JP6118230B2 - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP6118230B2
JP6118230B2 JP2013224885A JP2013224885A JP6118230B2 JP 6118230 B2 JP6118230 B2 JP 6118230B2 JP 2013224885 A JP2013224885 A JP 2013224885A JP 2013224885 A JP2013224885 A JP 2013224885A JP 6118230 B2 JP6118230 B2 JP 6118230B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
main surface
fuel
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013224885A
Other languages
Japanese (ja)
Other versions
JP2015088288A (en
Inventor
誠 栗林
誠 栗林
悦也 池田
悦也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013224885A priority Critical patent/JP6118230B2/en
Publication of JP2015088288A publication Critical patent/JP2015088288A/en
Application granted granted Critical
Publication of JP6118230B2 publication Critical patent/JP6118230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は,燃料電池スタックに関する。   The present invention relates to a fuel cell stack.

電解質に固体酸化物を用いた固体酸化物形燃料電池(以下,「SOFC」又は単に「燃料電池」とも記す場合がある)が知られている。SOFCは,例えば,板状の固体電解質層の各面に燃料極と空気極とを備えた燃料電池セルを多数積層したスタック(燃料電池スタック)を有する。燃料極および空気極それぞれに,燃料ガス(例えば,水素)および酸化剤ガス(例えば,空気中の酸素)を供給し,固体電解質層を介して化学反応させることで,電力を発生させる。   A solid oxide fuel cell using a solid oxide as an electrolyte (hereinafter also referred to as “SOFC” or simply “fuel cell”) is known. The SOFC has, for example, a stack (fuel cell stack) in which a large number of fuel cells each having a fuel electrode and an air electrode are stacked on each surface of a plate-like solid electrolyte layer. Electric power is generated by supplying a fuel gas (for example, hydrogen) and an oxidant gas (for example, oxygen in the air) to the fuel electrode and the air electrode, respectively, and causing a chemical reaction through the solid electrolyte layer.

燃料電池セルは,燃料ガスと酸化剤ガスとが存在する区画を区分するセパレータに,接合して,用いられる。この接合に,通例,Agロウ等のロウ材から構成される接合部が用いられ,燃料ガスと酸化剤ガスが隔離される。   The fuel cell is used by being joined to a separator that divides a section where fuel gas and oxidant gas are present. For this joining, usually, a joining portion made of a brazing material such as Ag brazing is used to isolate the fuel gas and the oxidant gas.

燃料電池では,供給ガス(燃料ガスおよび酸化剤ガスのいずれかまたは双方)のリーク防止および電極(燃料極および空気極のいずれかまたは双方)への均一な供給を確保することが,効率的な発電のために重要である。   In fuel cells, it is efficient to prevent leakage of supply gas (either fuel gas and / or oxidant gas) and to ensure uniform supply to electrodes (either or both of fuel electrode and air electrode). Important for power generation.

ここで,平板型単電池(前記燃料電池セルに該当)に合金製の保持薄板枠(前記セパレータに該当)をろう付けしたり,ガラス系シール剤を用いて封止したりする技術が開示されている(特許文献1参照)。また,複数の並列流路の入口および出口に,燃料の流れの障壁となるリブを設けることで,並列流路の流れの均一性を高くする技術が開示されている(特許文献2参照)。   Here, a technique of brazing an alloy holding thin plate frame (corresponding to the separator) to a flat cell (corresponding to the fuel cell) or sealing with a glass-based sealant is disclosed. (See Patent Document 1). In addition, a technique is disclosed in which ribs serving as fuel flow barriers are provided at the inlets and outlets of a plurality of parallel flow paths to increase the flow uniformity of the parallel flow paths (see Patent Document 2).

特開2000−331692号公報JP 2000-331692 A 特開2009−070651号公報JP 2009-070651 A

しかしながら,特許文献1,2の技術では,供給ガスのリーク防止および電極への均一な供給を確保するのは必ずしも容易ではなかった。
燃料電池の稼動時に,燃料極側の水素と空気極側の酸素が,ロウ材中を拡散,反応し,ボイドを生成することで,ガスリークが発生する畏れがある。
また,特許文献2のように,リブを設けることは,部材の複雑な加工が必要となり,時間,費用を要する畏れがある。
本発明は,供給ガスのリーク防止および電極への均一な供給により,発電効率の向上を図った,燃料電池スタックを提供することを目的とする。
However, in the techniques of Patent Documents 1 and 2, it is not always easy to prevent the supply gas from leaking and to ensure uniform supply to the electrodes.
During the operation of the fuel cell, hydrogen on the fuel electrode side and oxygen on the air electrode side diffuse and react in the brazing material to generate voids, which may cause gas leakage.
Further, as in Patent Document 2, providing ribs requires complicated processing of members, which may require time and cost.
An object of the present invention is to provide a fuel cell stack in which power generation efficiency is improved by preventing leakage of supply gas and uniform supply to electrodes.

(1)本発明に係る燃料電池スタックは,
第1インターコネクタおよび第2インターコネクタと,
これらインターコネクタ間に配置され,前記第1インターコネクタに対向する第1主面および前記第2インターコネクタに対向する第2主面,および前記第1主面および前記第2主面間を貫通する貫通孔を有する,板状の金属製セパレータと,
空気極,燃料極,およびこれらの間に配置される固体電解質層を有し,前記固体電解質層が,前記第1インターコネクタと前記第1主面との間に,前記空気極および燃料極のいずれかの電極が平面視で前記貫通孔内に配置され,前記電極が前記ガス流入部から前記ガス流出部に向かう方向に沿う1対の辺を有する,燃料電池単セル本体と,
前記燃料電池単セル本体と,前記金属製セパレータの第1主面と,を接合し,Agを含むロウ材から成る,接合部と,
前記接合部よりも前記貫通孔側の,前記燃料電池単セル本体と前記第1主面の間に,前記貫通孔の全周にわたって配置され,ガラスを含む封止材を有する,封止部と,
前記第2主面と前記第2インターコネクタとの間に,酸化剤ガスおよび燃料ガスのいずれかの供給ガスを流入させるガス流入部と,
前記ガス流入部から前記第2主面と前記第2インターコネクタとの間に流入し,前記電極の表面上を通過した前記供給ガスを流出させるガス流出部と,
前記金属製セパレータを挟んで,前記封止部と対向する位置における,前記金属製セパレータの第2主面上に,前記ガス流入部と対向して配置され,前記封止材と同じ材料または前記封止材よりも大きな熱膨張係数を有する材料で構成される拘束部と,
前記第2主面と前記第2インターコネクタの間に,互いに対向して配置され,前記ガス流入部から,前記拘束部を越えて流入し,前記ガス流出部から流出する供給ガスの流れを前記ガス流入部から前記ガス流出部に向かう方向に沿う範囲に制限するように,前記1対の辺それぞれに沿って配置される,一対の流れ制限部と,
を具備することを特徴とする。
(1) A fuel cell stack according to the present invention comprises:
A first interconnector and a second interconnector;
A first main surface disposed between the interconnectors and facing the first interconnector, a second main surface facing the second interconnector, and between the first main surface and the second main surface. A plate-shaped metal separator having a through hole;
An air electrode, a fuel electrode, and a solid electrolyte layer disposed between the air electrode, the fuel electrode, and the solid electrolyte layer between the first interconnector and the first main surface. Any one of the electrodes is disposed in the through hole in a plan view, and the electrode has a pair of sides along a direction from the gas inflow portion toward the gas outflow portion;
Joining the fuel cell single cell body and the first main surface of the metallic separator, and made of a brazing material containing Ag;
A sealing portion that is disposed over the entire circumference of the through-hole between the fuel cell single cell main body and the first main surface on the side of the through-hole with respect to the joint, and has a sealing material containing glass; ,
A gas inflow portion for allowing a supply gas of either an oxidant gas or a fuel gas to flow between the second main surface and the second interconnector;
A gas outflow part that flows in between the second main surface and the second interconnector from the gas inflow part and outflows the supply gas that has passed over the surface of the electrode;
On the second main surface of the metallic separator at a position facing the sealing portion with the metallic separator in between, the gas inflow portion is disposed, and the same material as the sealing material or the A constrained portion made of a material having a larger coefficient of thermal expansion than the encapsulant;
Between the second main surface and the second interconnector, facing each other, the flow of the supply gas flowing in from the gas inflow portion over the restraint portion and flowing out from the gas outflow portion is A pair of flow restriction portions disposed along each of the pair of sides so as to restrict a range along a direction from the gas inflow portion toward the gas outflow portion;
It is characterized by comprising.

本発明では,「燃料電池単セル本体と,前記金属製セパレータの第1主面と,を接合し,Agを含むロウ材から成る,接合部」および「接合部よりも前記貫通孔側の,前記燃料電池単セル本体と前記第1主面の間に,前記貫通孔の全周にわたって配置され,ガラスを含む封止材を有する封止部」を備えることで,燃料電池スタックの供給ガスがリークする畏れを低減できる。   In the present invention, “a joined portion made of a brazing material containing Ag, which joins the fuel cell single cell body and the first main surface of the metal separator,” and “a portion closer to the through hole than the joined portion, By providing a sealing part having a sealing material including glass between the fuel cell single cell body and the first main surface, the gas supplied to the fuel cell stack is provided. Leakage that leaks can be reduced.

燃料電池の稼動時に,燃料極側の水素と空気極側の酸素が,接合部中を拡散,反応し,接合部にボイドを生成する畏れがある。これに対して,ガラスを含む封止部が接合部(ロウ材)への供給ガスの到達を阻止し,ロウ材中でのボイドの発生を防止できる。また,接合部(ロウ材)が存在することで,封止部に印加される応力は,燃料電池単セル本体と金属製セパレータ間での応力の一部のみで済むので,ガラスを含む封止部が割れる畏れが低減される。さらに拘束部が存在することで,金属製セパレータの燃料電池単セル本体からの反り上がりが抑止されるため,ガラスを含む封止部が割れる畏れがより低減される。   During the operation of the fuel cell, hydrogen on the fuel electrode side and oxygen on the air electrode side may diffuse and react in the joint and generate voids in the joint. On the other hand, the sealing part containing glass can prevent the supply gas from reaching the joining part (the brazing material) and prevent the generation of voids in the brazing material. In addition, since the joint (brazing material) is present, the stress applied to the sealing portion is only a part of the stress between the fuel cell single cell main body and the metal separator, so that sealing including glass is performed. The crack which a part cracks is reduced. Further, since the restraint portion is present, the metal separator is prevented from warping from the fuel cell single cell main body, so that the cracking of the sealing portion containing glass is further reduced.

また,「第2主面と前記第2インターコネクタの間に,互いに対向して配置され,前記ガス流入部から,前記拘束部を越えて流入し,前記ガス流出部から流出する供給ガスの流れを前記ガス流入部から前記ガス流出部に向かう方向に沿う範囲に制限するように,前記1対の辺それぞれに沿って配置される,一対の流れ制限部」を備えることで,電極(空気極および燃料極のいずれか)への供給ガスの均一な供給が容易となり発電効率の向上が図れる。
即ち,供給ガスは拘束部を越えて電極上に流入することで,拘束部が一種のダムとして機能し,電極上に均一に供給ガスを供給し易くなる(供給ガスの分配)。その上,一対の流れ制限部が電極外への供給ガスの逃げを制限することで,供給ガスの効率的かつ均一な供給が確保され,発電効率の向上が図れる。
Further, “a flow of a supply gas which is disposed between the second main surface and the second interconnector so as to face each other and flows in from the gas inflow portion over the restraint portion and out of the gas outflow portion. Is provided with a pair of flow restricting portions arranged along each of the pair of sides so as to restrict a range along the direction from the gas inflow portion toward the gas outflow portion. And uniform supply of the supply gas to any one of the fuel electrodes) and power generation efficiency can be improved.
In other words, the supply gas flows over the electrode over the restriction part, so that the restriction part functions as a kind of dam, and the supply gas is easily supplied uniformly on the electrode (distribution of supply gas). In addition, since the pair of flow restricting portions restrict the escape of the supply gas to the outside of the electrode, an efficient and uniform supply of the supply gas is ensured, and the power generation efficiency can be improved.

ここで,封止部と拘束部がそれぞれ,供給ガスの封止および分配の機能を持たせることで,供給ガスのリークの防止および供給ガスの均一な供給の双方を簡素な構成で実現できる。   Here, since the sealing portion and the restraining portion have functions of sealing and distributing the supply gas, both prevention of supply gas leakage and uniform supply of the supply gas can be realized with a simple configuration.

以上のように,本発明では,封止部,拘束部,および流れ制限部を用いた比較的簡素な構成で,供給ガスのリーク防止および電極への均一な供給を可能とし,発電効率の向上を図ることができる。   As described above, in the present invention, it is possible to prevent leakage of the supply gas and to supply the electrode uniformly with a relatively simple configuration using the sealing portion, the restraining portion, and the flow restriction portion, thereby improving the power generation efficiency. Can be achieved.

(2)前記拘束部が,前記貫通孔の全周にわたって配置されても良い。
拘束部を貫通孔の全周にわたって配置することで,貫通孔全周にわたって封止部の破損抑止が実現可能となり,且つ,貫通孔内(電極上)での供給ガスの供給の均一性が向上する。
(2) The restraining portion may be arranged over the entire circumference of the through hole.
By disposing the restraining portion over the entire circumference of the through hole, it is possible to prevent damage to the sealing portion over the entire circumference of the through hole, and to improve the supply gas supply uniformity in the through hole (on the electrode).

(3)前記金属製セパレータの前記貫通孔の内面に配置された連結部によって,前記封止部と前記拘束部とが連結されていても良い。
封止部と拘束部とが連結され,一体化することで,封止部の幅の実質的増大に寄与し,封止部による封止性が向上する。
(3) The sealing portion and the restraining portion may be connected by a connecting portion disposed on an inner surface of the through hole of the metal separator.
When the sealing portion and the restraining portion are connected and integrated, it contributes to a substantial increase in the width of the sealing portion, and the sealing performance by the sealing portion is improved.

(4)前記流れ制限部が,セラミックフェルト,マイカ,バーミキュライトのいずれかを含んでも良い。
これらの材料は,耐熱性および柔軟性を有することから,高温となる電極付近で拘束部等の形状に応じて変形することで,流れ制限部と拘束部等間の隙間からの供給ガスの逃げを防止できる。
(4) The flow restricting portion may include any one of ceramic felt, mica, and vermiculite.
Since these materials have heat resistance and flexibility, the supply gas escapes from the gap between the flow restricting portion and the restraining portion by being deformed according to the shape of the restraining portion in the vicinity of the electrode that is at a high temperature. Can be prevented.

本発明によれば,供給ガスのリーク防止および電極への均一な供給により,発電効率の向上を図った,燃料電池スタックを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell stack which aimed at the improvement of electric power generation efficiency by prevention of the leak of supply gas and the uniform supply to an electrode can be provided.

固体酸化物形燃料電池10を表す斜視図である。1 is a perspective view showing a solid oxide fuel cell 10. FIG. 固体酸化物形燃料電池10のY方向での模式断面図である。1 is a schematic cross-sectional view in the Y direction of a solid oxide fuel cell 10. FIG. 固体酸化物形燃料電池10のX方向での模式断面図である。1 is a schematic cross-sectional view in the X direction of a solid oxide fuel cell 10. FIG. 燃料電池セル40の断面図である。3 is a cross-sectional view of a fuel cell 40. FIG. 燃料電池単セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50)を分解した状態を表す分解斜視図である。It is a disassembled perspective view showing the state which decomposed | disassembled the fuel cell single cell main body 44 and the metal separator 53 (fuel cell 50 with a separator). 燃料電池セル40aの断面図である。It is sectional drawing of the fuel cell 40a. 燃料電池単セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50a)を分解した状態を表す分解斜視図である。It is a disassembled perspective view showing the state which decomposed | disassembled the fuel cell single cell main body 44 and the metal separator 53 (fuel cell 50a with a separator).

以下,本発明に係る固体酸化物形燃料電池について図面を用いて説明する。   Hereinafter, a solid oxide fuel cell according to the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は,本発明の第1実施形態に係る固体酸化物形燃料電池(燃料電池スタック)10を表す斜視図である。固体酸化物形燃料電池10は,燃料ガス(例えば,水素)と酸化剤ガス(例えば,空気(詳しくは空気中の酸素))との供給を受けて発電する。
(First embodiment)
FIG. 1 is a perspective view showing a solid oxide fuel cell (fuel cell stack) 10 according to a first embodiment of the present invention. The solid oxide fuel cell 10 generates power by receiving supply of a fuel gas (for example, hydrogen) and an oxidant gas (for example, air (specifically, oxygen in the air)).

固体酸化物形燃料電池10では,エンドプレート11,12,燃料電池セル40(1)〜40(4)が積層され,ボルト21,22(22a,22b),23(23a,23b)およびナット35で固定される。   In the solid oxide fuel cell 10, end plates 11 and 12 and fuel cells 40 (1) to 40 (4) are stacked, and bolts 21, 22 (22 a, 22 b), 23 (23 a, 23 b) and nuts 35 are stacked. It is fixed with.

ボルト22(22a,22b),23(23a,23b)は,燃料ガスまたは酸化剤ガス(供給ガス)の流路として機能する空洞をその内部または外部に有する。ここでは,ボルト22,23の内部に供給ガスの流路として機能する空洞が配置されている。これに対して,ボルト22,23の外周と貫通孔32,33の間を供給ガスの流路としても良い。   The bolts 22 (22a, 22b) and 23 (23a, 23b) have a cavity functioning as a flow path for fuel gas or oxidant gas (supply gas) inside or outside. Here, cavities functioning as flow paths for the supply gas are arranged inside the bolts 22 and 23. On the other hand, it is good also as a flow path of supply gas between the outer periphery of the volt | bolts 22 and 23 and the through-holes 32 and 33. FIG.

ボルト22a,22bがそれぞれ,酸化剤ガスを燃料電池セル40に供給,排出する。また,ボルト23a,23bがそれぞれ,燃料ガスを燃料電池セル40に供給,排出する。   Bolts 22a and 22b supply and discharge oxidant gas to and from the fuel cell 40, respectively. The bolts 23a and 23b supply and discharge the fuel gas to and from the fuel cell 40, respectively.

図2,図3はそれぞれ,Y方向,X方向での固体酸化物形燃料電池10の模式断面図である。
固体酸化物形燃料電池10は,燃料電池セル40(1)〜40(4)を積層して構成される燃料電池スタックである。ここでは,判り易さのために,4つの燃料電池セル40(1)〜40(4)を積層しているが,一般には,20〜60個程度の燃料電池セル40を積層することが多い。
2 and 3 are schematic cross-sectional views of the solid oxide fuel cell 10 in the Y direction and the X direction, respectively.
The solid oxide fuel cell 10 is a fuel cell stack configured by stacking fuel cells 40 (1) to 40 (4). Here, for the sake of clarity, four fuel cells 40 (1) to 40 (4) are stacked, but in general, about 20 to 60 fuel cells 40 are often stacked. .

エンドプレート11,12,燃料電池セル40(1)〜40(4)は,ボルト21,22(22a,22b),23(23a,23b)に対応する貫通孔31,32(32a,32b),33(33a,33b)を有する。
エンドプレート11,12は,積層される燃料電池セル40(1)〜40(4)を押圧,保持する保持板であり,かつ燃料電池セル40(1)〜40(4)からの電流の出力端子でもある。
The end plates 11 and 12 and the fuel cells 40 (1) to 40 (4) have through holes 31 and 32 (32a and 32b) corresponding to the bolts 21 and 22 (22a and 22b) and 23 (23a and 23b), 33 (33a, 33b).
The end plates 11 and 12 are holding plates that press and hold the stacked fuel battery cells 40 (1) to 40 (4), and output current from the fuel battery cells 40 (1) to 40 (4). It is also a terminal.

図4は,燃料電池セル40の断面図である。図5は,燃料電池単セル本体44と金属製セパレータ53(セパレータ付燃料電池セル)を分解した状態を表す分解斜視図である。   FIG. 4 is a cross-sectional view of the fuel battery cell 40. FIG. 5 is an exploded perspective view showing a state in which the fuel cell single cell main body 44 and the metal separator 53 (fuel cell with separator) are disassembled.

図4に示すように,燃料電池セル40は,いわゆる燃料極支持膜形タイプの燃料電池単セル本体44,インターコネクタ41,45,集電体42a,42b,枠部43を備える。   As shown in FIG. 4, the fuel cell 40 includes a so-called fuel electrode supporting membrane type fuel cell single cell main body 44, interconnectors 41 and 45, current collectors 42 a and 42 b, and a frame portion 43.

燃料電池単セル本体44は,固体電解質層56を空気極(カソード,空気極層ともいう)55,および,燃料極(アノード,燃料極層ともいう)57で挟んで構成される。固体電解質層56の酸化剤ガス流路47側,燃料ガス流路48側それぞれに,空気極55,燃料極57が配置される。   The fuel cell single cell main body 44 is configured by sandwiching a solid electrolyte layer 56 between an air electrode (also referred to as a cathode or an air electrode layer) 55 and a fuel electrode (also referred to as an anode or a fuel electrode layer) 57. An air electrode 55 and a fuel electrode 57 are arranged on the oxidant gas flow channel 47 side and the fuel gas flow channel 48 side of the solid electrolyte layer 56, respectively.

燃料ガスは,ボルト23aの燃料ガス流路(ボルト23aの内部または外部に配置される空洞)を通って,ガス流入部I1から燃料ガス流路48に流入し,ガス流出部O1からボルト23bの燃料ガス流路に流出する。   The fuel gas flows into the fuel gas flow channel 48 from the gas inflow portion I1 through the fuel gas flow passage (a cavity disposed inside or outside the bolt 23a) of the bolt 23a, and from the gas outflow portion O1 to the bolt 23b. It flows out to the fuel gas flow path.

酸化剤ガスは,ボルト22aの酸化剤ガス流路(ボルト22aの内部または外部に配置される空洞)を通って,ガス流入部I2から酸化剤ガス流路47に流入し,ガス流出部O2からボルト22bの酸化剤ガス流路に流出する。   The oxidant gas flows into the oxidant gas flow path 47 from the gas inflow part I2 through the oxidant gas flow path of the bolt 22a (a cavity disposed inside or outside the bolt 22a), and from the gas outflow part O2. It flows out to the oxidant gas flow path of the bolt 22b.

空気極55は,上方から見て(平面視で)貫通孔58内に配置される。空気極55は,矩形の平板形状をなし,ガス流入部I2からガス流出部O2に向かう方向に沿う1対の辺55aを有する。   The air electrode 55 is disposed in the through hole 58 as viewed from above (in plan view). The air electrode 55 has a rectangular flat plate shape and has a pair of sides 55a along the direction from the gas inflow portion I2 toward the gas outflow portion O2.

空気極55としては,ペロブスカイト系酸化物(例えば,LSCF(ランタンストロンチウムコバルト鉄酸化物),LSM(ランタンストロンチウムマンガン酸化物)が使用できる。   As the air electrode 55, a perovskite oxide (for example, LSCF (lanthanum strontium cobalt iron oxide), LSM (lanthanum strontium manganese oxide) can be used.

固体電解質層56としては,YSZ(イットリア安定化ジルコニア),ScSZ(スカンジア安定化ジルコニア),SDC(サマリウムドープセリア),GDC(ガドリニウムドープセリア),ペロブスカイト系酸化物等の材料が使用できる。   For the solid electrolyte layer 56, materials such as YSZ (yttria stabilized zirconia), ScSZ (scandia stabilized zirconia), SDC (samarium doped ceria), GDC (gadolinium doped ceria), and perovskite oxide can be used.

燃料極57としては,金属が好ましく,Ni及びNiとセラミックとのサーメットやNi基合金が使用できる。   The fuel electrode 57 is preferably a metal, and Ni, Ni-ceramic cermets or Ni-based alloys can be used.

インターコネクタ41,45は,燃料電池単セル本体44間の導通を確保し,かつ燃料電池単セル本体44間でのガスの混合を防止し得る,導電性(例えば,ステンレス鋼等の金属)を有する板状の部材である。   The interconnectors 41 and 45 have conductivity (for example, a metal such as stainless steel) that can secure conduction between the fuel cell single cell bodies 44 and prevent gas mixing between the fuel cell single cell bodies 44. It is a plate-shaped member.

なお,燃料電池単セル本体44間には,1個のインターコネクタ(41若しくは45)が配置される(直列に接続される二つの燃料電池単セル本体44の間に一つのインターコネクタを共有しているため)。また,最上層および最下層の燃料電池単セル本体44それぞれでは,インターコネクタ41,45に替えて,導電性を有するエンドプレート11,12が配置される。   One interconnector (41 or 45) is disposed between the fuel cell single cell bodies 44 (one interconnector is shared between two fuel cell single cell bodies 44 connected in series). Because) In addition, in each of the uppermost and lowermost fuel cell single cell bodies 44, conductive end plates 11 and 12 are arranged in place of the interconnectors 41 and 45.

集電体42aは,燃料電池単セル本体44の空気極55とインターコネクタ41との間の導通を確保するためのものであり,例えば,インターコネクタ41に形成された凸部である。集電体42bは,燃料電池単セル本体44の燃料極57とインターコネクタ41との間の導通を確保するためのものであり,例えば,通気性を有するニッケルフェルトやニッケルメッシュ等を用いることができる。   The current collector 42 a is for ensuring electrical connection between the air electrode 55 of the fuel cell single cell main body 44 and the interconnector 41, and is, for example, a convex portion formed in the interconnector 41. The current collector 42b is for ensuring electrical continuity between the fuel electrode 57 of the fuel cell single cell main body 44 and the interconnector 41. For example, a nickel felt or a nickel mesh having air permeability is used. it can.

枠部43は,酸化剤ガス,燃料ガスが流れる開口46を有する。この開口46内は,気密に保持され,かつ酸化剤ガスが流れる酸化剤ガス流路47,燃料ガスが流れる燃料ガス流路48に区分される。また,本実施形態の枠部43は,空気極フレーム51,絶縁フレーム52,金属製セパレータ53,燃料極フレーム54で構成される。   The frame portion 43 has an opening 46 through which an oxidant gas and a fuel gas flow. The inside of the opening 46 is divided into an oxidant gas flow path 47 through which oxidant gas flows and a fuel gas flow path 48 through which fuel gas flows. Further, the frame portion 43 of this embodiment includes an air electrode frame 51, an insulating frame 52, a metal separator 53, and a fuel electrode frame 54.

空気極フレーム51は,空気極55側に配置される金属製の枠体で,中央部には開口46を有する。該開口46によって,酸化剤ガス流路47を区画する。   The air electrode frame 51 is a metal frame disposed on the air electrode 55 side, and has an opening 46 at the center. An oxidant gas flow path 47 is defined by the opening 46.

絶縁フレーム52は,インターコネクタ41,45間を電気的に絶縁する枠体で,例えば,Alなどのセラミックスやマイカ,バーミキュライトなどが使用でき,中央部には開口46を有する。該開口46によって,酸化剤ガス流路47を区画する。具体的には,絶縁フレーム52は,インターコネクタ41,45の間において,一方の面が空気極フレーム51に,他方の面が金属製セパレータ53に接触して配置されている。この結果,絶縁フレーム52により,インターコネクタ41,45間が電気的に絶縁されている。 The insulating frame 52 is a frame that electrically insulates between the interconnectors 41 and 45. For example, ceramics such as Al 2 O 3 , mica, vermiculite, and the like can be used, and an opening 46 is provided at the center. An oxidant gas flow path 47 is defined by the opening 46. Specifically, the insulating frame 52 is disposed between the interconnectors 41 and 45 such that one surface contacts the air electrode frame 51 and the other surface contacts the metal separator 53. As a result, the interconnectors 41 and 45 are electrically insulated by the insulating frame 52.

金属製セパレータ53は,貫通孔58を有する枠状の金属製の薄板(例えば,厚さ:0.1mm)であり,燃料電池単セル本体44の固体電解質層56に取り付けられ,かつ酸化剤ガスと燃料ガスとの混合を防止する金属製の枠体である。金属製セパレータ53によって,枠部43の開口46内の間隙が,酸化剤ガス流路47と燃料ガス流路48に区切られ,酸化剤ガスと燃料ガスとの混合が防止される。   The metal separator 53 is a frame-shaped metal thin plate (for example, thickness: 0.1 mm) having a through hole 58, is attached to the solid electrolyte layer 56 of the fuel cell single cell main body 44, and is an oxidant gas. It is a metal frame which prevents mixing with fuel gas. The metal separator 53 divides the gap in the opening 46 of the frame portion 43 into an oxidant gas flow path 47 and a fuel gas flow path 48, thereby preventing mixing of the oxidant gas and the fuel gas.

金属製セパレータ53には,金属製セパレータ53の上面(第2主面)と下面(第1主面)の間を貫通する貫通孔によって貫通孔58が形成される。この貫通孔58内に,燃料電池単セル本体44の空気極55が配置される。また,この貫通孔58の周囲に燃料電池単セル本体44が接合,封止される。金属製セパレータ53が接合された燃料電池単セル本体44を「セパレータ付燃料電池セル」という。なお,この詳細は後述する。   A through-hole 58 is formed in the metal separator 53 by a through-hole penetrating between the upper surface (second main surface) and the lower surface (first main surface) of the metal separator 53. The air electrode 55 of the fuel cell single cell main body 44 is disposed in the through hole 58. In addition, the fuel cell single cell main body 44 is joined and sealed around the through hole 58. The fuel cell single cell body 44 to which the metal separator 53 is joined is referred to as a “fuel cell with separator”. Details of this will be described later.

燃料極フレーム54は,絶縁フレーム52と同様に,燃料極57側に配置される絶縁フレームであり,中央部には開口46を有する。該開口46によって,燃料ガス流路48を区画する。   Like the insulating frame 52, the fuel electrode frame 54 is an insulating frame disposed on the fuel electrode 57 side, and has an opening 46 in the center. A fuel gas flow path 48 is defined by the opening 46.

空気極フレーム51,絶縁フレーム52,金属製セパレータ53,燃料極フレーム54は,ボルト21,22(22a,22b),23(23a,23b)が挿入されるか,もしくは酸化剤ガスか燃料ガスが流通する貫通孔31,32(32a,32b),33(33a,33b)をそれぞれの周辺部に有する。   Bolts 21, 22 (22a, 22b), 23 (23a, 23b) are inserted into the air electrode frame 51, the insulating frame 52, the metal separator 53, and the fuel electrode frame 54, or an oxidant gas or a fuel gas is inserted. The through holes 31, 32 (32a, 32b), 33 (33a, 33b) that circulate are provided in the respective peripheral portions.

(セパレータ付燃料電池セル50の詳細)
本実施形態に係るセパレータ付燃料電池セル50は,接合部61,封止部62,拘束部63,流れ制限部71を有する。燃料電池単セル本体44と金属製セパレータ53の間に接合部61,封止部62が配置される。貫通孔58に沿って,金属製セパレータ53の下面と固体電解質層56の上面が接合部61で接合され,封止部62で封止される。拘束部63は,封止部62に対応して,金属製セパレータ53の上面に配置される。
(Details of fuel cell 50 with separator)
The separator-equipped fuel cell 50 according to the present embodiment includes a joining portion 61, a sealing portion 62, a restraining portion 63, and a flow restricting portion 71. A joining portion 61 and a sealing portion 62 are arranged between the fuel cell single cell main body 44 and the metal separator 53. Along the through hole 58, the lower surface of the metallic separator 53 and the upper surface of the solid electrolyte layer 56 are joined by the joining portion 61 and sealed by the sealing portion 62. The restricting portion 63 is disposed on the upper surface of the metallic separator 53 corresponding to the sealing portion 62.

接合部61は,Agを含むロウ材から成り,貫通孔58に沿って,全周にわたって,燃料電池単セル本体44と金属製セパレータ53の下面(第1主面)とを接合する。接合部61(Agロウ)は,例えば,2〜6mmの幅,10〜80μmの厚さを有する。   The joining portion 61 is made of a brazing material containing Ag, and joins the fuel cell single cell main body 44 and the lower surface (first main surface) of the metal separator 53 along the through hole 58 over the entire circumference. The joining portion 61 (Ag solder) has, for example, a width of 2 to 6 mm and a thickness of 10 to 80 μm.

接合部61の材質として,Agを主成分とする各種のロウ材を採用できる。例えば,ロウ材として,Agと酸化物の混合体,例えば,Ag−Al(AgとAl(アルミナ)の混合体)を利用できる。Agと酸化物の混合体としては,Ag−CuO,Ag−TiO,Ag−Cr,Ag−SiOも挙げることができる。また,ロウ材として,Agと他の金属の合金(例えば,Ag−Ge−Cr,Ag−Ti,Ag−Alのいずれか)も利用できる。 As the material of the joining portion 61, various brazing materials mainly composed of Ag can be employed. For example, as a brazing material, a mixture of Ag and an oxide, for example, Ag-Al 2 O 3 (a mixture of Ag and Al 2 O 3 (alumina)) can be used. Examples of the mixture of Ag and oxide include Ag—CuO, Ag—TiO 2 , Ag—Cr 2 O 3 , and Ag—SiO 2 . Further, an alloy of Ag and another metal (for example, any one of Ag—Ge—Cr, Ag—Ti, and Ag—Al) can be used as the brazing material.

Agを含むロウ材(Agロウ)は,大気雰囲気でもロウ付け温度で酸化し難い。このため,Agロウを用いて,燃料電池単セル本体44と金属製セパレータ53とを大気雰囲気で接合でき,工程の効率上,好ましい。   The brazing material containing Ag (Ag brazing) is not easily oxidized at the brazing temperature even in an air atmosphere. For this reason, the fuel cell single cell main body 44 and the metal separator 53 can be joined in an air atmosphere using Ag wax, which is preferable in terms of process efficiency.

封止部62は,貫通孔58に沿って,その全周にわたって,接合部61よりも貫通孔58側(内周側)に配置され,金属製セパレータ53の貫通孔58内にある酸化剤ガスと貫通孔58外にある燃料ガスとの混合を防ぐために燃料電池単セル本体44と金属製セパレータ53の下面(第1主面)間を封止する。封止部62が接合部61よりも貫通孔58側に配置されることから,接合部61が酸化剤ガスに接触することが無くなり,酸化剤ガス流路47側から接合部61への酸素の移動が阻止される。この結果,水素と酸素の反応によって接合部61にボイドが発生してガスリークすることを防止できる。   The sealing portion 62 is disposed on the through hole 58 side (inner peripheral side) with respect to the entire circumference of the through hole 58 along the through hole 58, and the oxidant gas in the through hole 58 of the metal separator 53. In order to prevent mixing with the fuel gas outside the through hole 58, the space between the fuel cell single cell main body 44 and the lower surface (first main surface) of the metal separator 53 is sealed. Since the sealing portion 62 is disposed closer to the through hole 58 than the joint portion 61, the joint portion 61 is not in contact with the oxidant gas, and oxygen from the oxidant gas flow path 47 side to the joint portion 61 is eliminated. Movement is prevented. As a result, it is possible to prevent a gas leak due to generation of a void in the junction 61 due to a reaction between hydrogen and oxygen.

さらに,封止部62は金属製セパレータ53と燃料電池単セル本体44の間に配置されることから,封止部62に働く熱応力が,引張応力ではなくせん断応力になる。このため,封止材が割れにくくなり,また封止部62と金属製セパレータ53若しくは燃料電池単セル本体44との界面での剥がれを抑制でき,封止部62の信頼性を向上できる。
封止部62は,例えば,0.05〜4mmの幅,10〜80μmの厚さを有する。
Further, since the sealing portion 62 is disposed between the metal separator 53 and the fuel cell single cell main body 44, the thermal stress acting on the sealing portion 62 is not a tensile stress but a shear stress. For this reason, the sealing material is hardly broken, and peeling at the interface between the sealing portion 62 and the metal separator 53 or the fuel cell single cell main body 44 can be suppressed, and the reliability of the sealing portion 62 can be improved.
The sealing part 62 has a width of 0.05 to 4 mm and a thickness of 10 to 80 μm, for example.

拘束部63は,金属製セパレータ53を挟んで,封止部62と対向する位置における,金属製セパレータ53の上面(第2主面)上に,貫通孔58の全周にわたって,配置される。
拘束部63は,封止部62の構成材料(封止材)と同一の材料,または封止材よりも大きな熱膨張係数を有する材料で構成されている。
The restraining portion 63 is disposed over the entire circumference of the through hole 58 on the upper surface (second main surface) of the metallic separator 53 at a position facing the sealing portion 62 with the metallic separator 53 interposed therebetween.
The restricting portion 63 is made of the same material as the constituent material (sealing material) of the sealing portion 62 or a material having a thermal expansion coefficient larger than that of the sealing material.

拘束部63が封止材よりも大きな熱膨張係数を有する材料で構成されている場合,固体酸化物形燃料電池10の使用時(700℃程度)には,金属製セパレータ53が,封止部62側に湾曲して,封止部62を押す(圧接)方向に力が働き,封止部62と金属製セパレータ53との間の界面での剥がれ(封止部62による封止性の低下)を抑制し,気密封止性が向上される。   When the restraint part 63 is made of a material having a thermal expansion coefficient larger than that of the sealing material, the metal separator 53 is used when the solid oxide fuel cell 10 is used (about 700 ° C.). Curved to the 62 side, a force acts in the direction of pressing the sealing portion 62 (pressure contact), peeling at the interface between the sealing portion 62 and the metal separator 53 (decrease in sealing performance by the sealing portion 62) ), And hermetic sealing is improved.

また,封止部62が貫通孔58の全周にわたって配置されていることから,拘束部63を貫通孔58の全周にわたって配置することで,貫通孔58の全周にわたって,金属製セパレータ53の変形を抑制できる。   In addition, since the sealing portion 62 is disposed over the entire circumference of the through hole 58, the metal separator 53 is disposed over the entire circumference of the through hole 58 by arranging the restraining portion 63 over the entire circumference of the through hole 58. Deformation can be suppressed.

封止部62,拘束部63は,具体的には,ガラス,ガラスセラミックス(結晶化ガラス),ガラスとセラミックスの複合物等の封止材料から構成できる。
封止部62は常温から300℃の温度範囲内において,熱膨張係数が8ppm/K以上12ppm/K以下の封止材から構成され,拘束部63は封止材に比べて熱膨張係数が0.5ppm/K〜2ppm/K高い拘束材から構成される。
Specifically, the sealing portion 62 and the restraining portion 63 can be made of a sealing material such as glass, glass ceramics (crystallized glass), or a composite of glass and ceramics.
The sealing part 62 is composed of a sealing material having a thermal expansion coefficient of 8 ppm / K or more and 12 ppm / K or less in a temperature range from room temperature to 300 ° C., and the restraining part 63 has a thermal expansion coefficient of 0 compared to the sealing material. .5 ppm / K to 2 ppm / K high constraining material.

金属製セパレータ53の熱膨張係数よりも,拘束部63を構成する材料の熱膨張係数の方が小さくても良い。
金属製セパレータ53,拘束部63はそれぞれ,金属,ガラスから構成され,金属製セパレータ53よりも拘束部63の熱膨張係数の方が小さいことが通例である。このような条件でも,拘束部63による金属製セパレータ53の変形(撓み)の抑制が可能である。
The thermal expansion coefficient of the material constituting the restraining portion 63 may be smaller than the thermal expansion coefficient of the metallic separator 53.
Each of the metallic separator 53 and the restraining portion 63 is made of metal and glass, and the thermal expansion coefficient of the restraining portion 63 is usually smaller than that of the metallic separator 53. Even under such conditions, it is possible to suppress the deformation (bending) of the metallic separator 53 by the restricting portion 63.

金属製セパレータ53は,耐酸化耐久性の観点からSUH21(18Cr−3Al)のようなAl添加フェライト系SUS材を使用する。そのため,金属製セパレータ53の熱膨張係数は,常温から300℃の温度範囲内において,10〜14ppm/Kとなる。封止材は,引張応力には弱く割れやすいが,圧縮応力には強いので,封止材の熱膨張係数は金属製セパレータ53より低いことが好ましく,具体的には,常温から300℃の温度範囲内において,8ppm/K以上12ppm/K以下であることが好ましい。   The metal separator 53 uses an Al-added ferrite SUS material such as SUH21 (18Cr-3Al) from the viewpoint of oxidation resistance durability. Therefore, the thermal expansion coefficient of the metallic separator 53 is 10 to 14 ppm / K in the temperature range from room temperature to 300 ° C. Since the sealing material is weak against tensile stress and easily cracked, but is strong against compressive stress, it is preferable that the thermal expansion coefficient of the sealing material is lower than that of the metallic separator 53. Specifically, the temperature is from room temperature to 300 ° C. Within the range, it is preferably 8 ppm / K or more and 12 ppm / K or less.

一対の流れ制限部71は,金属製セパレータ53の上面(第2主面)及び固体電解質層56の上面とインターコネクタ41の間に,空気極55の1対の辺55aそれぞれに沿って,互いに対向して配置される。   The pair of flow restricting portions 71 are connected to each other along the pair of sides 55a of the air electrode 55 between the upper surface (second main surface) of the metallic separator 53 and the upper surface of the solid electrolyte layer 56 and the interconnector 41. Opposed to each other.

図5に示すように,酸化剤ガス(G)は,ガス流入部I2から,拘束部63を越えて,酸化剤ガス流路47に流入し,空気極55(電極)上を通過し,再び拘束部63を越えて,ガス流出部O2に流出する。   As shown in FIG. 5, the oxidant gas (G) flows from the gas inflow part I2 over the restraint part 63 into the oxidant gas flow path 47, passes over the air electrode 55 (electrode), and again. It flows out to the gas outflow part O2 over the restraint part 63.

このとき,次のように,空気極55への酸化剤ガス(供給ガス)の均一な供給が容易となり発電効率の向上が図れる。即ち,ガス流入部I2から供給された酸化剤ガス(G)は,拘束部63によって,平面視でガス流れ方向と垂直方向に分配された後に,空気極55上(電極面)に流れ出す(ダム効果)。これに加えて,一対の流れ制限部71は,ガス流入部I2から,拘束部63を越えて流入し,ガス流出部O2から流出する酸化剤ガス(供給ガス)の流れをガス流入部からガス流出部に向かう方向に沿う範囲に制限する。   At this time, the uniform supply of the oxidant gas (supply gas) to the air electrode 55 is facilitated as follows, and the power generation efficiency can be improved. That is, the oxidant gas (G) supplied from the gas inflow portion I2 is distributed by the restraining portion 63 in the direction perpendicular to the gas flow direction in plan view, and then flows out onto the air electrode 55 (electrode surface) (dam). effect). In addition to this, the pair of flow restricting portions 71 flows from the gas inflow portion I2 through the restricting portion 63 and flows the oxidant gas (supply gas) flowing out from the gas outflow portion O2 from the gas inflow portion to the gas. Limit to the range along the direction toward the outflow.

即ち,酸化剤ガスは拘束部63を越えて空気極55(電極)上に流入することで,拘束部63が一種のダムとして機能し,空気極55上に均一に供給ガスを供給し易くなる(供給ガスの分配)。その上,一対の流れ制限部71が空気極55外への酸化剤ガスの逃げを制限することで,酸化剤ガスの効率的かつ均一な供給が確保され,発電効率の向上が図れる。
特に,封止部62と拘束部63がそれぞれ,酸化剤ガスの封止および分配の機能を有することで,酸化剤ガスのリークの防止および酸化剤ガスの均一な供給の双方を新たな部材の追加や加工をすること無く,簡素な構成で実現できる。
また,前記拘束部63が,前記貫通孔58の全周にわたって配置されることで,貫通孔58内(電極上)での供給ガスの供給の均一性が向上する。
That is, the oxidant gas flows over the restraint portion 63 and onto the air electrode 55 (electrode), so that the restraint portion 63 functions as a kind of dam, and it becomes easy to uniformly supply the supply gas onto the air electrode 55. (Distribution of supply gas). In addition, since the pair of flow restricting portions 71 restricts the escape of the oxidant gas to the outside of the air electrode 55, efficient and uniform supply of the oxidant gas is ensured, and the power generation efficiency can be improved.
In particular, since the sealing portion 62 and the restraining portion 63 each have a function of sealing and distributing the oxidant gas, both the prevention of the oxidant gas leakage and the uniform supply of the oxidant gas can be achieved with new members. It can be realized with a simple configuration without any additional processing.
In addition, since the restricting portion 63 is arranged over the entire circumference of the through hole 58, the supply gas supply uniformity in the through hole 58 (on the electrode) is improved.

流れ制限部71は,セラミックフェルト,マイカ,バーミキュライトのいずれかから構成できる。これらの材料は,耐熱性および柔軟性を有することから,高温となる空気極55付近で拘束部63等の形状に応じて変形することで,流れ制限部71と拘束部63等間の隙間からの酸化剤ガス(供給ガス)の逃げを防止できる。   The flow restricting unit 71 can be composed of any one of ceramic felt, mica, and vermiculite. Since these materials have heat resistance and flexibility, the material is deformed in the vicinity of the air electrode 55 that is at a high temperature according to the shape of the restraining portion 63 and the like, so that the gap between the flow restricting portion 71 and the restraining portion 63 etc. Oxidant gas (supply gas) can be prevented from escaping.

以上のように,固体酸化物形燃料電池10では,封止部62,拘束部63,および流れ制限部71を用いた比較的簡素な構成で,供給ガスのリーク防止および電極への均一な供給を可能とし,発電効率の向上を図ることができる。   As described above, the solid oxide fuel cell 10 has a relatively simple configuration using the sealing portion 62, the restraining portion 63, and the flow restricting portion 71, and prevents the supply gas from leaking and uniformly supplying the electrodes. Power generation efficiency can be improved.

(第2の実施形態)
第2の実施形態を説明する。図6は,第2の実施形態に係る燃料電池セル40aの断面図である。図7は,第2の実施形態に係る燃料電池単セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50a)を分解した状態を表す分解斜視図である。
(Second Embodiment)
A second embodiment will be described. FIG. 6 is a cross-sectional view of a fuel battery cell 40a according to the second embodiment. FIG. 7 is an exploded perspective view showing a state in which the fuel cell single cell main body 44 and the metal separator 53 (the separator-equipped fuel cell 50a) according to the second embodiment are disassembled.

燃料電池セル40aは,貫通孔58の側面に配置される連結部64を有する。即ち,封止部62aと拘束部63aが連結部64により連結され,一体に形成されている。   The fuel cell 40 a has a connecting portion 64 disposed on the side surface of the through hole 58. That is, the sealing portion 62a and the restraining portion 63a are connected by the connecting portion 64 and are integrally formed.

封止部62aと拘束部63aとの一体化は,封止部62aの幅の実質的増大に寄与し,封止部62aによる封止の確実性が向上する。既述のように,封止部62aは,酸化剤ガス流路47から接合部61への酸化剤ガスの移動を阻止する。封止部62aと拘束部63aとが一体化することで,酸化剤ガス流路47から接合部61に至る経路上での,封止部62aの長さ(幅,シールパス)が大きくなる。この結果,封止部62aによる封止の確実性がより向上する。   The integration of the sealing portion 62a and the restraining portion 63a contributes to a substantial increase in the width of the sealing portion 62a, and the reliability of sealing by the sealing portion 62a is improved. As described above, the sealing portion 62 a prevents the oxidant gas from moving from the oxidant gas flow path 47 to the joint portion 61. By integrating the sealing portion 62a and the restraining portion 63a, the length (width, seal path) of the sealing portion 62a on the path from the oxidant gas flow path 47 to the joint portion 61 is increased. As a result, the reliability of sealing by the sealing portion 62a is further improved.

なお,本実施形態では,封止部62aと拘束部63aの構成材料の境界が比較的明確であり,この境界で成分が不連続的に変化している。これに対して,封止部62aと拘束部63aの構成材料の境界において,成分が連続的に変化し,従い,境界が不明確(ぼやける)となることも許容される。   In the present embodiment, the boundary between the constituent materials of the sealing portion 62a and the restraining portion 63a is relatively clear, and the components change discontinuously at this boundary. On the other hand, it is allowed that the component continuously changes at the boundary between the constituent materials of the sealing portion 62a and the restraining portion 63a, and accordingly the boundary becomes unclear (blurred).

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

上記実施形態では,空気極55側に流れ制限部71が配置され,空気極55への酸化剤ガスの供給の均一性が保持された。これに対して,燃料極57側に流れ制限部71を配置し,燃料極57への燃料ガスの供給の均一性を保持しても良い。即ち,制限部71は,空気極55側および燃料極57側のいずれか一方または双方に配置できる。   In the above embodiment, the flow restricting portion 71 is disposed on the air electrode 55 side, and the uniformity of the supply of the oxidant gas to the air electrode 55 is maintained. On the other hand, the flow restricting portion 71 may be arranged on the fuel electrode 57 side to maintain the uniformity of the supply of the fuel gas to the fuel electrode 57. That is, the restricting portion 71 can be disposed on one or both of the air electrode 55 side and the fuel electrode 57 side.

10 固体酸化物形燃料電池
11,12 エンドプレート
21(22a,22b),22(22a,22b),23(23a,23b) ボルト
31,32 貫通孔
35 ナット
40 燃料電池セル
41,45 インターコネクタ
42a,42b 集電体
43 枠部
44 燃料電池単セル本体
46 開口
47 酸化剤ガス流路
48 燃料ガス流路
50 セパレータ付燃料電池セル
51 空気極フレーム
52 絶縁フレーム
53 金属製セパレータ
54 燃料極フレーム
55 空気極
55a 辺
56 固体電解質層
57 燃料極
58 貫通孔
61 接合部
62 封止部
62a 封止部
63 拘束部
64 連結部
71 流れ制限部
I1,I2 ガス流入部
O1,O2 ガス流出部
10 Solid oxide fuel cells 11, 12 End plates 21 (22a, 22b), 22 (22a, 22b), 23 (23a, 23b) Bolts 31, 32 Through hole 35 Nut 40 Fuel cell 41, 45 Interconnector 42a , 42b Current collector 43 Frame 44 Fuel cell single cell body 46 Opening 47 Oxidant gas flow path 48 Fuel gas flow path 50 Fuel cell with separator 51 Air electrode frame 52 Insulating frame 53 Metal separator 54 Fuel electrode frame 55 Air Electrode 55a Side 56 Solid electrolyte layer 57 Fuel electrode 58 Through-hole 61 Junction part 62 Sealing part 62a Sealing part 63 Restraint part 64 Connection part 71 Flow restriction part I1, I2 Gas inflow part O1, O2 Gas outflow part

Claims (4)

第1インターコネクタおよび第2インターコネクタと,
これらインターコネクタ間に配置され,前記第1インターコネクタに対向する第1主面および前記第2インターコネクタに対向する第2主面,および前記第1主面および前記第2主面間を貫通する貫通孔を有する,板状の金属製セパレータと,
空気極,燃料極,およびこれらの間に配置される固体電解質層を有し,前記固体電解質層が,前記第1インターコネクタと前記第1主面との間に,前記空気極および燃料極のいずれかの電極が平面視で前記貫通孔内に配置された,燃料電池単セル本体と,
前記燃料電池単セル本体と,前記金属製セパレータの第1主面と,を接合し,Agを含むロウ材から成る,接合部と,
前記接合部よりも前記貫通孔側の,前記燃料電池単セル本体と前記第1主面の間に,前記貫通孔の全周にわたって配置され,ガラスを含む封止材を有する,封止部と,
前記第2主面と前記第2インターコネクタとの間に,酸化剤ガスおよび燃料ガスのいずれかの供給ガスを流入させるガス流入部と,
前記ガス流入部から前記第2主面と前記第2インターコネクタとの間に流入し,前記電極の表面上を通過した前記供給ガスを流出させるガス流出部と,
前記金属製セパレータを挟んで,前記封止部と対向する位置における,前記金属製セパレータの第2主面上に,前記ガス流入部と対向して配置され,前記封止材と同じ材料または前記封止材よりも大きな熱膨張係数を有する材料で構成される拘束部と,
を具備する燃料電池スタックであって,
前記電極は,前記ガス流入部から前記ガス流出部に向かう方向に沿う1対の辺を有し,
前記ガス流入部および前記ガス流出部は,平面視で前記貫通孔および前記拘束部よりも外周側に配置され,
前記燃料電池スタックは,さらに,前記第2主面と前記第2インターコネクタの間に,互いに対向して配置され,前記ガス流入部から,前記拘束部を越えて流入し,前記ガス流出部から流出する供給ガスの流れを前記ガス流入部から前記ガス流出部に向かう方向に沿う範囲に制限するように,前記1対の辺それぞれに沿って配置される,一対の流れ制限部を具備することを特徴とする燃料電池スタック。
A first interconnector and a second interconnector;
A first main surface disposed between the interconnectors and facing the first interconnector, a second main surface facing the second interconnector, and between the first main surface and the second main surface. A plate-shaped metal separator having a through hole;
An air electrode, a fuel electrode, and a solid electrolyte layer disposed between the air electrode, the fuel electrode, and the solid electrolyte layer between the first interconnector and the first main surface. A fuel cell single cell body , in which any one of the electrodes is disposed in the through hole in plan view;
Joining the fuel cell single cell body and the first main surface of the metallic separator, and made of a brazing material containing Ag;
A sealing portion that is disposed over the entire circumference of the through-hole between the fuel cell single cell main body and the first main surface on the side of the through-hole with respect to the joint, and has a sealing material containing glass; ,
A gas inflow portion for allowing a supply gas of either an oxidant gas or a fuel gas to flow between the second main surface and the second interconnector;
A gas outflow part that flows in between the second main surface and the second interconnector from the gas inflow part and outflows the supply gas that has passed over the surface of the electrode;
On the second main surface of the metallic separator at a position facing the sealing portion with the metallic separator in between, the gas inflow portion is disposed, and the same material as the sealing material or the A constrained portion made of a material having a larger coefficient of thermal expansion than the encapsulant;
A fuel cell stack comprising:
The electrode has a pair of sides along a direction from the gas inflow portion to the gas outflow portion,
The gas inflow portion and the gas outflow portion are arranged on the outer peripheral side with respect to the through hole and the restraint portion in a plan view,
The fuel cell stack is further disposed between the second main surface and the second interconnector so as to face each other, and flows in from the gas inflow portion over the restraint portion and from the gas outflow portion. A pair of flow restricting portions arranged along each of the pair of sides so as to restrict a flow of the supply gas flowing out to a range along a direction from the gas inflow portion toward the gas outflow portion; A fuel cell stack characterized by
前記拘束部が,前記貫通孔の全周にわたって配置される,
ことを特徴とする請求項1記載の燃料電池スタック。
The restraining portion is disposed over the entire circumference of the through hole;
The fuel cell stack according to claim 1.
前記金属製セパレータの前記貫通孔の内面に配置された連結部によって,前記封止部と前記拘束部とが連結されている,
ことを特徴とする請求項1または2に記載の燃料電池スタック。
The sealing portion and the restraining portion are connected by a connecting portion disposed on the inner surface of the through hole of the metallic separator.
The fuel cell stack according to claim 1 or 2, wherein
前記流れ制限部が,セラミックフェルト,マイカ,バーミキュライトのいずれかを含む,
ことを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池スタック。
The flow restricting portion includes one of ceramic felt, mica, and vermiculite,
The fuel cell stack according to any one of claims 1 to 3, wherein
JP2013224885A 2013-10-30 2013-10-30 Fuel cell stack Active JP6118230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224885A JP6118230B2 (en) 2013-10-30 2013-10-30 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224885A JP6118230B2 (en) 2013-10-30 2013-10-30 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2015088288A JP2015088288A (en) 2015-05-07
JP6118230B2 true JP6118230B2 (en) 2017-04-19

Family

ID=53050876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224885A Active JP6118230B2 (en) 2013-10-30 2013-10-30 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP6118230B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110326143B (en) * 2017-02-27 2022-08-26 森村索福克科技股份有限公司 Electrochemical reaction unit and electrochemical reaction battery
JP7061094B2 (en) * 2019-07-02 2022-04-27 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP6945035B1 (en) * 2020-04-21 2021-10-06 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141081A (en) * 2000-11-06 2002-05-17 Mitsubishi Heavy Ind Ltd Flat plate solid oxide fuel cell
JP2005190862A (en) * 2003-12-26 2005-07-14 Nissan Motor Co Ltd Solid oxide type fuel battery cell
JP5242952B2 (en) * 2007-06-27 2013-07-24 日本特殊陶業株式会社 Solid electrolyte fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015088288A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US10297854B2 (en) Fuel cell stack
JP5876944B2 (en) Fuel cell and fuel cell stack
JP6013304B2 (en) Fuel cell single cell with separator and fuel cell stack
JP6199697B2 (en) Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof
JP5727428B2 (en) Fuel cell with separator and fuel cell
CA2988369C (en) Solid oxide fuel cell
JP2005174884A (en) Solid oxide fuel cell and its interconnector
JP6118230B2 (en) Fuel cell stack
JP5727431B2 (en) Fuel cell with separator and fuel cell
JP5881594B2 (en) Fuel cell stack and manufacturing method thereof
JP2016062655A (en) Separator-fitted single fuel cell
JP6667278B2 (en) Electrochemical reaction cell stack
JP6893126B2 (en) Electrochemical reaction cell stack
JP2013114784A (en) Fuel cell
KR102114627B1 (en) Fuel cell power generation unit and fuel cell stack
JP7082954B2 (en) Electrochemical reaction cell stack
JP6286222B2 (en) Fuel cell stack
JP5846936B2 (en) Fuel cell
JP2018041569A (en) Electrochemical reaction unit, and electrochemical reaction cell stack
JP5727432B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP2013257973A (en) Solid oxide fuel cell stack
WO2016175231A1 (en) Fuel cell stack
JP7023898B2 (en) Electrochemical reaction cell stack
JP5727567B2 (en) Solid oxide fuel cell, solid oxide fuel cell stack and spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6118230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250