sheet-like sealing materials 15a to 15c to substantially the same shape and disposing them at substantially the same position, the sheet-like sealing materials 15a to 15c are uniformly pressurized, and gas leakage can be suppressed.
 なお、シート状シール材15a~15cが略同一形状および略同一位置であることは、例えば、図2におけるシート状シール材15bと、シール状シール材15a~15cの水平方向の重ね合わせ精度が2mm以下(より好ましくは、1mm以下)であることをいうものとする。 The fact that the sheet-like sealing materials 15a to 15c are substantially the same shape and substantially the same position means that, for example, the horizontal overlay accuracy of the sheet-like sealing material 15b and the sealing-like sealing materials 15a to 15c in FIG. The following (more preferably, 1 mm or less) shall be said.
 本実施形態では、上下のセパレータ13間にシート状シール材15を配置し、封止板14、セル11、セパレータ13の境界を覆うことで、ガスシール性が向上する。さらに、複数のシート状シール材15を略同一形状とし、略同一位置に配置することで、面圧の均一性、ひいてはガスシール性がより向上する。 In this embodiment, the sheet-like sealing material 15 is disposed between the upper and lower separators 13 to cover the boundary between the sealing plate 14, the cell 11, and the separator 13, thereby improving the gas sealing property. Furthermore, by making the plurality of sheet-like sealing materials 15 have substantially the same shape and are arranged at substantially the same position, the uniformity of the surface pressure and, consequently, the gas sealing property is further improved.
(第2の実施形態)
 以下、第2の実施形態に係る平板型セルスタックを説明する。
 図6は、第2の実施形態に係る平板型セルスタックの断面を表す断面図である。図6の(a)は水素極ガス流路21,22を結ぶ線分で平板型セルスタックを切断した状態を表し、図6の(b)は酸素極ガス流路31,32を結ぶ線分で平板型セルスタックを切断した状態を表す。
(Second Embodiment)
Hereinafter, a flat cell stack according to the second embodiment will be described.
FIG. 6 is a cross-sectional view illustrating a cross section of a flat cell stack according to the second embodiment. 6A shows a state in which the flat cell stack is cut by a line segment connecting the hydrogen electrode gas flow paths 21 and 22, and FIG. 6B shows a line segment connecting the oxygen electrode gas flow paths 31 and 32. Represents a state in which the flat cell stack is cut.
 第2の実施形態に係る平板型セルスタックでは、シート状シール材15b、15cとセパレータ13b、13cの間に、薄板17a,17bが配置される。
 薄板17(板状部材)の厚さは、好ましくは約0.05mm~0.3mmである。
 薄板17は、セル11a,11bの電極エリア、水素極ガス流路21,22、酸素極ガス流路31,32、ボルト穴Bを除いて、セパレータ13b、13cを覆う。すなわち、薄板17は、セル11a,11bの電極エリアに対応する開口171、水素極ガス流路21,22、酸素極ガス流路31,32、ボルト穴Bに対応する開口を有する。
 薄板17a,17bが、セル11a,11bと封止板14a、14bの隙間を覆うことで、ガスリークをより抑えることができる。
In the flat cell stack according to the second embodiment, thin plates 17a and 17b are disposed between the sheet- like sealing materials 15b and 15c and the separators 13b and 13c.
The thickness of the thin plate 17 (plate-like member) is preferably about 0.05 mm to 0.3 mm.
The thin plate 17 covers the separators 13b and 13c except for the electrode areas of the cells 11a and 11b, the hydrogen electrode gas channels 21 and 22, the oxygen electrode gas channels 31 and 32, and the bolt hole B. That is, the thin plate 17 has openings 171 corresponding to the electrode areas of the cells 11a and 11b, hydrogen electrode gas flow paths 21 and 22, oxygen electrode gas flow paths 31 and 32, and openings corresponding to the bolt holes B.
Since the thin plates 17a and 17b cover the gaps between the cells 11a and 11b and the sealing plates 14a and 14b, gas leakage can be further suppressed.
(第3の実施形態)
 以下、第3の実施形態に係る平板型セルスタックを説明する。
 第3の実施形態では、第1、第2の実施形態の平板型セルスタックにおいて、シート状シール材15に液状シール材(例えば、ペースト状のシール材)が塗布される。この結果、ガスシール性がより向上する。液状シール材は、シート状シール材15だけでなく、薄板17やセパレータ13に塗布してもよい。
 液状シール材には、ガラス性や高温で結晶化する材料を使用できる。これらの液状シール材は、塗布後に高温で熱処理することでシール性を発揮する。
(Third embodiment)
Hereinafter, a flat cell stack according to the third embodiment will be described.
In the third embodiment, a liquid sealing material (for example, a pasty sealing material) is applied to the sheet-shaped sealing material 15 in the flat plate cell stack of the first and second embodiments. As a result, the gas sealability is further improved. The liquid sealing material may be applied not only to the sheet-like sealing material 15 but also to the thin plate 17 and the separator 13.
As the liquid sealing material, glassy materials or materials that crystallize at a high temperature can be used. These liquid sealing materials exhibit sealing properties by heat treatment at a high temperature after application.
 以上説明した少なくともひとつの実施形態によれば、シール性を向上させることができる。 According to at least one embodiment described above, the sealing performance can be improved.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (9)

  1.    主面と、
       前記主面上に配置される凹部と、
       前記凹部を挟む第1、第2の貫通孔と、
       前記第1、第2の貫通孔の周囲に配置される第1、第2の座繰り穴と、
     を有するセパレータと、
     前記凹部に配置され、水素極、電解層、および酸素極を有する電気化学セルと、
     前記第1、第2の座繰り穴に配置される第1、第2の封止板と、
     前記第1、第2の封止板の外周を覆うカバー板と、
    を具備する電気化学セルスタック。
    Main surface,
    A recess disposed on the main surface;
    First and second through holes sandwiching the recess;
    First and second counterbore holes disposed around the first and second through holes;
    A separator having
    An electrochemical cell disposed in the recess and having a hydrogen electrode, an electrolytic layer, and an oxygen electrode;
    First and second sealing plates disposed in the first and second counterbore holes;
    A cover plate covering the outer periphery of the first and second sealing plates;
    An electrochemical cell stack comprising:
  2.    前記セパレータの前記主面側の第2の主面と、
       第3、第4の貫通孔と、
       前記第3、第4の貫通孔の周囲に配置される第3、第4の座繰り穴と、
     を有する第2のセパレータと、
     前記第3、第4の座繰り穴に配置される第3、第4の封止板と、をさらに具備し、
     前記カバー板が、第3、第4の封止板の外周を覆う、
     請求項1に記載の電気化学セルスタック。
    A second main surface on the main surface side of the separator;
    Third and fourth through holes;
    Third and fourth counterbore holes disposed around the third and fourth through holes;
    A second separator having
    Further comprising third and fourth sealing plates disposed in the third and fourth counterbore holes,
    The cover plate covers the outer periphery of the third and fourth sealing plates;
    The electrochemical cell stack according to claim 1.
  3.  前記カバー板が、前記凹部と前記電気化学セルの外周の間の隙間を覆う
     請求項1または2に記載の電気化学セルスタック。
    The electrochemical cell stack according to claim 1, wherein the cover plate covers a gap between the recess and the outer periphery of the electrochemical cell.
  4.  前記第2のセパレータが、前記第2の主面の反対側の第3の主面を有し、
     前記第3の主面側のエンドプレートと、
     前記第2のセパレータと前記エンドプレートの間に配置され、前記カバー板と略同一形状および略同一位置の第2のカバー板と、
    をさらに具備する請求項1乃至3のいずれか1項に記載の電気化学セルスタック。
    The second separator has a third main surface opposite to the second main surface;
    An end plate on the third main surface side;
    A second cover plate disposed between the second separator and the end plate, substantially in the same shape and position as the cover plate;
    The electrochemical cell stack according to any one of claims 1 to 3, further comprising:
  5.  前記セパレータと前記第1、第2の封止板の少なくともいずれかの高さが略同一である
     請求項1乃至4のいずれか1項に記載の電気化学セルスタック。
    The electrochemical cell stack according to any one of claims 1 to 4, wherein at least one of the separator and the first and second sealing plates has substantially the same height.
  6.  前記電気化学セルと前記第1、第2の封止板の少なくともいずれかの高さが略同一である
     請求項1乃至5のいずれか1項に記載の電気化学セルスタック。
    The electrochemical cell stack according to any one of claims 1 to 5, wherein the electrochemical cell and at least one of the first and second sealing plates have substantially the same height.
  7.  前記第1、第2の封止板と前記カバー板の間に配置され、前記第1、第2の貫通孔に対応する貫通孔を有する板状部材
     をさらに具備する請求項1乃至6のいずれか1項に記載の電気化学スタック。
    The plate-like member which is arrange | positioned between the said 1st, 2nd sealing board and the said cover board, and has a through-hole corresponding to the said 1st, 2nd through-hole further comprises. The electrochemical stack according to item.
  8.  前記カバー板に塗布された液状シール材
     をさらに具備する請求項1乃至7のいずれか1項に記載の電気化学セルスタック。
    The electrochemical cell stack according to any one of claims 1 to 7, further comprising a liquid sealing material applied to the cover plate.
  9.  前記カバー板が、マイカまたはバーミキュライトを有する
     請求項1乃至8のいずれか1項に記載の電気化学セルスタック。
    The electrochemical cell stack according to any one of claims 1 to 8, wherein the cover plate has mica or vermiculite.
PCT/JP2017/011369 2017-03-22 2017-03-22 Electrochemical cell stack WO2018173134A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/011369 WO2018173134A1 (en) 2017-03-22 2017-03-22 Electrochemical cell stack
JP2019506594A JP6818870B2 (en) 2017-03-22 2017-03-22 Electrochemical cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011369 WO2018173134A1 (en) 2017-03-22 2017-03-22 Electrochemical cell stack

Publications (1)

Publication Number Publication Date
WO2018173134A1 true WO2018173134A1 (en) 2018-09-27

Family

ID=63584788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011369 WO2018173134A1 (en) 2017-03-22 2017-03-22 Electrochemical cell stack

Country Status (2)

Country Link
JP (1) JP6818870B2 (en)
WO (1) WO2018173134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077638A (en) * 2018-11-09 2020-05-21 株式会社東芝 Electrochemical cell stack and seal material of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012251A (en) * 1996-06-18 1998-01-16 Fuji Electric Co Ltd Solid electrolyte fuel cell
JP2006196326A (en) * 2005-01-14 2006-07-27 Honda Motor Co Ltd Fuel cell
JP2008034373A (en) * 2006-06-28 2008-02-14 Ngk Insulators Ltd Solid oxide type fuel cell, cooling method thereof, and solid oxide type fuel cell system
JP2009217959A (en) * 2008-03-07 2009-09-24 Tokyo Electric Power Co Inc:The Flat plate type solid oxide fuel cell stack
JP2015109225A (en) * 2013-12-05 2015-06-11 株式会社日本自動車部品総合研究所 Sealing structure for fuel cell
JP2015156352A (en) * 2013-06-28 2015-08-27 日本特殊陶業株式会社 Fuel battery and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012251A (en) * 1996-06-18 1998-01-16 Fuji Electric Co Ltd Solid electrolyte fuel cell
JP2006196326A (en) * 2005-01-14 2006-07-27 Honda Motor Co Ltd Fuel cell
JP2008034373A (en) * 2006-06-28 2008-02-14 Ngk Insulators Ltd Solid oxide type fuel cell, cooling method thereof, and solid oxide type fuel cell system
JP2009217959A (en) * 2008-03-07 2009-09-24 Tokyo Electric Power Co Inc:The Flat plate type solid oxide fuel cell stack
JP2015156352A (en) * 2013-06-28 2015-08-27 日本特殊陶業株式会社 Fuel battery and method for manufacturing the same
JP2015109225A (en) * 2013-12-05 2015-06-11 株式会社日本自動車部品総合研究所 Sealing structure for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077638A (en) * 2018-11-09 2020-05-21 株式会社東芝 Electrochemical cell stack and seal material of the same
JP7273694B2 (en) 2018-11-09 2023-05-15 株式会社東芝 electrochemical cell stack

Also Published As

Publication number Publication date
JP6818870B2 (en) 2021-01-20
JPWO2018173134A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP2002280049A (en) Integrated type fuel cell
JP2009041044A (en) Reaction cell, its production method, and reaction system
JP6818870B2 (en) Electrochemical cell stack
US7662499B2 (en) Plate elements for fuel cell stacks
JP6702585B2 (en) Flat electrochemical cell stack
JP2013114784A (en) Fuel cell
JP7194242B1 (en) Electrochemical reaction cell stack
JP7263269B2 (en) Solid oxide electrochemical stack
JP6926193B2 (en) Flat plate electrochemical cell stack
JP2015088288A (en) Fuel cell stack
JP7082954B2 (en) Electrochemical reaction cell stack
JP2018041569A (en) Electrochemical reaction unit, and electrochemical reaction cell stack
US9595722B2 (en) Fuel cell plate and fuel cell
JP2007234315A (en) Fuel cell
JPS5998473A (en) Molten carbonate type fuel cell
JP7237043B2 (en) Electrochemical reaction cell stack
JP7210509B2 (en) Electrochemical reaction cell stack
JP7273694B2 (en) electrochemical cell stack
JP6766005B2 (en) Electrochemical reaction cell stack
JP7149221B2 (en) Electrochemical reaction cell stack
JP7249981B2 (en) Electrochemical reaction cell stack
JP7232282B2 (en) Electrochemical reaction cell stack
JP2018200763A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2023023051A (en) electrochemical reaction single cell
JP6777473B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901544

Country of ref document: EP

Kind code of ref document: A1