JP2001351646A - LaGaO3 SOLID ELECTROLYTE FUEL CELL - Google Patents

LaGaO3 SOLID ELECTROLYTE FUEL CELL

Info

Publication number
JP2001351646A
JP2001351646A JP2000171044A JP2000171044A JP2001351646A JP 2001351646 A JP2001351646 A JP 2001351646A JP 2000171044 A JP2000171044 A JP 2000171044A JP 2000171044 A JP2000171044 A JP 2000171044A JP 2001351646 A JP2001351646 A JP 2001351646A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte layer
fuel cell
lagao
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000171044A
Other languages
Japanese (ja)
Inventor
Isamu Yasuda
勇 安田
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2000171044A priority Critical patent/JP2001351646A/en
Publication of JP2001351646A publication Critical patent/JP2001351646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell that has a high generating performance and a longtime stability using LaGaO3 material in the solid electrolyte layer of the solid electrolyte fuel cell. SOLUTION: The solid electrolyte layer 6 is made of a sintered body of La0.9Sr0.1Ga0.8Mg0.2O2.85 of a thickness of 0.2 mm and is formed of SDC film 10 having a composition of Ce0.8Sm0.2O1.90 on its surface. On one face of the solid electrolyte layer 6, a fuel pole 4 made of Ni/CeYSZ/SDC (Ce0.9Sm0.1O1.95) is formed through SDC film 10 and on the other face an air pole made of La0.6 Sr0.4Co0.2Fe0.8O3 is made through SDC film 10. Even if a LaGaO3 material is used for the solid electrolyte layer, reaction between the solid electrolyte and the fuel pole or the air pole do not occur and a high performance and long time stabilized generation is achieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池に関し、特に固体電解質層にLaGaO系の材料
を用いた発電性能の高いLaGaO系固体電解質型燃
料電池に関する。
The present invention relates to relates to a solid oxide fuel cell, particularly to high LaGaO 3 based solid electrolyte fuel cell power generation performance using LaGaO 3 type material in the solid electrolyte layer.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、燃料電池の中
でも動作温度が700〜1000℃と比較的高いことか
ら多様な燃料が使用可能な上、発電効率が高く、またす
べて固体材料で構成されているため取扱いが容易である
などの利点があり、省資源の観点、また環境に対する影
響の観点からも新しいエネルギー源として注目され、実
用化に向けた研究開発が進められている。
2. Description of the Related Art A solid oxide fuel cell has a relatively high operating temperature of 700 to 1000 ° C. among fuel cells, so that various fuels can be used, power generation efficiency is high, and all are made of solid materials. Therefore, it has advantages such as easy handling, and is attracting attention as a new energy source from the viewpoint of resource saving and the impact on the environment, and research and development for practical use are being promoted.

【0003】固体電解質型燃料電池は、固体電解質層
と、固体電解質層の一方の面に設けられた燃料極と、そ
の反対側の面に設けられた空気極とを備えた単電池と、
これら単電池を電気的に接続するインタコネクタ等から
構成され、燃料極に水素などの燃料ガス、空気極に空気
等の酸化剤ガスを供給することにより電力が発生する。
[0003] A solid oxide fuel cell is a unit cell comprising a solid electrolyte layer, a fuel electrode provided on one surface of the solid electrolyte layer, and an air electrode provided on the opposite surface.
An electric power supply is generated by supplying a fuel gas such as hydrogen to the fuel electrode and an oxidizing gas such as air to the air electrode.

【0004】固体電解質層は、主に8YSZ(YSZ:
イットリアを8モル%ドープした安定化ジルコニア)、
あるいは3YSZ等から構成され、空気極は、LaSr
MnO (LSMと称する。)が代表的な材料として
用いられ、またLSM中のLaを他元素で置換したもの
や、MnをCoに置き換えたCo系材料も提案されてい
る。燃料極は、Ni/YSZサーメット等に代表される
材質により構成されている。
The solid electrolyte layer is mainly composed of 8YSZ (YSZ:
Stabilized zirconia doped with 8 mol% of yttria),
Alternatively, the air electrode is made of LaYSr or the like.
MnO 3 (referred to as LSM) is used as a typical material, and a material in which La in the LSM is replaced by another element or a Co-based material in which Mn is replaced by Co has been proposed. The fuel electrode is made of a material typified by Ni / YSZ cermet or the like.

【0005】空気極や燃料極は、例えば最初に固体電解
質層の片面に燃料極となる原料を塗布し、1450℃程
度の高温で焼成し、次に反対側の面に空気極の原料を塗
布し、1150℃程度の低温で焼成して形成している。
こうして空気極と固体電解質層との間、また燃料極と固
体電解質層との間に界面が形成される。
[0005] For the air electrode or the fuel electrode, for example, a material to be a fuel electrode is first applied to one surface of the solid electrolyte layer, baked at a high temperature of about 1450 ° C, and then the material for the air electrode is applied to the opposite surface. And formed by firing at a low temperature of about 1150 ° C.
Thus, an interface is formed between the air electrode and the solid electrolyte layer, and between the fuel electrode and the solid electrolyte layer.

【0006】近年、固体電解質層にLaGaO系の材
料を用いて、低温作動化の実現を目指したLaGaO
系固体電解質型燃料電池の開発が注目されている。
In recent years, using materials LaGaO 3 based on the solid electrolyte layer, LaGaO 3 aimed at realization of low-temperature activation
Attention has been focused on the development of a solid oxide fuel cell.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、固体電
解質層にLaGaO系酸化物を用いた固体電解質型燃
料電池の場合、次のような不都合があった。
However, a solid electrolyte fuel cell using a LaGaO 3 -based oxide for the solid electrolyte layer has the following disadvantages.

【0008】すなわち、LaGaO系の電解質材料
は、NiOやYSZなど通常使用される燃料極原料との
反応性が高いため、燃料極の焼成時に燃料極と固体電解
質層の界面で反応層が形成され、性能が低下する。
That is, since the LaGaO 3 -based electrolyte material has a high reactivity with a commonly used fuel electrode material such as NiO or YSZ, a reaction layer is formed at the interface between the fuel electrode and the solid electrolyte layer during firing of the fuel electrode. Performance is reduced.

【0009】また、NiOやYSZとの反応を防止する
ため金属Niを燃料極原料に用いた場合は、焼成中にN
iOとならないように、還元雰囲気で焼成する必要があ
り、製作コストが増加するうえに、発電中に、時間とと
もにNiの焼結が進行し、燃料極の劣化が問題となる。
When metallic Ni is used as a fuel electrode raw material in order to prevent reaction with NiO or YSZ, N
It is necessary to sinter in a reducing atmosphere so as not to produce iO, which increases the production cost and also causes sintering of Ni to progress with time during power generation, resulting in a problem of deterioration of the fuel electrode.

【0010】本発明は、上述の点に鑑みてなされたもの
で、固体電解質層にLaGaO系の材料を用いて、性
能、耐久性を向上させたLaGaO系固体電解質型燃
料電池を提供することを目的とする。
The present invention has been made in view of the above points, and provides a LaGaO 3 -based solid electrolyte fuel cell having improved performance and durability using a LaGaO 3 -based material for a solid electrolyte layer. The purpose is to:

【0011】[0011]

【課題を解決するための手段】そこで本発明では、上記
課題を解決するため、次のようにLaGaO系固体電
解質型燃料電池を構成した。すなわち、固体電解質型燃
料電池の固体電解質層にLaGaO系の材料を用い、
固体電解質層と燃料極との間にドープしたセリアの膜を
形成することとした。
Accordingly, in the present invention, a LaGaO 3 -based solid oxide fuel cell is constructed as follows in order to solve the above-mentioned problems. That is, a LaGaO 3 material is used for a solid electrolyte layer of a solid oxide fuel cell,
A doped ceria film was formed between the solid electrolyte layer and the fuel electrode.

【0012】このようにドープしたセリアの膜を固体電
解質層と燃料極との間に設けたことにより、LaGaO
系の材料を固体電解質層に用いても、固体電解質層と
燃料極原料であるYSZやNiOとの間で反応が起こら
ず、高い性能と長期に安定した性能を維持できるととも
に、固体電解質層にLaGaO系の材料を用いたこと
による高い性能を保持できる。
By providing the doped ceria film between the solid electrolyte layer and the fuel electrode, the LaGaO
Even when a three- system material is used for the solid electrolyte layer, no reaction occurs between the solid electrolyte layer and YSZ or NiO as a fuel electrode raw material, so that high performance and stable performance over a long period of time can be maintained, and the solid electrolyte layer can be maintained. High performance due to the use of a LaGaO 3 -based material.

【0013】具体的には固体電解質層として、La
1−xSrGa1−yMg(0.05<x<
0.5、0.05<y<0.5)、好ましくはLa
0.9Sr0. Ga0.8Mg0.2を用いる。
xは0.05以下ではSrをドープする効果が小さく、
0.5以上では特性が落ちてしまう。yは0.05以下
ではMgをドープする効果が小さく、0.5以上では特
性が落ちてしまう。
Specifically, La is used as a solid electrolyte layer.
1-x Sr x Ga 1-y Mg y O 3 (0.05 <x <
0.5, 0.05 <y <0.5), preferably La
0.9 Sr 0. 1 Ga 0.8 Mg 0.2 O 3 is used.
When x is 0.05 or less, the effect of doping Sr is small,
If it is more than 0.5, the characteristics will deteriorate. When y is 0.05 or less, the effect of doping with Mg is small, and when y is 0.5 or more, the characteristics deteriorate.

【0014】ドープしたセリアの膜としては、Ce
1−z(Mは3価の希土類、0.05≦z≦
0.5、d=2−0.5z)、Mとしては、最もイオン
導電性の高いCe1−zを与えるGdあるいは
Smであり、例えばCe0.8Sm 0.21.9とし
た。zは、0.05以下ではMをドープする効果が小さ
く、0.5以上では酸素イオン導電性が低下してしま
う。
As the doped ceria film, Ce
1-zMzOd(M is trivalent rare earth, 0.05 ≦ z ≦
0.5, d = 2-0.5z), M is the most ion
Highly conductive Ce1-zMzOdGd or
Sm, for example, Ce0.8Sm 0.2O1.9age
Was. When z is 0.05 or less, the effect of doping M is small.
Above 0.5, oxygen ion conductivity decreases.
U.

【0015】このような構成の場合の燃料極としては、
通常使用されるNi(O)−YSZサーメットが選択可
能である。低温での性能をさらに向上させるならば、N
iOと、CeYSZと、サマリアをドープしたセリア酸
化物、例えば、Ce0.9Sm0.11.95とで構
成する。更にSmに代えて、例えばGdでもよい。この
時、Ni粒子の粒径は、2μm程度とし、Ni粒子のサ
ーメット全体に対する体積比は約0.6とするとよい。
In the case of such a configuration, the fuel electrode
The commonly used Ni (O) -YSZ cermet can be selected. To further improve low-temperature performance, N
It is composed of iO, CeYSZ, and ceria oxide doped with Samaria, for example, Ce 0.9 Sm 0.1 O 1.95 . Further, for example, Gd may be used instead of Sm. At this time, the particle size of the Ni particles is preferably about 2 μm, and the volume ratio of the Ni particles to the entire cermet is preferably about 0.6.

【0016】空気極は、既知の電極材料、例えば、La
0.6Sr0.4Co0.2Fe .8(LSC
F)が使用可能であり、更に、空気極にドープしたセリ
ア酸化物を分散させてもよい。
The cathode is made of a known electrode material, for example, La.
0.6 Sr 0.4 Co 0.2 Fe 0 . 8 O 3 (LSC
F) can be used, and a doped ceria oxide may be dispersed in the air electrode.

【0017】また本発明では、固体電解質層と空気極と
の間にドープしたセリア膜を形成することとした。この
ことによって、空気極の分極抵抗を低減することが可能
となり、電池の性能を更に向上させることができる。ド
ープしたセリアの膜としては、Ce1−z(M
は3価の希土類、0.05≦z≦0.5、d=2−0.
5z)、Mとしては、最もイオン導電性の高いCe
1−zを与えるGdあるいはSmであり、例え
ばCe0.8Sm0.21.9である。
In the present invention, a doped ceria film is formed between the solid electrolyte layer and the air electrode. As a result, the polarization resistance of the air electrode can be reduced, and the performance of the battery can be further improved. As a doped ceria film, Ce 1-z M z O d (M
Is a trivalent rare earth element, 0.05 ≦ z ≦ 0.5, d = 2-0.
5z) As M, Ce has the highest ionic conductivity.
A 1-z M z O d give Gd or Sm, such as Ce 0.8 Sm 0.2 O 1.9.

【0018】[0018]

【発明の実施の形態】次に、本発明にかかるLaGaO
系固体電解質型燃料電池(平板型固体電解質型燃料電
池)の一実施形態について説明する。
Next, the LaGaO according to the present invention will be described.
An embodiment of a three- system solid oxide fuel cell (flat solid electrolyte fuel cell) will be described.

【0019】固体電解質型燃料電池は、インタコネクタ
としてのセパレータ(図示せず)と単電池2とから構成
されている。単電池2は、図1に示すように燃料極4
と、固体電解質層6と、空気極8からなり、固体電解質
層6の表裏にそれぞれ燃料極4と空気極8とが形成して
ある。固体電解質層6は、LaGaO系の材料からな
り、その表裏面にはSDC(Ce0.8Sm0.2
1.9)膜10が形成してある。
The solid oxide fuel cell comprises a separator (not shown) as an interconnector and a unit cell 2. The unit cell 2 has a fuel electrode 4 as shown in FIG.
, A solid electrolyte layer 6 and an air electrode 8, and a fuel electrode 4 and an air electrode 8 are formed on the front and back of the solid electrolyte layer 6, respectively. The solid electrolyte layer 6 is made of a LaGaO 3 -based material, and SDC (Ce 0.8 Sm 0.2 O
1.9 ) The film 10 is formed.

【0020】固体電解質層6は、例えばLa0.9Sr
0.1Ga0.8Mg0.22. 85にアルミナを2
W%添加して焼結した焼結体である。SDC膜10は、
Ce 0.8Sm0.21.9の粉体(1〜2μm)を
エタノール中に分散し、その溶液中に固体電解質層6を
浸漬し引き上げた後、約1250℃で焼成して形成す
る。
The solid electrolyte layer 6 is made of, for example, La0.9Sr
0.1Ga0.8Mg0.2O2. 85Alumina 2
It is a sintered body obtained by adding W% and sintering. The SDC film 10
Ce 0.8Sm0.2O1.9Powder (1-2 μm)
The solid electrolyte layer 6 is dispersed in ethanol and the solution is dispersed in the ethanol.
After dipping and lifting, it is formed by firing at about 1250 ° C.
You.

【0021】固体電解質層6の一面にはNi/CeYS
Z/SDC(Ce0.9Sm0.11.95)からな
る燃料極4がSDC膜10を介して形成されている。
One surface of the solid electrolyte layer 6 is Ni / CeYS.
The fuel electrode 4 made of Z / SDC (Ce 0.9 Sm 0.1 O 1.95 ) is formed via the SDC film 10.

【0022】燃料極4は、例えばSDC粉体とNiO粉
体とをボールミルで所定の大きさに粉砕、混合し、更に
CeとZrとYのオクチル酸のトルエン溶液を加え、加
水分解後、スクリーン印刷法等によりSDC膜10上に
所定の厚さに塗布し、塗布した後、約1350℃で焼成
して形成する。このような構成により、燃料極4中の酸
化物成分は、イオン導電性および電子導電性が高くなっ
ている。
The fuel electrode 4 is prepared by, for example, crushing and mixing SDC powder and NiO powder to a predetermined size with a ball mill, further adding a toluene solution of octylic acid of Ce, Zr and Y, hydrolyzing, and screen A predetermined thickness is applied on the SDC film 10 by a printing method or the like, and after being applied, it is formed by firing at about 1350 ° C. With such a configuration, the oxide component in the fuel electrode 4 has high ionic conductivity and electronic conductivity.

【0023】空気極8は、La0.6Sr0.4Co
0.2Fe0.8であり、燃料極4と反対側の固体
電解質層6の表面にSDC膜10を介して形成されてい
る。
The air electrode 8 is made of La 0.6 Sr 0.4 Co
0.2 Fe 0.8 O 3 and is formed on the surface of the solid electrolyte layer 6 opposite to the fuel electrode 4 via the SDC film 10.

【0024】空気極8は、例えば、La0.6Sr
0.4Co0.2Fe0.8(LSCF)の粉体を
ヘキシレングリコール中に分散し、その溶液をスクリー
ン印刷法等によりSDC膜10上に塗布し、1100℃
で4時間焼成して形成する。
The air electrode 8 is, for example, La 0.6 Sr
A powder of 0.4 Co 0.2 Fe 0.8 O 3 (LSCF) is dispersed in hexylene glycol, and the solution is applied on the SDC film 10 by a screen printing method or the like, and 1100 ° C.
For 4 hours.

【0025】尚、燃料極4のCe0.9Sm0.1
1.95を、Ce0.8Sm0.2 1.9としてもよ
く、また空気極8を、Pr0.6Sr0.4MnO
Ce .8Sm0.21.90のコンポジットで形成
してもよい。
The Ce of the fuel electrode 40.9Sm0.1O
1.95To Ce0.8Sm0.2O 1.9As well
And the air electrode 8 is Pr0.6Sr0.4MnO3When
Ce0 . 8Sm0.2O1.90Formed of composite
May be.

【0026】このように単電池2を構成することによ
り、性能の高いLaGaO系の材料から固体電解質層
6が形成され、しかも燃料極4と固体電解質層6および
空気極8と固体電解質層6との間にSDC膜10が形成
されていることから、固体電解質層6と燃料極4や空気
極8の原料物質と反応を生じさせることがなく、長期間
安定した、高い性能を維持できるLaGaO系固体電
解質型燃料電池を形成することができる。
By constituting the cell 2 in this manner, the solid electrolyte layer 6 is formed from a LaGaO 3 -based material having high performance, and the fuel electrode 4 and the solid electrolyte layer 6 and the air electrode 8 and the solid electrolyte layer 6 are formed. Is formed between the solid electrolyte layer 6 and the raw material of the fuel electrode 4 or the air electrode 8 without causing a reaction between the solid electrolyte layer 6 and the LaGaO layer that can maintain stable and high performance for a long time. A three- system solid oxide fuel cell can be formed.

【0027】尚、SDC膜10は少なくとも燃料極4と
固体電解質層6との間に形成することにより、燃料極4
内の酸化金属物質等との反応を防止し、高い性能と長期
間の安定した性能を保持することができる。
The SDC film 10 is formed at least between the fuel electrode 4 and the solid electrolyte layer 6 so that the fuel electrode 4
The reaction with metal oxides and the like in the inside can be prevented, and high performance and long-term stable performance can be maintained.

【0028】また、燃料極4や空気極8内にSDC粉体
を適宜混入させることにより、長期安定性の向上や電極
性能の向上が期待できる。
Further, by appropriately mixing the SDC powder into the fuel electrode 4 and the air electrode 8, improvement in long-term stability and improvement in electrode performance can be expected.

【0029】(実験例)以下、LaGaO系固体電解
質型燃料電池の実験例について説明する。
(Experimental Example) Hereinafter, an experimental example of a LaGaO 3 -based solid oxide fuel cell will be described.

【0030】実験では、単電池を次のようにして製造し
た。
In the experiment, a unit cell was manufactured as follows.

【0031】すなわち、固体電解質層を、La0.9
0.1Ga0.8Mg0.2 .85を焼結した6
cm角の焼結体とし、その表裏面にSDC膜を0.2μ
mの厚さで形成した。SDC膜は、エタノール中にCe
0.8Sm0.21.90の粉体(1〜2μm)を分
散し、その溶液中に固体電解質層を浸漬し引き上げた
後、約1250℃で焼成して形成した。
That is, the solid electrolyte layer is made of La 0.9 S
r 0.1 Ga 0.8 Mg 0.2 O 2 . Sintered 85 6
cm sintered body, SDC film on both sides 0.2μ
m. The SDC membrane is made of Ce in ethanol.
A powder of 0.8 Sm 0.2 O 1.90 (1-2 μm) was dispersed, the solid electrolyte layer was immersed in the solution, pulled up, and then fired at about 1250 ° C.

【0032】燃料極は、SDC粉体とNiO粉体とをボ
ールミルで所定の大きさに粉砕、混合し、更にCeとZ
rとYのオクチル酸のトルエン溶液を加え、加水分解
後、スクリーン印刷法等によりSDC膜上に塗布し、約
1350℃で焼成し、体積比でCe0.9Sm0.1
1.95が40%、Niが50%、CeYSZ((Ce
0.1((Y0.2(Zr
0.80.9)が10%となるようにした。
The fuel electrode is obtained by grinding and mixing SDC powder and NiO powder to a predetermined size with a ball mill, and further mixing Ce and Z
A toluene solution of octylic acid of r and Y is added, hydrolyzed, applied on an SDC film by a screen printing method or the like, baked at about 1350 ° C., and Ce 0.9 Sm 0.1 O by volume ratio.
1.95 40%, Ni 50%, CeYSZ ((Ce
0 2 ) 0.1 ((Y 2 O 3 ) 0.2 (Zr
O 2 ) 0.8 ) 0.9 ) was adjusted to 10%.

【0033】空気極は、La0.6Sr0.4Co
0.2Fe0.8(LSCF)粉をヘキシレングリ
コール中に分散し、その溶液をスクリーン印刷法等で上
記燃料極の反対側のSDC膜上に塗布し、1100℃で
4時間焼成して形成した。
The air electrode is La 0.6 Sr 0.4 Co
0.2 Fe 0.8 O 3 (LSCF) powder is dispersed in hexylene glycol, the solution is applied on the SDC film on the opposite side of the fuel electrode by a screen printing method or the like, and baked at 1100 ° C. for 4 hours. Formed.

【0034】固体電解質層とSDC層の表面、およびそ
れらの断面の電子顕微鏡写真を図2〜図4に示す。
FIGS. 2 to 4 show electron micrographs of the surfaces of the solid electrolyte layer and the SDC layer and their cross sections.

【0035】図2に、La0.9Sr0.1Ga0.8
Mg0.22.85固体電解質層の表面の電子顕微鏡
写真を示す。図2に示すように、La0.9Sr0.1
Ga 0.8Mg0.22.85の表面結晶粒が現れて
いる。図3は、La0.9Sr0.1Ga0.8Mg
0.22.85固体電解質層の表面に(図2に示す)
SDC膜を形成した場合の表面の電子顕微鏡写真であ
る。図2と図3とを比較することによって、固体電解質
層の表面全体が緻密なSDC膜で均一に覆われたことが
わかる。
FIG. 2 shows La0.9Sr0.1Ga0.8
Mg0.2O2.85Electron microscope of the surface of the solid electrolyte layer
A photograph is shown. As shown in FIG.0.9Sr0.1
Ga 0.8Mg0.2O2.85Surface crystal grains appear
I have. FIG.0.9Sr0.1Ga0.8Mg
0.2O2.85On the surface of the solid electrolyte layer (shown in Fig. 2)
5 is an electron micrograph of the surface when an SDC film is formed.
You. By comparing FIG. 2 and FIG. 3, the solid electrolyte
That the entire surface of the layer was evenly covered with a dense SDC film
Understand.

【0036】図4は、表面にSDC膜を形成した固体電
解質層の断面である。図4に示すように、固体電解質層
の表面にSDC膜が均一な厚さで形成されていることが
わかる。
FIG. 4 is a cross section of a solid electrolyte layer having an SDC film formed on the surface. As shown in FIG. 4, it can be seen that the SDC film is formed with a uniform thickness on the surface of the solid electrolyte layer.

【0037】図5に、上記単電池を用いて固体電解質型
燃料電池を構成し、その固体電解質型燃料電池を作動さ
せたときの電流密度と電圧のグラフを示す。図5に示す
ように、最高出力密度は、1平方cmあたり、800
℃、750℃、700℃、650℃でそれぞれ0.67
W、0.58W、0.46W、0.29Wであり、低温
作動時においても本発明の固体電解質型燃料電池は発電
能力が高く、十分な発電特性を有することがわかる。ま
た、かかる固体電解質型燃料電池を連続運転したとこ
ろ、長時間の安定した作動が見られた。
FIG. 5 is a graph showing a current density and a voltage when a solid oxide fuel cell is constructed using the above-mentioned unit cells and the solid oxide fuel cell is operated. As shown in FIG. 5, the maximum power density is 800 per square cm.
0.67 at 750 ° C, 700 ° C, and 650 ° C
W, 0.58 W, 0.46 W, and 0.29 W, indicating that the solid oxide fuel cell of the present invention has high power generation capability and sufficient power generation characteristics even at low temperature operation. When the solid oxide fuel cell was continuously operated, a stable operation for a long time was observed.

【0038】[0038]

【発明の効果】本発明のLaGaO系固体電解質型燃
料電池によれば、固体電解質層にLaGaO系の材料
を用い、少なくとも燃料極との間にドープしたセリア膜
を形成したことから、燃料極にNiOやYSZ系の材料
を用いたとしても、材料間の反応が起こらず、発電性能
が高く、しかも長時間安定した発電動作を行うLaGa
系固体電解質型燃料電池を提供することができる。
According to LaGaO 3 based solid electrolyte fuel cell of the present invention, using a LaGaO 3 type material in the solid electrolyte layer, since the formation of the ceria film doped at least between the fuel electrode, the fuel Even if NiO or YSZ-based material is used for the pole, LaGa that does not cause a reaction between the materials, has high power generation performance, and performs stable power generation operation for a long time
O 3 based solid electrolyte fuel cell can be provided.

【0039】また、空気極と固体電解質層の間にもドー
プしたセリア膜を形成したことから、発電性能の更なる
向上が実現できる。
Further, since the doped ceria film is formed between the air electrode and the solid electrolyte layer, the power generation performance can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる単電池を示す図である。FIG. 1 is a diagram showing a unit cell according to the present invention.

【図2】実験結果を示す電子顕微鏡写真の図である。FIG. 2 is an electron micrograph showing experimental results.

【図3】実験結果を示す電子顕微鏡写真の図である。FIG. 3 is an electron micrograph showing experimental results.

【図4】実験結果を示す電子顕微鏡写真の図である。FIG. 4 is an electron micrograph showing experimental results.

【図5】実験結果を示すグラフである。FIG. 5 is a graph showing experimental results.

【符号の説明】[Explanation of symbols]

2 単電池 4 燃料極 6 固体電解質層 8 空気極 10 SDC膜 2 unit cell 4 fuel electrode 6 solid electrolyte layer 8 air electrode 10 SDC membrane

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C01F 17/00 C01F 17/00 B Fターム(参考) 4G076 AA02 AA18 AB02 BA37 BF02 CA10 DA04 5G301 CA02 CD01 5H026 AA06 EE13 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) // C01F 17/00 C01F 17/00 BF term (reference) 4G076 AA02 AA18 AB02 BA37 BF02 CA10 DA04 5G301 CA02 CD01 5H026 AA06 EE13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 空気極と、LaGaO系材料からなる
固体電解質層と、燃料極とを備えたLaGaO系固体
電解質型燃料電池において、 前記燃料極と前記固体電解質層との間に、ドープしたセ
リアの膜を形成したことを特徴としたLaGaO系固
体電解質型燃料電池。
1. A LaGaO 3 -based solid electrolyte fuel cell including an air electrode, a solid electrolyte layer made of a LaGaO 3 -based material, and a fuel electrode, wherein a dope is provided between the fuel electrode and the solid electrolyte layer. A LaGaO 3 -based solid oxide fuel cell comprising a ceria film formed as described above.
【請求項2】 空気極と、LaGaO系材料からなる
固体電解質層と、燃料極とを備えたLaGaO系固体
電解質型燃料電池において、 前記燃料極と前記固体電解質層との間および前記空気極
と前記固体電解質層との間に、ドープしたセリアの膜を
形成したことを特徴としたLaGaO系固体電解質型
燃料電池。
2. A LaGaO 3 -based solid electrolyte fuel cell including an air electrode, a solid electrolyte layer made of a LaGaO 3 -based material, and a fuel electrode, wherein the air between the fuel electrode and the solid electrolyte layer and the air between pole to the solid electrolyte layer, LaGaO 3 based solid electrolyte fuel cell is characterized in that the formation of the film of doped ceria.
【請求項3】 前記LaGaO系材料は、La1−x
SrGa1−yMg(0.05<x<0.5、
0.05<y<0.5)であることを特徴とする請求項
1または2記載のLaGaO系固体電解質型燃料電
池。
3. The LaGaO 3 -based material is La 1-x
Sr x Ga 1-y Mg y O 3 (0.05 <x <0.5,
3. The LaGaO3-based solid oxide fuel cell according to claim 1, wherein 0.05 <y <0.5).
【請求項4】 前記ドープしたセリアの膜は、Ce
1−z(Mは3価の希土類、0.05≦z≦
0.5、d=2−0.5z)であることを特徴とした請
求項1〜3のいずれか1項に記載したLaGaO系固
体電解質型燃料電池。
4. The doped ceria film is made of Ce
1-z M z O d (M is a trivalent rare earth, 0.05 ≦ z ≦
0.5, d = 2-0.5z) LaGaO 3 based solid electrolyte fuel cell according to any one of claims 1 to 3 characterized in that a.
【請求項5】 前記Mは、GdあるいはSmであること
を特徴とした請求項4に記載のLaGaO系固体電解
質型燃料電池。
5. The LaGaO 3 -based solid oxide fuel cell according to claim 4, wherein M is Gd or Sm.
JP2000171044A 2000-06-07 2000-06-07 LaGaO3 SOLID ELECTROLYTE FUEL CELL Pending JP2001351646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000171044A JP2001351646A (en) 2000-06-07 2000-06-07 LaGaO3 SOLID ELECTROLYTE FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000171044A JP2001351646A (en) 2000-06-07 2000-06-07 LaGaO3 SOLID ELECTROLYTE FUEL CELL

Publications (1)

Publication Number Publication Date
JP2001351646A true JP2001351646A (en) 2001-12-21

Family

ID=18673654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000171044A Pending JP2001351646A (en) 2000-06-07 2000-06-07 LaGaO3 SOLID ELECTROLYTE FUEL CELL

Country Status (1)

Country Link
JP (1) JP2001351646A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077343A1 (en) * 2002-03-11 2003-09-18 Mitsubishi Materials Corporation Solid oxide fuel cell
JP2003263996A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Solid oxide fuel cell
JP2005108719A (en) * 2003-09-30 2005-04-21 Toto Ltd Solid oxide fuel cell
JP2005149797A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Electrolyte/electrode joint body
JP2005149795A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Electrolyte/electrode joint body and its manufacturing method
JP2005251550A (en) * 2004-03-04 2005-09-15 Toyota Motor Corp Fuel cell
JP2005310737A (en) * 2004-03-23 2005-11-04 Toto Ltd Solid oxide fuel cell
JP2006073231A (en) * 2004-08-31 2006-03-16 Kyocera Corp Fuel cell
JP2006073230A (en) * 2004-08-31 2006-03-16 Kyocera Corp Fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2006286403A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Solid oxide fuel cell
JP2007141492A (en) * 2005-11-15 2007-06-07 Kyocera Corp Fuel battery cell
JP2008502113A (en) * 2004-06-10 2008-01-24 テクニカル ユニバーシティ オブ デンマーク Solid oxide fuel cell
KR101118292B1 (en) * 2004-11-26 2012-03-20 학교법인 포항공과대학교 Solid elelectrolyte coated ceramic coating materials and method therefor
US8343685B2 (en) 2007-01-31 2013-01-01 Technical University Of Denmark Composite material suitable for use as an electrode material in a SOC
JP2017174516A (en) * 2016-03-18 2017-09-28 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567473A (en) * 1991-09-09 1993-03-19 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JPH07320754A (en) * 1994-05-23 1995-12-08 Toto Ltd Connecting structure between solid electrolytic film and electrode film, and its manufacture
JPH07326364A (en) * 1994-06-01 1995-12-12 Sanyo Electric Co Ltd Fuel electrode for fuel cell using solid electrolyte
JPH09129252A (en) * 1995-11-06 1997-05-16 Tokyo Gas Co Ltd Highly durable solid electrlyte fuel cell and manufacture thereof
JPH09161824A (en) * 1995-12-05 1997-06-20 Fuji Electric Co Ltd Solid electrolytic fuel cell and its manufacture
JPH1173982A (en) * 1997-08-28 1999-03-16 Toto Ltd Solid electrolyte fuel cell and its manufacture
JPH11228136A (en) * 1998-02-06 1999-08-24 Tokyo Gas Co Ltd Ion conductive oxide material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567473A (en) * 1991-09-09 1993-03-19 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JPH07320754A (en) * 1994-05-23 1995-12-08 Toto Ltd Connecting structure between solid electrolytic film and electrode film, and its manufacture
JPH07326364A (en) * 1994-06-01 1995-12-12 Sanyo Electric Co Ltd Fuel electrode for fuel cell using solid electrolyte
JPH09129252A (en) * 1995-11-06 1997-05-16 Tokyo Gas Co Ltd Highly durable solid electrlyte fuel cell and manufacture thereof
JPH09161824A (en) * 1995-12-05 1997-06-20 Fuji Electric Co Ltd Solid electrolytic fuel cell and its manufacture
JPH1173982A (en) * 1997-08-28 1999-03-16 Toto Ltd Solid electrolyte fuel cell and its manufacture
JPH11228136A (en) * 1998-02-06 1999-08-24 Tokyo Gas Co Ltd Ion conductive oxide material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484811A4 (en) * 2002-03-11 2007-11-28 Mitsubishi Materials Corp Solid oxide fuel cell
JP2003263996A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Solid oxide fuel cell
EP1484811A1 (en) * 2002-03-11 2004-12-08 Mitsubishi Materials Corporation Solid oxide fuel cell
US7754359B2 (en) 2002-03-11 2010-07-13 Mitsubishi Materials Corp. Solid oxide fuel cell
WO2003077343A1 (en) * 2002-03-11 2003-09-18 Mitsubishi Materials Corporation Solid oxide fuel cell
JP2005108719A (en) * 2003-09-30 2005-04-21 Toto Ltd Solid oxide fuel cell
JP4496749B2 (en) * 2003-09-30 2010-07-07 Toto株式会社 Solid oxide fuel cell
JP2005149795A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Electrolyte/electrode joint body and its manufacturing method
JP2005149797A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Electrolyte/electrode joint body
JP2005251550A (en) * 2004-03-04 2005-09-15 Toyota Motor Corp Fuel cell
JP2005310737A (en) * 2004-03-23 2005-11-04 Toto Ltd Solid oxide fuel cell
JP2008502113A (en) * 2004-06-10 2008-01-24 テクニカル ユニバーシティ オブ デンマーク Solid oxide fuel cell
JP2006073231A (en) * 2004-08-31 2006-03-16 Kyocera Corp Fuel cell
JP2006073230A (en) * 2004-08-31 2006-03-16 Kyocera Corp Fuel cell
KR101118292B1 (en) * 2004-11-26 2012-03-20 학교법인 포항공과대학교 Solid elelectrolyte coated ceramic coating materials and method therefor
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2006286403A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Solid oxide fuel cell
JP2007141492A (en) * 2005-11-15 2007-06-07 Kyocera Corp Fuel battery cell
US8343685B2 (en) 2007-01-31 2013-01-01 Technical University Of Denmark Composite material suitable for use as an electrode material in a SOC
JP2017174516A (en) * 2016-03-18 2017-09-28 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element

Similar Documents

Publication Publication Date Title
US7601447B2 (en) Electrolyte-electrode assembly comprising an isotropic layer
JP6018639B2 (en) Solid oxide fuel cell half-cell and solid oxide fuel cell
JP2001351646A (en) LaGaO3 SOLID ELECTROLYTE FUEL CELL
JP5225336B2 (en) Fuel cell and fuel cell
WO2020196236A1 (en) Solid oxide electrolysis cell, and method and system for operating same
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
KR20140057080A (en) Cathode for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same
JP5144236B2 (en) Solid oxide fuel cell
JPH11214014A (en) Air pole for solid electrolyte type fuel cell and manufacture thereof
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JP3218555B2 (en) Ceria based solid electrolyte with protective layer
JP2010103122A (en) Solid oxide fuel cell, and method of manufacturing the same
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
CN107994234B (en) Ceramic fuel cell and preparation method thereof
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP4739665B2 (en) Fuel cell and fuel cell
JP4508592B2 (en) Fuel cell manufacturing method
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
JP2021150133A (en) Electrochemical cell, electrochemical cell stack, and electrolyte for electrochemical cell
JP2004303713A (en) Solid oxide fuel cell
JP3160030B2 (en) Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode
JP2004259691A (en) Solid oxide fuel cell
JP4559255B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130