JP2002352809A - Guiding method of electrode active oxide into fuel pole for solid electrolyte fuel cell - Google Patents

Guiding method of electrode active oxide into fuel pole for solid electrolyte fuel cell

Info

Publication number
JP2002352809A
JP2002352809A JP2001161837A JP2001161837A JP2002352809A JP 2002352809 A JP2002352809 A JP 2002352809A JP 2001161837 A JP2001161837 A JP 2001161837A JP 2001161837 A JP2001161837 A JP 2001161837A JP 2002352809 A JP2002352809 A JP 2002352809A
Authority
JP
Japan
Prior art keywords
electrode
oxide
fuel
electrode active
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001161837A
Other languages
Japanese (ja)
Other versions
JP3871903B2 (en
Inventor
Reiichi Chiba
玲一 千葉
Bunichi Yoshimura
文一 吉村
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001161837A priority Critical patent/JP3871903B2/en
Publication of JP2002352809A publication Critical patent/JP2002352809A/en
Application granted granted Critical
Publication of JP3871903B2 publication Critical patent/JP3871903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method wherein, in order to improve the electrode characteristics of a fuel pole, a mixed conductor is guided to the vicinity of an interface with an electrolyte, with no occurrence of degraded material. SOLUTION: A fuel pole and a solid electrolyte are baked. An electrode active oxide containing both electron conduction and oxygen ion conduction is infiltrated, as an organic metal solution or inorganic metal salt solution, into the porous fuel pole. Then by a thermal decomposition oxidative reaction, the electrode active oxide of a desired composition is guided to the vicinity of an interface with the solid electrolyte. Thus, the fuel pole for a solid electrolyte fuel cell of high performance is provided with no strict limit on a baking process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
用燃料極への電極活性酸化物の導入方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for introducing an electrode active oxide into a fuel electrode for a solid oxide fuel cell.

【0002】[0002]

【従来の技術および問題点】近年、酸素イオン伝導体を
用いた固体電解質型燃料電池に関心が高まりつつある。
特にエネルギーの有効利用という観点から、固体燃料電
池はカルノー効率の制約を受けないため本質的に高いエ
ネルギー変換効率を有し、さらに良好な環境保全が期待
されるなどの優れた特長を持っている。
2. Description of the Related Art In recent years, interest has been growing in solid oxide fuel cells using oxygen ion conductors.
In particular, from the viewpoint of effective use of energy, solid fuel cells have essentially high energy conversion efficiencies because they are not restricted by Carnot efficiency, and have excellent features such as better environmental protection. .

【0003】しかしながら、固体電解質型燃料電池は、
主要部分がセラミックで構成されているため、製造コス
トが高い。これが固体電解質型燃料電池の普及を妨げて
いる。ここで、この電池の動作温度を現在の1000℃
から800℃またはそれ以下にすることで、金属の使用
が可能となる。これにより、主要な体積を占めるインタ
ーコネクタ部分を安価な金属に替えることができ、大幅
なコスト低減に繋がる。
However, a solid oxide fuel cell is
Since the main part is made of ceramic, the manufacturing cost is high. This has hindered the spread of solid oxide fuel cells. Here, the operating temperature of this battery is set to the current 1000 ° C.
When the temperature is lowered to 800 ° C. or lower, metal can be used. As a result, the interconnector portion occupying the main volume can be replaced with inexpensive metal, which leads to significant cost reduction.

【0004】この低温化を目的として電解質のイオン電
導度の向上、電解質の薄膜化などが検討されている。固
体電解質としては、希土類添加ジルコニア((1−x)
ZrO2-x23,AはLa,Pr,Ce,Nd,S
m,Eu,Gd,Tb,Dy,Ho,Er,Yb,L
u,Y,Sc,Al,Gaなどの元素で、0.025≦
x≦0.15)を使用しそれの薄層化や、イオン伝導度
の高いSc添加系ジルコニア電解質材料、またはランタ
ンガレート系電解質Ln1-xx1-yMgy3(Lnは
La,Pr,Nd,Smなどの元素でAはSr、Ca、
Baなど、xが0.05≦x≦0.2、BはGa、Al
などで、Mgの総量yは0.05≦y≦0.3)が主に
検討されている。これらの他に、燃料極などの電極の性
能の大幅な向上が必要である。これは、低温化により電
気化学反応速度が急激に低下するためである。
For the purpose of lowering the temperature, studies have been made on improving the ionic conductivity of the electrolyte, making the electrolyte thinner, and the like. As the solid electrolyte, rare earth-added zirconia ((1-x)
ZrO 2-x A 2 O 3 , where A is La, Pr, Ce, Nd, S
m, Eu, Gd, Tb, Dy, Ho, Er, Yb, L
elements such as u, Y, Sc, Al, and Ga, and 0.025 ≦
x ≦ 0.15) to make it thinner, a Sc-added zirconia electrolyte material having a high ionic conductivity, or a lanthanum gallate-based electrolyte Ln 1-x A x B 1-y Mg y O 3 (Ln In elements such as La, Pr, Nd, and Sm, A is Sr, Ca,
X such as Ba is 0.05 ≦ x ≦ 0.2, B is Ga, Al
For example, the total amount y of Mg is mainly considered to be 0.05 ≦ y ≦ 0.3). In addition to these, it is necessary to greatly improve the performance of electrodes such as fuel electrodes. This is because the electrochemical reaction speed sharply decreases due to the low temperature.

【0005】燃料電池セルは、電解質を挟んで空気極と
燃料極が設けられているが、これらの電極は、ガスと電
子を電解質まで供給し、電解質との界面において電気化
学反応を起こす場を提供している。この反応場は、ガス
と電子そしてイオンが接するため三相界面と呼ばれてい
る。
A fuel cell is provided with an air electrode and a fuel electrode with an electrolyte interposed therebetween, and these electrodes supply gas and electrons to the electrolyte and generate a field where an electrochemical reaction occurs at an interface with the electrolyte. providing. This reaction field is called a three-phase interface because gas, electrons and ions come into contact with each other.

【0006】燃料極にはNiO−YSZすなわち電子伝
導体であるNiと酸素イオン伝導体であるYSZ(0.
92ZrO2−0.08Y23)の混合物が使用されて
おり、三相界面はNiとYSZとの界面にできる。電子
と酸素イオンに対して共に伝導体である電極活性酸化物
がこの界面に接している場合、反応場、すなわち三相界
面が著しく拡大し、電極特性が改善されると言われてい
る。
The fuel electrode is NiO-YSZ, that is, Ni as an electron conductor and YSZ (0.
A mixture of 92ZrO 2 -0.08Y 2 O 3 ) is used, and the three-phase interface can be an interface between Ni and YSZ. It is said that when an electrode active oxide, which is a conductor for both electrons and oxygen ions, is in contact with this interface, a reaction field, that is, a three-phase interface is significantly expanded, and the electrode characteristics are improved.

【0007】還元雰囲気中で安定な電極活性酸化物の例
として、SDC(Ce0.8Sm0.2 1.9)などのセリア
系酸化物と(LaSr)(GaMg)O3などのランタ
ンガレート系酸化物のBサイトにCoやNiなどの遷移
金属を添加した系が知られている。
Examples of electrode active oxides stable in reducing atmosphere
As SDC (Ce0.8Sm0.2O 1.9Ceria)
Oxide and (LaSr) (GaMg) OThreeLanta such as
Transition of Co, Ni, etc. to the B site of the ngarate oxide
A system to which a metal is added is known.

【0008】これらを従来材料であるNiO−YSZな
どに混合した原料粉末を用いて、燃料極を焼結形成する
こともできる。しかし、セルを作製する過程で1300
℃程度の高温に曝され、これらの材料と電解質、または
燃料極を形成しているNiOなどの酸化物とが反応し界
面付近に劣化物を生成する。
A fuel electrode can be formed by sintering using a raw material powder obtained by mixing these materials with a conventional material such as NiO-YSZ. However, in the process of fabricating the cell, 1300
When exposed to a high temperature of about ° C, these materials react with the electrolyte or the oxide such as NiO forming the fuel electrode to generate a degraded substance near the interface.

【0009】たとえばジルコニア系電解質とランタン系
ペロブスカイト酸化物では絶縁体のLa2Zr27、ま
たはSrZrO3、セリア系材料とジルコニア電解質と
は酸素イオン電導度が非常に低いCe0.5Zr0.52
生じる。またランタンガレート系の混合導電体とランタ
ンガレート系の固体電解質とは、固溶体を作り易く、固
体電解質内に深く拡散し、電解質のイオン輸率を低下さ
せることがあるため、セル出力電圧の低下を引き起こ
す。
[0009] For example La 2 Zr 2 O 7 zirconia based electrolyte and insulator lanthanum perovskite oxide or SrZrO 3, a very low oxygen ionic conductivity of ceria based material and zirconia electrolyte Ce 0.5 Zr 0.5 O 2, Is generated. In addition, the lanthanum gallate-based mixed conductor and the lanthanum gallate-based solid electrolyte can easily form a solid solution, diffuse deeply into the solid electrolyte, and lower the ionic transport number of the electrolyte. cause.

【0010】この様に、セルの電極と電解質は、動作温
度の700℃から1000℃に比べ、かなり高い温度域
についても劣化反応を抑制することが求められ、この結
果以上の様な電極活性酸化物の使用が難しい。
As described above, the cell electrode and the electrolyte are required to suppress the deterioration reaction even in a considerably high temperature range compared with the operating temperature of 700 ° C. to 1000 ° C. Difficult to use things.

【0011】[0011]

【本発明の目的】本発明は固体電解質用セルの作製法に
求められている、燃料極の電極特性を改善するために、
混合導電体を電解質との界面付近に導入し且つ劣化物を
生じない燃料極の作製方法を提供することを目的とす
る。
The object of the present invention is to improve the electrode characteristics of a fuel electrode, which is required for a method for manufacturing a cell for a solid electrolyte.
It is an object of the present invention to provide a method for manufacturing a fuel electrode in which a mixed conductor is introduced near an interface with an electrolyte and does not cause deterioration.

【0012】[0012]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明による固体電解質型燃料電池用燃料極への
電極活性酸化物の導入方法は、緻密な固体電解質とその
両面に設けられた多孔質の燃料極と空気極で構成された
燃料電池セルを備えた燃料電池の固体電解質型燃料電池
用空気極への電極活性酸化物の導入方法において、前記
燃料極及び固体電解質を焼結形成した後、多孔質の燃料
極内部に電子伝導と酸素イオン伝導を共に有する電極活
性酸化物の材料を有機金属溶液、または無機金属塩溶液
の形で含浸させたのち熱分解酸化反応により、所望の組
成の電極活性酸化物を電解質との界面付近へ導入するこ
とを特徴とする。
Means for Solving the Problems In order to solve the above problems, the method for introducing an electrode active oxide into a fuel electrode for a solid oxide fuel cell according to the present invention is provided by providing a dense solid electrolyte and both surfaces thereof. A method for introducing an electrode active oxide into a solid oxide fuel cell air electrode of a fuel cell having a fuel cell composed of a porous fuel electrode and an air electrode, wherein the fuel electrode and the solid electrolyte are sintered. After formation, a porous fuel electrode is impregnated with a material of an electrode active oxide having both electron conduction and oxygen ion conduction in the form of an organic metal solution or an inorganic metal salt solution, and then subjected to a thermal decomposition oxidation reaction. Is introduced into the vicinity of the interface with the electrolyte.

【0013】すなわち本発明によれば、燃料極、そして
最も高温の焼成過程である固体電解質の焼成が終了した
後に、燃料極内に有機金属溶液または無機金属塩溶液の
形で電極活性酸化物を形成させる溶液を含浸させる。こ
の後に劣化反応の起きない適当な温度において、燃料極
内の液の熱分解酸化反応を生じさせて固体電解質界面付
近に所望の混合導電体、すなわち電極活性酸化物を導入
するものである。
That is, according to the present invention, after firing of the fuel electrode and the solid electrolyte which is the highest temperature firing process, the electrode active oxide is formed in the fuel electrode in the form of an organic metal solution or an inorganic metal salt solution. Impregnate the solution to be formed. Thereafter, at an appropriate temperature at which no deterioration reaction occurs, a thermal decomposition oxidation reaction of the liquid in the fuel electrode is caused to introduce a desired mixed conductor, that is, an electrode active oxide, near the solid electrolyte interface.

【0014】ここで、セルを作製する方法として、最初
に燃料極を形成し、その上に電解質と空気極を形成する
場合は、電解質を作製した直後または空気極を作製した
後に溶液を含浸させる。燃料極を最後に形成する場合
は、燃料極を形成した後に含浸させる。インターコネク
タなど全てを一体焼成する場合は、その焼成後に含浸さ
せる。
Here, as a method for producing a cell, when a fuel electrode is first formed and an electrolyte and an air electrode are formed thereon, the solution is impregnated immediately after the electrolyte is produced or after the air electrode is produced. . When the fuel electrode is formed last, impregnation is performed after forming the fuel electrode. When firing all of the interconnectors and the like, they are impregnated after firing.

【0015】[0015]

【作用】以下に本発明の作用を説明する。The operation of the present invention will be described below.

【0016】燃料極には、界面での劣化を抑えるため、
ジルコニア系固体電解質とジルコニア系の燃料極、また
はランタンガレート系固体電解質とランタンガレート系
燃料極を用いる。これにより燃料極および固体電解質の
焼成は、充分高い温度とすることができ、機械強度の充
分に高い燃料極および緻密な固体電解質が得られる。
In the fuel electrode, in order to suppress deterioration at the interface,
A zirconia-based solid electrolyte and a zirconia-based fuel electrode, or a lanthanum gallate-based solid electrolyte and a lanthanum gallate-based fuel electrode are used. Thereby, the sintering of the fuel electrode and the solid electrolyte can be performed at a sufficiently high temperature, and the fuel electrode and the dense solid electrolyte having sufficiently high mechanical strength can be obtained.

【0017】これらの焼成を終えた後に、有機金属溶液
または無機金属塩溶液を燃料極に含浸させる。燃料極は
多孔質体とはいえ微細な気孔を有しているため、通常の
粉体を溶液に展開したスラリでは電解質界面まで充分に
浸透させることが難しい。
After the firing, the fuel electrode is impregnated with an organic metal solution or an inorganic metal salt solution. Since the fuel electrode is a porous material but has fine pores, it is difficult for a slurry in which ordinary powder is developed into a solution to sufficiently penetrate into the electrolyte interface.

【0018】しかし、ここで用いる溶液は固形物を含ま
ないため燃料極を浸透し電解質と燃料極の界面付近まで
到達する。この溶液が熱分解酸化反応によりSDCなど
の電極活性酸化物が生じる。
However, since the solution used here does not contain solid matter, it penetrates the fuel electrode and reaches near the interface between the electrolyte and the fuel electrode. This solution generates an electrode active oxide such as SDC by a thermal decomposition oxidation reaction.

【0019】ここで電極活性酸化物の組成は電極活性酸
化物を形成させる溶液に含まれる金属元素の量をあらか
じめ制御することで容易に制御することができる。この
電極活性酸化物は電子と酸素イオンを共に伝導させるこ
とができるため電極反応に寄与する三相界面がこの電極
活性酸化物全体に広がる。このため燃料極の電極特性が
大幅に向上する。
Here, the composition of the electrode active oxide can be easily controlled by previously controlling the amount of the metal element contained in the solution for forming the electrode active oxide. Since this electrode active oxide can conduct both electrons and oxygen ions, the three-phase interface contributing to the electrode reaction spreads throughout the electrode active oxide. For this reason, the electrode characteristics of the fuel electrode are greatly improved.

【0020】以上の方法により、セルの製造過程におけ
る焼成温度の制約をあまり受けずに電極活性な電極活性
酸化物を燃料極内部に導入することができ、高性能な固
体電解質型燃料電池用の燃料極を実現できる。
According to the above-mentioned method, the electrode active oxide can be introduced into the fuel electrode without much restriction of the sintering temperature in the cell manufacturing process. Fuel electrode can be realized.

【0021】[0021]

【実施例】以下に本発明の実施例を説明する。なお、当
然のことであるが本発明は以下の実施例に限定されるも
のではない。
Embodiments of the present invention will be described below. Note that, needless to say, the present invention is not limited to the following embodiments.

【0022】[0022]

【実施例1】実施例で使用した燃料電池セルおよびこれ
を用いて組み立てた燃料電池を図1および図2に示す。
図1および図2より明らかなように、緻密な固体電解質
1の一方の面に空気極2が、他方の面に燃料極3が形成
されており、前記空気極2及び燃料極3には白金の集電
メッシュ4が設けられた構造になっている。なお図にお
いて、5は白金端子、6はガスシールである。
Embodiment 1 FIGS. 1 and 2 show a fuel cell used in the embodiment and a fuel cell assembled using the same.
As is clear from FIGS. 1 and 2, the dense solid electrolyte 1 has an air electrode 2 formed on one surface and a fuel electrode 3 formed on the other surface, and the air electrode 2 and the fuel electrode 3 are formed of platinum. The current collecting mesh 4 is provided. In the figure, 5 is a platinum terminal, and 6 is a gas seal.

【0023】まずドクターブレード法で焼成した0.2
mm厚でSc23、Al23添加ジルコニア(SASZ
または、0.895ZrO2−0.10Sc23−0.
005Al23)固体電解質基板1の片面にNiO−S
ASZのスラリ(10mol%Sc23、0.5mol
%Al23添加ジルコニア、NiOが60wt%)を塗
布しこの上に白金の集電メッシュ4を乗せて1300
℃、1時間焼成し燃料極3を設けた。
First, 0.2 was fired by a doctor blade method.
mm thick with Sc 2 O 3, Al 2 O 3 doped zirconia (SASZ
Or 0.895 ZrO 2 -0.10 Sc 2 O 3 -0.
005Al 2 O 3 ) NiO—S on one surface of the solid electrolyte substrate 1
ASZ slurry (10 mol% Sc 2 O 3 , 0.5 mol
% Al 2 O 3 -added zirconia, NiO is 60 wt%), and a platinum current collecting mesh 4 is placed thereon, and 1300
The fuel electrode 3 was provided by firing at 1 ° C. for 1 hour.

【0024】次にその裏面にLSM(La0.78Sr0.2
MnO3)のスラリを塗布し、1200℃、1時間の条
件で焼成し空気極2とした。燃料極3、空気極2ともに
6mm径とした。この燃料電池セルをセル#1−0−1
とする。これを比較例とする。
Next, an LSM (La 0.78 Sr 0.2
A slurry of MnO 3 ) was applied and fired at 1200 ° C. for 1 hour to form an air electrode 2. Both the fuel electrode 3 and the air electrode 2 had a diameter of 6 mm. This fuel cell is referred to as cell # 1-0-1.
And This is a comparative example.

【0025】次に、電極活性酸化物としてCe0.9Sm
0.11.95,Ce0.8Sm0.21.9,Ce0.6Sm0.4
1.8,Ce0.8La0.21.9,Ce0.8Gd0.21.9,C
0.8Lu0.21.9,Ce0.80.21.9,Ce0.8Gd
0.1Sm0.11.9の組成となる様に、電極活性酸化物材
料の金属のアルコキシドを溶かしたトルエン溶液を調製
した。
Next, Ce 0.9 Sm was used as the electrode active oxide.
0.1 O 1.95 , Ce 0.8 Sm 0.2 O 1.9 , Ce 0.6 Sm 0.4 O
1.8 , Ce 0.8 La 0.2 O 1.9 , Ce 0.8 Gd 0.2 O 1.9 , C
e 0.8 Lu 0.2 O 1.9 , Ce 0.8 Y 0.2 O 1.9 , Ce 0.8 Gd
A toluene solution in which the metal alkoxide of the electrode active oxide material was dissolved was prepared so as to have a composition of 0.1 Sm 0.1 O 1.9 .

【0026】この溶液の金属の濃度は約4wt%とし
た。これをセル#1−0−1と同じ条件で作製したセル
の燃料極に含浸させた後、空気中、1100℃で熱処理
を行い所望の組成の電極活性酸化物を析出させた。これ
らをセル#1−1−1〜#1−1−8とする。
The concentration of the metal in this solution was about 4 wt%. This was impregnated into the fuel electrode of a cell manufactured under the same conditions as cell # 1-0-1, and then heat-treated at 1100 ° C. in air to deposit an electrode active oxide having a desired composition. These are referred to as cells # 1-1-1 to # 1-1-8.

【0027】これらのセルおよび比較例のセルを用いて
図2に示す燃料電池を組み立て、800℃において発電
試験を行った。ここで、燃料極には水素、空気極には酸
素を供給した。開放起電力としては、1.1V以上の値
が得られた。その結果を表1の#1−0−1〜#1−1
−8に示す。#1−1−1〜#1−1−8は比較例であ
るセル#1−0−1に比べて高いセル出力が得られた。
A fuel cell shown in FIG. 2 was assembled using these cells and the cells of the comparative example, and a power generation test was performed at 800 ° C. Here, hydrogen was supplied to the fuel electrode, and oxygen was supplied to the air electrode. As the open electromotive force, a value of 1.1 V or more was obtained. The results are shown in Table 1 as # 1-0-1 to # 1-1.
-8. In # 1-1-1 to # 1-1-8, a higher cell output was obtained than in the cell # 1-0-1 of the comparative example.

【0028】以上の様に本発明の製造方法により従来の
方法に比べて優れた特性のセルを作製することに成功し
た。
As described above, the production method of the present invention succeeded in producing a cell having better characteristics than the conventional method.

【0029】[0029]

【実施例2】実施例1のセル#1−0−1において電解
質をSASZに替えてSYbSZ(0.89ZrO2
0.09Sc23−0.02Yb23)としたセルをセ
ル#2−0−1、さらに燃料極中のNiOに替えてNi
0.8Fe0.21.1を用いたセルをセル#2−0−2、N
0.8Co0.21.1を用いたセルをセル#2−0−3、
Ni0.8Fe0.1Co0.11.1を用いたセルをセル#2−
0−4とする。
Example 2 In the cell # 1-0-1 of Example 1, the electrolyte was changed to SYbSZ (0.89ZrO 2
0.09 Sc 2 O 3 -0.02 Yb 2 O 3 ) was replaced with cell # 2-0-1 and Ni instead of NiO in the fuel electrode.
The cell using 0.8 Fe 0.2 O 1.1 was replaced with cell # 2-0-2, N
A cell using i 0.8 Co 0.2 O 1.1 is referred to as cell # 2-0-3,
The cell using Ni 0.8 Fe 0.1 Co 0.1 O 1.1 was replaced with cell # 2-
0-4.

【0030】これらのセルを比較例のセルとする。そし
て、これらのセルに実施例1と同様にCe0.8Sm0.2
1.9の組成となるように電極活性酸化物材料のCeとS
mのアルコキシド溶液を混合し、トルエン溶液としたも
のをセル#2−0−1〜#2−0−4の燃料極に含浸さ
せ、1100℃で熱処理を行った。これらのセルをセル
#2−1−1〜#2−1−4とする。
These cells are referred to as cells of the comparative example. Then, as in Example 1, Ce 0.8 Sm 0.2 O
The electrode active oxide materials Ce and S are formed so as to have a composition of 1.9.
The alkoxide solutions of m and m were mixed to form a toluene solution, and the fuel electrodes of cells # 2-0-1 to # 2-0-4 were impregnated with each other and heat-treated at 1100 ° C. These cells are referred to as cells # 2-1-1 to # 2-1-4.

【0031】これらのセル及び比較例のセルを用いて、
実施例1と同様の実験を行った。この結果を表1のセル
#2−1−1〜#2−1−4に示すが、いずれも比較例
であるセル#2−0−1〜#2−0−4に比べ良好なセ
ル出力特性が得られた。
Using these cells and the cell of the comparative example,
The same experiment as in Example 1 was performed. The results are shown in cells # 2-1-1 to # 2-1-4 in Table 1. All of the results are better than those of cells # 2-0-1 to # 2-0-4 as comparative examples. Characteristics were obtained.

【0032】[0032]

【実施例3】実施例2のセル#2−0−1において含浸
させる金属アルコキシド溶液を変更し、La0.90Sr
0.10Ga0.75Mg0.15Ni0.103及びLa0.90Sr
0.10Ga0 .75Mg0.15Co0.103、そしてLa0.90
0.10Ga0.71Mg0.15Ni0.07Co0.073の組成と
なる様に溶液を調製して、燃料極に含浸させた。
Example 3 The metal alkoxide solution to be impregnated in the cell # 2-0-1 of Example 2 was changed to La 0.90 Sr
0.10 Ga 0.75 Mg 0.15 Ni 0.10 O 3 and La 0.90 Sr
0.10 Ga 0 .75 Mg 0.15 Co 0.10 O 3, and La 0.90 S
A solution was prepared so as to have a composition of r 0.10 Ga 0.71 Mg 0.15 Ni 0.07 Co 0.07 O 3 , and was impregnated into the fuel electrode.

【0033】そして、空気中、1000℃で熱処理して
所望の組成の電極活性酸化物を析出させた。これらをセ
ル#3−1−1〜#3−1−3とする。これらのセルを
用いて、実施例2と同様の実験を行った。この結果を表
1のセル#3−1−1〜#3−1−3に示すが、いずれ
も比較例であるセル#2−0−1に比べ良好なセル出力
特性が得られた。
Then, heat treatment was performed at 1,000 ° C. in air to precipitate an electrode active oxide having a desired composition. These are referred to as cells # 3-1-1 to # 3-1-3. The same experiment as in Example 2 was performed using these cells. The results are shown in cells # 3-1-1 to # 3-1-3 in Table 1. In each case, better cell output characteristics were obtained as compared with cell # 2-0-1 as a comparative example.

【0034】[0034]

【実施例4】ここでは、LSGM(La0.90Sr0.10
0.85Mg0.153)を固体電解質とした。これはLa2
3,SrCO3,Ga23,MgO粉末を所望の組成と
なる様に混合した後、1400℃で空気中で固相反応を
起こさせ合成した。合成した粉末をペレット状に成形
し、1500℃で焼成した。このペレットを研磨し、
0.3mm厚、24mm径の固体電解質とした。
Embodiment 4 Here, LSGM (La 0.90 Sr 0.10 G
a 0.85 Mg 0.15 O 3 ) was used as the solid electrolyte. This is La 2
O 3 , SrCO 3 , Ga 2 O 3 , and MgO powder were mixed so as to have a desired composition, and a solid phase reaction was caused in air at 1400 ° C. to synthesize. The synthesized powder was formed into a pellet and fired at 1500 ° C. Polish this pellet,
A solid electrolyte having a thickness of 0.3 mm and a diameter of 24 mm was used.

【0035】次にNiOとLa0.90Sr0.10Ga0.85
0.153微粒子との混合体のスラリを上記の固体電解
質上に塗布し、1300℃で焼成し燃料極とした。そし
て、燃料極の対面にLSM空気極を実施例1と同様の方
法で設けた。
Next, NiO and La 0.90 Sr 0.10 Ga 0.85 M
A slurry of a mixture of g 0.15 O 3 fine particles was applied on the solid electrolyte, and calcined at 1300 ° C. to obtain a fuel electrode. Then, an LSM air electrode was provided on the opposite surface of the fuel electrode in the same manner as in Example 1.

【0036】このセルをセル#4−0−1とする。セル
#4−0−1に組成がCe0.8Sm0 .21.9、Ce0.8
d0.21.9となる様に金属アルコキシド溶液を調製して
燃料極に含浸させ、実施例1と同様に空気中1100℃
で熱分解反応を行い、電極活性酸化物であるCe0.8
0.21.9、Ce0.8Gd0.21.9の微粒子を燃料極内に
析出させた。
This cell is referred to as cell # 4-0-1. Cell # 4-0-1 in composition Ce 0.8 Sm 0 .2 O 1.9, Ce 0.8 G
d 0.2 O 1.9 A metal alkoxide solution was prepared and impregnated into the fuel electrode.
Thermal decomposition reaction, and the electrode active oxide Ce 0.8 S
Fine particles of m 0.2 O 1.9 and Ce 0.8 Gd 0.2 O 1.9 were deposited in the fuel electrode.

【0037】このセルをセル#4−1−1、セル#4−
1−2とし、実施例1と同様の実験を行った。この結果
を表1のセル#4−1−1、セル#4−1−2に示す
が、比較例であるセル#4−0−1に比べ良好なセル出
力特性が得られた。
This cell is referred to as cell # 4-1-1, cell # 4-
1-2, and the same experiment as in Example 1 was performed. The results are shown in cell # 4-1-1 and cell # 4-1-2 in Table 1. As a result, better cell output characteristics were obtained compared to cell # 4-0-1 of the comparative example.

【0038】[0038]

【実施例5】実施例4のセル#4−0−1と同じ種類の
セルに、電極活性酸化物としてLa 0.90Sr0.10Ga
0.75Mg0.15Ni0.103及びLa0.90Sr0.10Ga
0.75Mg0 .15Co0.103、La0.90Sr0.10Ga0.71
Mg0.15Ni0.07Co0.073、Pr0.90Sr0.10Ga
0.75Mg0.15Ni0.103、Sm0.90Sr0.10Ga0.75
Mg0 .15Ni0.103、Gd0.90Sr0.10Ga0.75Mg
0.15Ni0.103、La0.90Ca 0.10Ga0.75Mg0.15
Ni0.103、La0.90Ba0.10Ga0.75Mg0.15Ni
0.1 03の組成となる様に金属アルコキシド溶液を調製
して燃料極へ含浸させて実施例4と同様の実験を行っ
た。
Fifth Embodiment The same type as the cell # 4-0-1 of the fourth embodiment is used.
La is used as an electrode active oxide in the cell. 0.90Sr0.10Ga
0.75Mg0.15Ni0.10OThreeAnd La0.90Sr0.10Ga
0.75Mg0 .15Co0.10OThree, La0.90Sr0.10Ga0.71
Mg0.15Ni0.07Co0.07OThree, Pr0.90Sr0.10Ga
0.75Mg0.15Ni0.10OThree, Sm0.90Sr0.10Ga0.75
Mg0 .15Ni0.10OThree, Gd0.90Sr0.10Ga0.75Mg
0.15Ni0.10OThree, La0.90Ca 0.10Ga0.75Mg0.15
Ni0.10OThree, La0.90Ba0.10Ga0.75Mg0.15Ni
0.1 0OThreePrepare a metal alkoxide solution to obtain the composition of
And the same experiment as in Example 4 was performed.
Was.

【0039】この結果を表1のセル#5−1−1〜#5
−1−8に示す。いずれも比較例であるセル#4−0−
1に比べ良好なセル出力特性が得られた。
The results are shown in Table 1 in cells # 5-1-1 to # 5.
It shows in -1-8. Cell # 4-0- is a comparative example.
As a result, good cell output characteristics were obtained.

【0040】[0040]

【実施例6】実施例1の電解質に替えてYSZ(0.9
2ZrO2−0.08Y23)の0.1mm厚のシート
を用意し、この上にNiO−YSZ混合体を含むスラリ
(NiOが60wt%)を塗布し、1300℃で焼成し
燃料極とした。
Example 6 The electrolyte of Example 1 was replaced with YSZ (0.9
A 2 mm ZrO 2 -0.08 Y 2 O 3 ) sheet is prepared, a slurry containing a NiO-YSZ mixture (60 wt% of NiO) is applied thereto, and the resultant is calcined at 1300 ° C. to form a fuel electrode. did.

【0041】次に0.92(Zr0.93Ti0.07)O2
0.08Y23の組成となるように金属アルコキシド溶
液調製して、この燃料極に含浸させ1100℃において
熱処理を行い電極活性酸化物を析出させた。
Next, 0.92 (Zr 0.93 Ti 0.07 ) O 2
A metal alkoxide solution was prepared so as to have a composition of 0.08 Y 2 O 3 , and this fuel electrode was impregnated and heat-treated at 1100 ° C. to precipitate an electrode active oxide.

【0042】次にこの上にLSM空気極を実施例1と同
様の方法で設けた。このセルをセル#6−1−1とす
る。ここで燃料極に上記の溶液を含浸させなかったセル
を比較例として作製した。これをセル#6−0−1とす
る。
Next, an LSM air electrode was provided thereon in the same manner as in Example 1. This cell is referred to as a cell # 6-1-1. Here, a cell in which the fuel electrode was not impregnated with the above solution was produced as a comparative example. This is called cell # 6-0-1.

【0043】これらのセルを用いて実施例1と同様の実
験を行った。この結果を表1のセル#6−0−1、#6
−1−1に示す。比較例であるセル#6−0−1に比べ
セル#6−1−1は良好な出力特性が得られた。
An experiment similar to that of the first embodiment was performed using these cells. The results are shown in Table 1 in cells # 6-0-1, # 6.
It shows in -1-1. Cell # 6-1-1 had better output characteristics than cell # 6-0-1 as a comparative example.

【0044】[0044]

【実施例7】実施例1の比較例であるセル#1−0−1
をここでも比較例として使用する。そして、このセルに
電極活性酸化物としてCe0.9Sm0.11.95、Ce0.8
Sm0 .21.9、Ce0.6Sm0.41.8、Ce0.8La0.2
1.9、Ce0.80.21.9の組成となる様にCe,S
m,La,Yのモル比を調製した硝酸塩水溶液を用意
し、これをセル#6−0−1と同じ種類のセルの燃料極
へ含浸させた。
Seventh Embodiment Cell # 1-0-1 which is a comparative example of the first embodiment
Is again used as a comparative example. Then, Ce 0.9 Sm 0.1 O 1.95 , Ce 0.8
Sm 0 .2 O 1.9, Ce 0.6 Sm 0.4 O 1.8, Ce 0.8 La 0.2
O, 1.9 , Ce 0.8 Y 0.2 O 1.9
A nitrate aqueous solution having a molar ratio of m, La, and Y was prepared, and this was impregnated into the fuel electrode of a cell of the same type as cell # 6-0-1.

【0045】そして、空気中、1100℃で熱処理を行
い所望の組成の電極活性酸化物を析出させた。これらを
セル#7−1−1〜セル#7−1−5とし、実施例5と
同様の実験を行った。その結果を表1のセル#7−1−
1〜セル#7−1−5に示す。これらは比較例であるセ
ル#1−0−1に比べて高いセル出力が得られた。
Then, heat treatment was performed in air at 1100 ° C. to precipitate an electrode active oxide having a desired composition. These were designated as cells # 7-1-1 to # 7-1-5, and the same experiment as in Example 5 was performed. The result is shown in cell # 7-1- in Table 1.
1 to cell # 7-1-5. In these, a higher cell output was obtained as compared with cell # 1-0-1 of the comparative example.

【0046】以上の様に本発明の製造方法により従来の
方法に比べて優れた特性のセルを作製することに成功し
た。
As described above, the production method of the present invention succeeded in producing a cell having better characteristics than the conventional method.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【発明の効果】以上説明したように、燃料極と固体電解
質を焼成した後に混合導電体酸化物を構成するための金
属元素を含む有機金属または無機金属塩の溶液を燃料極
に含浸させ、その後熱分解反応によりこの酸化物を電解
質との界面付近に形成した。これにより焼成過程にあま
り制約を受けずに高性能な固体電解質型燃料電池用燃料
極を得ることに成功した。本発明は固体燃料電池の高効
率化に大きな貢献をなすものである。
As described above, after firing the fuel electrode and the solid electrolyte, the fuel electrode is impregnated with a solution of an organic metal or inorganic metal salt containing a metal element for forming a mixed conductor oxide. This oxide was formed near the interface with the electrolyte by a thermal decomposition reaction. As a result, a high performance fuel electrode for a solid oxide fuel cell was successfully obtained without much restriction on the firing process. The present invention makes a great contribution to improving the efficiency of a solid fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における単セルおよび燃料電池セルの構
造を示す図。
FIG. 1 is a diagram showing the structure of a single cell and a fuel cell in an embodiment.

【図2】実施例における燃料電池の構造を示す断面図。FIG. 2 is a cross-sectional view illustrating a structure of a fuel cell according to an embodiment.

【符号の説明】[Explanation of symbols]

1 固体電解質 2 空気極 3 燃料極 4 集電メッシュ 5 白金端子 6 ガスシール DESCRIPTION OF SYMBOLS 1 Solid electrolyte 2 Air electrode 3 Fuel electrode 4 Current collection mesh 5 Platinum terminal 6 Gas seal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 庸司 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5H018 AA06 AS02 AS03 BB01 BB05 CC06 DD01 EE02 EE04 EE10 EE12 EE13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoji Sakurai 2-3-1 Otemachi, Chiyoda-ku, Tokyo F-term within Nippon Telegraph and Telephone Corporation (reference) 5H018 AA06 AS02 AS03 BB01 BB05 CC06 DD01 EE02 EE04 EE10 EE12 EE13

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 緻密な固体電解質とその両面に設けられ
た多孔質の燃料極と空気極で構成された燃料電池セルを
備えた燃料電池の固体電解質型燃料電池用燃料極への電
極活性酸化物の導入方法において、前記燃料極及び固体
電解質を焼結形成した後、多孔質の燃料極内部に電子伝
導と酸素イオン伝導を共に有する電極活性酸化物の材料
を有機金属溶液、または無機金属塩溶液の形で含浸させ
たのち熱分解酸化反応により、所望の組成の電極活性酸
化物を電解質との界面付近へ導入することを特徴とする
固体電解質型燃料電池用燃料極への電極活性酸化物の導
入方法。
1. An electrode active oxidation of a fuel cell having a dense solid electrolyte and a fuel cell composed of a porous fuel electrode and an air electrode provided on both surfaces thereof to a fuel electrode for a solid oxide fuel cell. In the method for introducing a substance, after sintering the fuel electrode and the solid electrolyte, the material of the electrode active oxide having both electron conduction and oxygen ion conduction inside the porous fuel electrode is treated with an organic metal solution or an inorganic metal salt. The electrode active oxide having a desired composition is introduced into the vicinity of the interface with the electrolyte by a thermal decomposition oxidation reaction after impregnation in the form of a solution. How to introduce.
【請求項2】 請求項1において、固体電解質が希土類
やAl,Gaの群より選択された一種以上を添加したジ
ルコニア系酸化物からなり、燃料極が希土類やAl,G
aの一種以上を添加したジルコニア系酸化物とNiまた
はNiとCoやFeとの合金、またはこれらの酸化物と
の混合体で構成されていることを特徴とする固体電解質
型燃料電池用燃料極への電極活性酸化物の導入方法。
2. The solid electrolyte according to claim 1, wherein the solid electrolyte is made of a zirconia-based oxide to which at least one element selected from the group consisting of rare earth and Al and Ga is added, and the fuel electrode is made of rare earth, Al and G.
A fuel electrode for a solid oxide fuel cell, comprising a zirconia-based oxide and Ni or an alloy of Ni and Co or Fe to which at least one of a is added, or a mixture of these oxides. Of introducing an electrode active oxide into the electrode.
【請求項3】 請求項1において、固体電解質がランタ
ンガレート系酸化物からなり、燃料極がランタンガレー
ト系酸化物とNiまたはNiとCoやFeとの合金、ま
たはこれらの酸化物との混合体で構成されていることを
特徴とする固体電解質型燃料電池用燃料極への電極活性
酸化物の導入方法。
3. The solid electrolyte according to claim 1, wherein the solid electrolyte is made of a lanthanum gallate-based oxide, and the fuel electrode is made of a lanthanum gallate-based oxide and Ni or an alloy of Ni and Co or Fe, or a mixture of these oxides. A method for introducing an electrode active oxide into a fuel electrode for a solid oxide fuel cell, characterized by comprising:
【請求項4】 請求項2および請求項3において、電極
活性酸化物の組成が、Ce1-xLnx2-x/2(LnはY
または元素周期表のLaからLuの中のCeを除くいず
れか、またはこれらの中の2種類以上の元素を添加した
系で、その総量xが0.1≦x≦0.4)であることを
特徴とする固体電解質型燃料電池用燃料極への電極活性
酸化物の導入方法。
4. The method of claim 2 and claim 3, the electrode composition active oxide, Ce 1-x Ln x O 2-x / 2 (Ln is Y
Or a system in which Ce in Lu is removed from La in the periodic table of elements or a system to which two or more elements are added, and the total amount x is 0.1 ≦ x ≦ 0.4) A method for introducing an electrode active oxide into a fuel electrode for a solid oxide fuel cell, comprising the steps of:
【請求項5】 請求項2において、電極活性酸化物の組
成が、(1−y)(Zr1-xTix2)−y(Ln
23)(LnはY,Scまたは元素周期表のGdからL
uの中のいずれか、またはこれらの中の2種類以上の元
素で、Tiの総量xが0.03≦x≦0.2で、Ln2
3の総量yが0.03≦y≦0.15)であることを
特徴とする固体電解質型燃料電池用燃料極への電極活性
酸化物の導入方法。
5. The method of claim 2, the composition of the electrode active oxides, (1-y) (Zr 1-x Ti x O 2) -y (Ln
2 O 3 ) (Ln is L from Y, Sc or Gd of the periodic table)
u, or two or more of these elements, and the total amount x of Ti is 0.03 ≦ x ≦ 0.2 and Ln 2
A method for introducing an electrode active oxide into a fuel electrode for a solid oxide fuel cell, wherein the total amount y of O 3 is 0.03 ≦ y ≦ 0.15).
【請求項6】 請求項2および請求項3において、電極
活性酸化物の組成が、Ln1-xxGa1-yy3(Ln
はLa,Pr,Nd,Eu,Gd,Tbの中の一種類以
上の元素、CはCa,Sr,Baの中の一種類以上の元
素、DはMg,Ni,Co,Fe,Alの中の一種類以
上の元素、0.05≦x≦0.2、0.1≦y≦0.
3)であることを特徴とする固体電解質型燃料電池用燃
料極への電極活性酸化物の導入方法。
6. The method according to claim 2, wherein the composition of the electrode active oxide is Ln 1-x C x Ga 1-y D y O 3 (Ln
Is one or more of La, Pr, Nd, Eu, Gd, and Tb; C is one or more of Ca, Sr, and Ba; and D is Mg, Ni, Co, Fe, and Al. One or more elements, 0.05 ≦ x ≦ 0.2, 0.1 ≦ y ≦ 0.
3) A method for introducing an electrode active oxide into a fuel electrode for a solid oxide fuel cell, wherein
【請求項7】 請求項1から6のいずれかにおいて、前
記電極活性酸化物を形成する電極活性酸化物材料を、ア
ルコキシド溶液または硝酸溶液の形で前記多孔質の燃料
極に含浸させることを特徴とする固体電解質型燃料電池
用空気極への電極活性酸化物の導入方法。
7. The porous fuel electrode according to claim 1, wherein the electrode active oxide material forming the electrode active oxide is impregnated in the form of an alkoxide solution or a nitric acid solution. A method for introducing an electrode active oxide into an air electrode for a solid oxide fuel cell.
JP2001161837A 2001-05-30 2001-05-30 Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell Expired - Fee Related JP3871903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161837A JP3871903B2 (en) 2001-05-30 2001-05-30 Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161837A JP3871903B2 (en) 2001-05-30 2001-05-30 Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2002352809A true JP2002352809A (en) 2002-12-06
JP3871903B2 JP3871903B2 (en) 2007-01-24

Family

ID=19005056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161837A Expired - Fee Related JP3871903B2 (en) 2001-05-30 2001-05-30 Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3871903B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259642A (en) * 2003-02-27 2004-09-16 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode for solid oxide fuel cell, and its manufacturing method
JP2005166483A (en) * 2003-12-03 2005-06-23 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode for solid oxide fuel cell
WO2006030590A1 (en) * 2004-09-13 2006-03-23 Kyocera Corporation Electrode support for fuel cell
JP2006318769A (en) * 2005-05-12 2006-11-24 Shinko Electric Ind Co Ltd Electrode material and fuel cell
JP2006351405A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Sofc fuel electrode, and its manufacturing method
JP2007287685A (en) * 2006-03-23 2007-11-01 Dainippon Printing Co Ltd Solid-oxide fuel cell and method of manufacturing the same
JP2009151983A (en) * 2007-12-19 2009-07-09 Japan Fine Ceramics Center Solid oxide fuel cell
JP2010177105A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell with the same
JP2011108573A (en) * 2009-11-20 2011-06-02 Fuji Electric Holdings Co Ltd Solid oxide fuel cell and method for manufacturing the same
JP2013046913A (en) * 2012-11-22 2013-03-07 Showa Denko Kk Electrode catalyst and use thereof, and method for manufacturing the electrode catalyst
JP2017152090A (en) * 2016-02-22 2017-08-31 日本特殊陶業株式会社 Electrochemical cell and electrochemical stack

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259642A (en) * 2003-02-27 2004-09-16 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode for solid oxide fuel cell, and its manufacturing method
JP4498728B2 (en) * 2003-12-03 2010-07-07 日本電信電話株式会社 Fuel electrode for solid oxide fuel cell
JP2005166483A (en) * 2003-12-03 2005-06-23 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode for solid oxide fuel cell
WO2006030590A1 (en) * 2004-09-13 2006-03-23 Kyocera Corporation Electrode support for fuel cell
US8524419B2 (en) 2004-09-13 2013-09-03 Kyocera Corporation Electrode support for fuel cells
JP5089985B2 (en) * 2004-09-13 2012-12-05 京セラ株式会社 Solid electrolyte fuel cell
JPWO2006030590A1 (en) * 2004-09-13 2008-05-08 京セラ株式会社 Fuel cell electrode support
JP2006318769A (en) * 2005-05-12 2006-11-24 Shinko Electric Ind Co Ltd Electrode material and fuel cell
JP2006351405A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Sofc fuel electrode, and its manufacturing method
JP2007287685A (en) * 2006-03-23 2007-11-01 Dainippon Printing Co Ltd Solid-oxide fuel cell and method of manufacturing the same
JP2009151983A (en) * 2007-12-19 2009-07-09 Japan Fine Ceramics Center Solid oxide fuel cell
JP2010177105A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell with the same
JP2011108573A (en) * 2009-11-20 2011-06-02 Fuji Electric Holdings Co Ltd Solid oxide fuel cell and method for manufacturing the same
JP2013046913A (en) * 2012-11-22 2013-03-07 Showa Denko Kk Electrode catalyst and use thereof, and method for manufacturing the electrode catalyst
JP2017152090A (en) * 2016-02-22 2017-08-31 日本特殊陶業株式会社 Electrochemical cell and electrochemical stack

Also Published As

Publication number Publication date
JP3871903B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
Xia et al. Novel cathodes for low‐temperature solid oxide fuel cells
JP3827209B2 (en) Method for producing composite air electrode for solid oxide fuel cell
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
EP3430661B1 (en) Alternative anode material for solid oxide fuel cells
KR101796575B1 (en) Method of manufacturing an electrode material having exsoluted metal alloy catalyst, and solid oxide fuel cell, metal air battery, and solid oxide electrolyzer cell having the same
JP4796895B2 (en) Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
US20180323443A1 (en) Fabrication processes for solid state electrochemical devices
CN108091885B (en) High-temperature fuel cell cathode and application thereof
JP5290870B2 (en) Solid oxide fuel cell
JP2009140693A (en) Solid oxide fuel cell
KR101611254B1 (en) Method of manufacturing anode materials for solid oxide fuel cell
JP4524791B2 (en) Solid oxide fuel cell
KR101642427B1 (en) Method for manufacturing anode material for solid oxide fuel cell
JP5226656B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2003308846A (en) Perovskite oxide and air electrode for fuel cell
JP2005259518A (en) Assembly for electrochemical cell and electrochemical cell
JP5550223B2 (en) Ceramic electrolyte processing method and related products
KR102137988B1 (en) symmetrical solid oxide fuel cell having perovskite structure, method of manufacturing the same and symmetrical solid oxide electrolyzer cell having the perovskite structure
KR102186600B1 (en) Electrolyte for solid oxide fuel cell, solid oxide fuel cell and method of preparing solid oxide fuel cell
JP4130796B2 (en) SOFC fuel electrode containing ceria-based perovskite oxide and method for producing the same
KR20160135098A (en) Solid Oxide Electrochemical Device having Triple Layer Perovskite for Air-Electrode Catalyst
KR101615694B1 (en) Method for manufacturing anode material for solid oxide fuel cell
JP7114555B2 (en) Electrodes for water vapor electrolysis
JP4559255B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees