JP2002134133A - Cell of solid electrolyte fuel cell - Google Patents

Cell of solid electrolyte fuel cell

Info

Publication number
JP2002134133A
JP2002134133A JP2000329630A JP2000329630A JP2002134133A JP 2002134133 A JP2002134133 A JP 2002134133A JP 2000329630 A JP2000329630 A JP 2000329630A JP 2000329630 A JP2000329630 A JP 2000329630A JP 2002134133 A JP2002134133 A JP 2002134133A
Authority
JP
Japan
Prior art keywords
solid electrolyte
cell
air electrode
electrode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000329630A
Other languages
Japanese (ja)
Other versions
JP4743949B2 (en
Inventor
Masahito Nishihara
雅人 西原
Takashi Shigehisa
高志 重久
Shoji Yamashita
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000329630A priority Critical patent/JP4743949B2/en
Publication of JP2002134133A publication Critical patent/JP2002134133A/en
Application granted granted Critical
Publication of JP4743949B2 publication Critical patent/JP4743949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell of a solid electrolyte fuel cell, capable of enhancing reproducibility by suppressing dispersion of cell performance to a minimum, providing high output density at early stage, and keeping high output density over a long time. SOLUTION: The cell of the solid electrolyte fuel cell is manufactured, in such a way that a solid electrolyte 31 whose main component is ZrO2 and a fuel electrode 33 are stacked in order on the surface of an air electrode 32, comprising a perovskite type composite oxide containing La and Mn, and the air electrode 32, the solid electrolyte 31, and the fuel electrode 33 are sintered simultaneously. The amount of Mn on a surface layer 45 of the solid electrolyte 31 is specified to be 1.5 wt.% or smaller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池セルに関し、空気極の表面に、固体電解質、燃料極
が積層された固体電解質型燃料電池セルに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly, to a solid oxide fuel cell in which a solid electrolyte and a fuel electrode are stacked on the surface of an air electrode.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, since a solid oxide fuel cell has a high operating temperature of 900 to 1050 ° C., it has a high power generation efficiency and is expected as a third generation power generation system.

【0003】一般に固体電解質型燃料電池セルには、円
筒型と平板型が知られている。平板型燃料電池セルは、
発電の単位体積当たり出力密度は高いという特徴を有す
るが、実用化に関してはガスシール不完全性やセル内の
温度分布の不均一性などの問題がある。
[0003] In general, cylindrical and flat plate types of solid oxide fuel cells are known. Flat fuel cells are
Although it has the feature of high power density per unit volume of power generation, there are problems such as incomplete gas sealing and non-uniformity of temperature distribution in the cell for practical use.

【0004】それに対して、円筒型燃料電池セルでは、
出力密度は低いものの、セルの機械的強度が高く、また
セル内の温度の均一性が保てるという特徴がある。両形
状の固体電解質型燃料電池セルとも、それぞれの特徴を
生かして積極的に研究開発が進められている。
On the other hand, in a cylindrical fuel cell,
Although the power density is low, the cell has high mechanical strength and can maintain uniform temperature in the cell. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective characteristics.

【0005】円筒型燃料電池の単セルは、図2に示すよ
うに開気孔率30〜40%程度のLaMnO3系材料か
らなる多孔性の空気極支持管2を形成し、その表面にY
23安定化ZrO2からなる固体電解質3を被覆し、さ
らにこの表面に多孔性のNi−ジルコニアの燃料極4を
設けて構成されている。
As shown in FIG. 2, a single cell of a cylindrical fuel cell has a porous cathode support tube 2 made of a LaMnO 3 -based material having an open porosity of about 30 to 40%, and a Y electrode is formed on the surface thereof.
A solid electrolyte 3 composed of 2 O 3 stabilized ZrO 2 is coated, and a porous Ni-zirconia fuel electrode 4 is provided on the surface thereof.

【0006】燃料電池のモジュールにおいては、各単セ
ルはLaCrO3系の集電体(インターコネクタ)5を
介して接続される。発電は、空気極支持管2内部に空気
(酸素)6を、外部に燃料(水素)7を流し、1000
〜1050℃の温度で行われる。
In the fuel cell module, each single cell is connected via a LaCrO 3 -based current collector (interconnector) 5. For power generation, air (oxygen) 6 flows inside the cathode support tube 2 and fuel (hydrogen) 7 flows outside, and 1000
It is performed at a temperature of 1050 ° C.

【0007】上記のような燃料電池セルを製造する方法
としては、例えばCaO安定化ZrO2からなる絶縁粉
末を押出成形法などにより円筒状に成形後、これを焼成
して円筒状支持体を作製し、この支持体の外周面に空気
極、固体電解質、燃料極、集電体のスラリーを塗布して
これを順次焼成して積層するか、あるいは円筒状支持体
の表面に電気化学的蒸着法(EVD法)やプラズマ溶射
法などにより空気極、固体電解質、燃料極、集電体を順
次形成することも行われている。
As a method of manufacturing the above-described fuel cell, for example, an insulating powder made of CaO-stabilized ZrO 2 is formed into a cylindrical shape by an extrusion method or the like, and then fired to form a cylindrical support. Then, a slurry of an air electrode, a solid electrolyte, a fuel electrode, and a current collector is applied to the outer peripheral surface of the support, and the slurry is sequentially fired and laminated, or an electrochemical vapor deposition method is applied to the surface of the cylindrical support. An air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed by (EVD method), a plasma spraying method, or the like.

【0008】近年ではセルの製造工程を簡略化し且つ製
造コストを低減するために、各構成材料のうち少なくと
も2つを同時焼成する、いわゆる共焼結法が提案されて
いる。この共焼結法は、例えば、円筒状の空気極成形体
に固体電解質成形体及び集電体成形体をロール状に巻き
付けて同時焼成を行い、その後固体電解質層表面に燃料
極層を形成する方法である。またプロセス簡略化のため
に、固体電解質成形体の表面にさらに燃料極成形体を積
層して、同時焼成する共焼結法も提案されている。
In recent years, a so-called co-sintering method has been proposed in which at least two of the constituent materials are simultaneously fired in order to simplify the manufacturing process of the cell and reduce the manufacturing cost. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound in a roll shape around a cylindrical air electrode molded body and simultaneously fired, and then a fuel electrode layer is formed on the surface of the solid electrolyte layer. Is the way. In order to simplify the process, a co-sintering method has been proposed in which a fuel electrode compact is further laminated on the surface of the solid electrolyte compact and fired simultaneously.

【0009】この共焼結法は非常に簡単なプロセスで製
造工程数も少なく、セルの製造時の歩留まり向上、コス
ト低減に有利である。このような共焼結法による燃料電
池セルでは、Y23安定化または部分安定化ZrO2
らなる固体電解質を用い、この固体電解質に熱膨張係数
を合致させる等のため、空気極材料として、LaMnO
3からなるペロブスカイト型複合酸化物のLaの一部を
YおよびCaで置換したものが用いられている(特開平
10−162847号公報等参照)。
This co-sintering method is a very simple process with a small number of manufacturing steps, and is advantageous in improving the yield and cost reduction in manufacturing cells. In such a fuel cell by the co-sintering method, a solid electrolyte composed of Y 2 O 3 stabilized or partially stabilized ZrO 2 is used, and the coefficient of thermal expansion matches the solid electrolyte. , LaMnO
The perovskite-type composite oxide of No. 3 in which a part of La is substituted with Y and Ca is used (see Japanese Patent Application Laid-Open No. 10-162847).

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述し
た共焼結法を用いて円筒型燃料電池セルを作製すると、
共焼結の際に、空気極の構成成分であるMn元素が、固
体電解質を介して、燃料極内部に向かって固相内拡散す
る。その結果、燃料極中のMn量が増加し、燃料極サイ
トの分極値およびセル構成成分の実抵抗値が高くなり、
その結果、初期における出力密度が低いという問題があ
った。
However, when a cylindrical fuel cell is manufactured using the above-described co-sintering method,
During co-sintering, Mn element, which is a component of the air electrode, diffuses in the solid phase toward the inside of the fuel electrode via the solid electrolyte. As a result, the amount of Mn in the fuel electrode increases, the polarization value of the fuel electrode site and the actual resistance value of the cell component increase,
As a result, there is a problem that the output density in the initial stage is low.

【0011】また、上述した共焼結法を用いて、発電に
寄与する有効長さが40cmの円筒型燃料電池セルを作
製すると、同一セル内において、および複数のセル間
で、固体電解質内部および燃料極内部での空気極からの
Mn成分の拡散量が異なり、このため、燃料極サイトの
分極値、およびセル構成成分の実抵抗値のバラツキが大
きく、作製されたセルの特性再現性が乏しく、信頼性に
欠けるという問題があった。
Further, when a cylindrical fuel cell having an effective length of 40 cm contributing to power generation is manufactured by using the above-described co-sintering method, the inside of the solid electrolyte and the inside of the solid electrolyte and between a plurality of cells can be obtained. The amount of diffusion of the Mn component from the air electrode inside the fuel electrode is different, and therefore, the dispersion of the polarization value of the fuel electrode site and the actual resistance value of the cell component is large, and the characteristic reproducibility of the manufactured cell is poor. However, there was a problem of lack of reliability.

【0012】本発明は、セル性能のバラツキを最小限に
抑制して再現性を高めることができるとともに、初期に
おいて高い出力密度を得ることができ、且つ長期に亘っ
て高い出力密度を維持できる固体電解質型燃料電池セル
を提供することを目的とする。
According to the present invention, there is provided a solid material capable of minimizing variations in cell performance and improving reproducibility, obtaining a high output density at an initial stage, and maintaining a high output density for a long period of time. An object of the present invention is to provide an electrolyte fuel cell.

【0013】[0013]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、少なくともLaおよびMnを含有するペ
ロブスカイト型複合酸化物からなる空気極の表面に、Z
rO2を主成分とする固体電解質、および燃料極を順次
積層してなり、前記空気極、前記固体電解質が同時に焼
結された固体電解質型燃料電池セルにおいて、前記固体
電解質の空気極側の面から厚さ30μmの表層における
Mn量が1.5重量%以下であることを特徴とする。燃
料極は、空気極、固体電解質と同時に焼結されることが
工程を簡略化できるため望ましい。
According to the present invention, there is provided a solid oxide fuel cell according to the present invention, in which a surface of an air electrode made of a perovskite-type composite oxide containing at least La and Mn is coated with Z
In a solid electrolyte fuel cell in which a solid electrolyte containing rO 2 as a main component and a fuel electrode are sequentially laminated, and the air electrode and the solid electrolyte are simultaneously sintered, a surface of the solid electrolyte on the air electrode side is provided. From the surface layer having a thickness of 30 μm to 1.5 μ% by weight or less. The fuel electrode is desirably sintered at the same time as the air electrode and the solid electrolyte because the process can be simplified.

【0014】このような固体電解質型燃料電池セルで
は、固体電解質と空気極との間に、CeO2を主成分と
する拡散防止層、例えば、YおよびZrが固溶したCe
2を主成分とする拡散防止層を形成することにより、
空気極から固体電解質を介して、燃料極に拡散しようと
するMnを、拡散防止層により遮断または抑制でき、固
体電解質の空気極側の面から厚さ30μmの表層におけ
るMn量を1.5重量%以下とすることができ、燃料極
中におけるMn含有量を減少でき、これにより、燃料極
サイトの分極値およびセル構成成分の実抵抗値を低くで
き、出力密度を高くできるとともに、高い出力密度を長
期間に亘って維持できる。
In such a solid oxide fuel cell, a diffusion preventing layer containing CeO 2 as a main component, for example, Ce in which Y and Zr are dissolved, is provided between the solid electrolyte and the air electrode.
By forming a diffusion prevention layer containing O 2 as a main component,
Mn, which tends to diffuse from the air electrode to the fuel electrode via the solid electrolyte, can be blocked or suppressed by the diffusion preventing layer, and the Mn content in the surface layer having a thickness of 30 μm from the air electrode side surface of the solid electrolyte is 1.5 wt. % Or less, and the Mn content in the anode can be reduced, whereby the polarization value of the anode site and the actual resistance value of the cell component can be reduced, the power density can be increased, and the power density can be increased. Can be maintained over a long period of time.

【0015】これは、燃料極中に存在するMn量が多い
場合には、燃料極の焼結性を過剰に促進し、燃料極中の
金属粒子の粒成長が過剰となり、金属粒子と固体電解質
との接触面積が低下し、燃料極サイトの分極値が大きく
なるからであり、さらに金属粒子間にMnが析出するた
め導電性が低下し、セル構成成分の実抵抗値が高くなる
からである。
This is because, when the amount of Mn present in the fuel electrode is large, the sinterability of the fuel electrode is excessively promoted, the grain growth of the metal particles in the fuel electrode becomes excessive, and the metal particles and the solid electrolyte This is because the contact area with the anode decreases, and the polarization value of the fuel electrode site increases. Further, since Mn is precipitated between the metal particles, the conductivity decreases, and the actual resistance value of the cell component increases. .

【0016】そして、固体電解質の拡散防止層側の面か
ら固体電解質の燃料極に向けて形成された厚さ30μm
の表層におけるMn量が1.5重量%以下であるため、
上記燃料極中のMn量低減による効果に加え、更にセル
構成成分(固体電解質)の実抵抗値を低く出来るため、
同一仕様のセル内、セル間において性能のバラツキ差を
抑制できる。特に、セル内部における性能のバラツキ差
が緩和されるため、発電に寄与する有効長さ(空気極、
固体電解質、燃料極が重畳積層された部分の長さ)が4
0cm以上の円筒型セル(ロングセルということもあ
る)の発電において電気的な局部破損によるセル破壊を
防止できる。
Then, a thickness of 30 μm formed from the surface of the solid electrolyte on the diffusion prevention layer side toward the fuel electrode of the solid electrolyte.
Is not more than 1.5% by weight in the surface layer of
In addition to the effect of reducing the amount of Mn in the fuel electrode, the actual resistance of the cell component (solid electrolyte) can be further reduced.
Within a cell having the same specifications, a difference in performance between cells can be suppressed. In particular, since the variation in performance inside the cell is reduced, the effective length (air electrode,
The length of the portion where the solid electrolyte and the fuel electrode are overlapped and laminated) is 4
In the power generation of a cylindrical cell (sometimes called a long cell) of 0 cm or more, cell destruction due to electrical local damage can be prevented.

【0017】また、本発明では、拡散防止層は、Yおよ
びZrが固溶したCeO2を主成分とすることが望まし
い。Yを固溶したCeO2(YDCということもある)
を出発原料として用い、YおよびZrが固溶したCeO
2、またはYおよびZrが固溶したCeO2と、Ce、Y
が固溶したZrO2の混合体から成る拡散防止層を形成
したため、拡散防止層の熱膨張係数をセル構成部材によ
り近づけることができ、拡散防止層と、固体電解質や空
気極との界面剥離を抑制でき、製造中或いは発電中にお
ける昇温冷却によって破損することを抑制でき、セルの
製造歩留りを向上できる。
In the present invention, it is desirable that the diffusion preventing layer contains CeO 2 in which Y and Zr are dissolved as a main component. CeO 2 in which Y is dissolved (sometimes called YDC)
Is used as a starting material, and CeO in which Y and Zr are dissolved
2 , or CeO 2 in which Y and Zr are dissolved, and Ce, Y
Because There is formed a diffusion barrier layer made of a mixture of ZrO 2 were dissolved, the thermal expansion coefficient of the diffusion preventing layer can be brought closer by the cell components, and the diffusion preventing layer, the interfacial peeling between the solid electrolyte and the air electrode It is possible to suppress breakage due to heating and cooling during manufacturing or during power generation, thereby improving the cell manufacturing yield.

【0018】さらに、YDCを用いることで、YをCe
2またはZrO2中に全て固溶させせることができ、拡
散防止層内に熱膨張係数の低いY23相の析出を防止す
ることもでき、その結果局部的な未接合部が無くなり剥
離を阻止できる。
Further, by using YDC, Y is converted to Ce.
All can be dissolved in O 2 or ZrO 2 , and the precipitation of a Y 2 O 3 phase having a low coefficient of thermal expansion can be prevented in the diffusion prevention layer, and as a result, local unbonded portions are eliminated. Peeling can be prevented.

【0019】また、本発明の固体電解質型燃料電池セル
では、燃料極中のMn量が0.2重量%以下であること
が望ましい。このようにすることにより、燃料極サイト
の分極値およびセル構成成分の実抵抗値をさらに低くで
きる。
In the solid oxide fuel cell according to the present invention, the Mn content in the fuel electrode is desirably 0.2% by weight or less. By doing so, the polarization value of the fuel electrode site and the actual resistance value of the cell component can be further reduced.

【0020】さらに、本発明の固体電解質型燃料電池セ
ルでは、固体電解質がY23を含有するZrO2である
ことが望ましい。また、拡散防止層は、CeO2中に、
Zr、Yを固溶してなることが望ましい。拡散防止層中
にはSmを含有していないことが望ましい。
Further, in the solid oxide fuel cell of the present invention, it is desirable that the solid electrolyte is ZrO 2 containing Y 2 O 3 . Further, the diffusion prevention layer is made of CeO 2 ,
Desirably, Zr and Y are dissolved. It is desirable that the diffusion preventing layer does not contain Sm.

【0021】また、本発明の固体電解質型燃料電池セル
は、例えば、少なくともLaおよびMnを含有する空気
極成形体の表面に、Yが固溶したZrO2、およびYが
固溶したCeO2を含有するペーストを塗布して塗布膜
を形成した後、該塗布膜の表面に、ZrO2を含有する
固体電解質成形体、燃料極成形体を順次積層して積層成
形体を形成し、該積層成形体を焼成することにより形成
される。
Further, the solid oxide fuel cell of the present invention comprises, for example, ZrO 2 in which Y is dissolved and CeO 2 in which Y is dissolved on the surface of an air electrode molded body containing at least La and Mn. After forming a coating film by applying the paste containing the solid electrolyte formed body and the fuel electrode formed body containing ZrO 2 on the surface of the coating film, a stacked formed body is formed. It is formed by firing the body.

【0022】例えば、La、Ca、Y及びMnを含有す
るペロブスカイト型複合酸化物からなる円筒状の空気極
材料を用いてセルを同時焼成すると、共焼結時に空気極
を構成するそれぞれの成分元素の中でもMn元素の拡散
(蒸発及び固相内での拡散)がとりわけ速い。即ち、焼
成中に、空気極成形体中のMnが、空気極成形体から固
体電解質成形体を介して、燃料極成形体に拡散しようと
する。
For example, when a cell is co-fired using a cylindrical air electrode material made of a perovskite-type composite oxide containing La, Ca, Y and Mn, each component element constituting the air electrode during co-sintering is obtained. Among them, the diffusion (evaporation and diffusion in the solid phase) of the Mn element is particularly fast. That is, during firing, Mn in the air electrode molded body tends to diffuse from the air electrode molded body to the fuel electrode molded body via the solid electrolyte molded body.

【0023】そこで、本発明では、空気極成形体(仮焼
体も含む概念)の表面に、Yが固溶したZrO2、およ
びYが固溶したCeO2を含有するペーストを塗布した
後、固体電解質成形体(仮焼体も含む概念)、燃料極成
形体を順次積層し、焼成することにより、固体電解質と
空気極との間に、Y及びZrが固溶したCeO2、ある
いはY及びZrが固溶したCeO2とY及びCeが固溶
したZrO2の混合体からなる、Y及びZrが固溶した
CeO2主成分の拡散防止層が形成される。この拡散防
止層により、空気極成形体から固体電解質成形体を介し
て、燃料極成形体に拡散しようとするMnを遮断または
抑制でき、固体電解質、燃料極中におけるMnの拡散量
を減少できる。ペーストとしては、YはZrO2やCe
2に固溶することなく、Y23として添加しても良
い。
Therefore, according to the present invention, a paste containing ZrO 2 in which Y is dissolved and CeO 2 in which Y is dissolved is applied to the surface of the air electrode molded body (including the calcined body). A solid electrolyte molded body (a concept including a calcined body) and a fuel electrode molded body are sequentially laminated and fired, so that CeO 2 in which Y and Zr are dissolved as a solid solution, or Y and Zr is formed between the solid electrolyte and the air electrode. Zr is made of a mixture of ZrO 2 to CeO 2 and Y and Ce forms a solid solution in which a solid solution, Y and Zr diffusion preventing layer of CeO 2 principal components solid solution is formed. The diffusion preventing layer can block or suppress Mn from diffusing from the air electrode molded body to the fuel electrode molded body via the solid electrolyte molded body, and reduce the amount of Mn diffusion in the solid electrolyte and the fuel electrode. As a paste, Y is ZrO 2 or Ce
Without solid solution in O 2, it may be added as Y 2 O 3.

【0024】[0024]

【発明の実施の形態】本発明の固体電解質型燃料電池セ
ルは、図1に示すように円筒状の固体電解質31の内面
に空気極32、外面に燃料極33を形成してセル本体3
4が形成されており、空気極32には集電体(インター
コネクタ)35が電気的に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid oxide fuel cell according to the present invention comprises a cylindrical solid electrolyte 31 having an air electrode 32 formed on the inner surface and a fuel electrode 33 formed on the outer surface, as shown in FIG.
The current collector (interconnector) 35 is electrically connected to the air electrode 32.

【0025】即ち、固体電解質31の一部に切欠部36
が形成され、固体電解質31の内面に形成されている空
気極32の一部が露出しており、この露出面37及び切
欠部36近傍の固体電解質31の表面が集電体35によ
り被覆され、集電体35が、固体電解質31の両端部表
面及び固体電解質31の切欠部36から露出した空気極
32の表面に接合されている。
That is, the notch 36 is formed in a part of the solid electrolyte 31.
Is formed, a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the surface of the solid electrolyte 31 near the exposed surface 37 and the notch 36 is covered with the current collector 35, Current collectors 35 are joined to the surfaces of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.

【0026】空気極32と電気的に接続する集電体35
は、セル本体34の外面に形成され、ほぼ段差のない連
続同一面39を覆うように形成されており、燃料極33
とは電気的に接続されていない。
Current collector 35 electrically connected to air electrode 32
Are formed on the outer surface of the cell body 34 so as to cover the continuous same surface 39 having almost no level difference.
And are not electrically connected.

【0027】この集電体35は、セル同士間を接続する
際に他のセルの燃料極にNiフェルトを介して電気的に
接続され、これにより燃料電池モジュールが構成され
る。連続同一面39は、固体電解質の両端部と空気極の
一部とが連続したほぼ同一面となるまで、固体電解質の
両端部間を研磨することにより形成される。
When connecting between the cells, the current collector 35 is electrically connected to the fuel electrode of another cell via Ni felt, thereby forming a fuel cell module. The continuous same surface 39 is formed by polishing the both ends of the solid electrolyte until both ends of the solid electrolyte and a part of the air electrode become continuous and substantially the same surface.

【0028】固体電解質31は、例えば3〜15モル%
のY23含有した部分安定化あるいは安定化ZrO2
用いられる。また、空気極32としては、例えば、La
をCa又はSrで10〜30原子%、Yで5〜20原子
%置換したLaMnO3が用いられ、集電体35として
は、例えば、CrをMgで10〜30原子%置換したL
aCrO3が用いられる。
The solid electrolyte 31 is, for example, 3 to 15 mol%.
Partially stabilized or stabilized ZrO 2 containing Y 2 O 3 is used. Further, as the air electrode 32, for example, La
Used is LaMnO 3 in which Ca or Sr is substituted by 10 to 30 atomic% and Y is substituted by 5 to 20 atomic%. As the current collector 35, for example, L in which Cr is substituted by Mg by 10 to 30 atomic% is used.
aCrO 3 is used.

【0029】燃料極33としては、50〜80重量%N
iを含むZrO2(Y23含有)サーメットが用いられ
る。固体電解質31、集電体35、燃料極33として
は、上記例に限定されるものではなく、公知材料を用い
ても良い。空気極32としては、少なくともLaおよび
Mnを含有するペロブスカイト型複合酸化物からなるも
のであれば良い。
As the fuel electrode 33, 50 to 80% by weight N
A ZrO 2 (containing Y 2 O 3 ) cermet containing i is used. The solid electrolyte 31, the current collector 35, and the fuel electrode 33 are not limited to the above examples, and may be made of known materials. The air electrode 32 may be made of a perovskite-type composite oxide containing at least La and Mn.

【0030】そして、本発明の固体電解質型燃料電池セ
ルでは、固体電解質31と空気極32との間に、CeO
2を主成分とする拡散防止層41が形成されている。こ
の拡散防止層41は、YおよびZrが固溶したCeO2
を主成分とすることが望ましく、YおよびZrが固溶し
たCeO2を70重量%以上含有することが望ましい。
特に、YおよびZrが固溶したCeO2、またはYおよ
びZrが固溶したCeO2と、Ce、Yが固溶したZr
2の混合体から成ることが望ましい。
In the solid oxide fuel cell of the present invention, CeO is placed between the solid electrolyte 31 and the air electrode 32.
A diffusion prevention layer 41 containing 2 as a main component is formed. This diffusion prevention layer 41 is made of CeO 2 in which Y and Zr are dissolved.
As a main component, and desirably contains 70% by weight or more of CeO 2 in which Y and Zr are dissolved.
In particular, the CeO 2 which CeO 2 or Y and Zr, Y and Zr in solid solution is a solid solution, Ce, Y was dissolved Zr
It preferably comprises a mixture of O 2 .

【0031】拡散防止層41は、組成式が、1−z
{(CeO2)1−x(Y23)x}・z{(ZrO2
1−y(Y23)y}で表されるもので、0.2≦x≦
0.4、0.05≦y≦0.08、0.03≦z≦0.
3を満足することが望ましい。
The diffusion preventing layer 41 has a composition formula of 1-z
{(CeO 2 ) 1 -x (Y 2 O 3 ) x} · z} (ZrO 2 )
1−y (Y 2 O 3 ) y}, where 0.2 ≦ x ≦
0.4, 0.05 ≦ y ≦ 0.08, 0.03 ≦ z ≦ 0.
It is desirable to satisfy Condition 3.

【0032】xが20モル%よりも少ない場合には、拡
散防止層41の熱膨脹係数値が他のセル構成部材より高
くなる傾向があり、40モル%よりも多い場合は、Y2
3がCeO2やZrO2に固溶しきれず、Y23として
析出する傾向があるからである。
When x is less than 20 mol%, the thermal expansion coefficient of the diffusion preventing layer 41 tends to be higher than that of other cell components, and when x is more than 40 mol%, Y 2
This is because O 3 cannot be completely dissolved in CeO 2 or ZrO 2 and tends to precipitate as Y 2 O 3 .

【0033】また、yを5〜8モル%とすることによ
り、拡散防止層41の熱膨脹係数値を他のセル構成部材
に近づけることができる。さらに、zが3重量%よりも
少ない場合には、上記同様セル構成部材との熱膨張のミ
スマッチを招く傾向があり、30重量%よりも多い場合
は、Mnを拡散しやすいZrO2が増加することにな
り、Mn拡散を抑制する効果が小さくなるからである。
By setting y to 5 to 8 mol%, the coefficient of thermal expansion of the diffusion preventing layer 41 can be made closer to that of other cell components. Further, when z is less than 3% by weight, a thermal expansion mismatch with the cell constituting member tends to occur as in the above case, and when z is more than 30% by weight, ZrO 2 which easily diffuses Mn increases. This is because the effect of suppressing Mn diffusion is reduced.

【0034】また、拡散防止層41中には、更に空気極
成分としてのCa、Yが拡散により含まれることがあ
り、拡散防止層41の厚みは部材間の熱膨張係数の整合
という点から2〜15μmが望ましい。特に、セル内お
よびセル間での性能のバラツキ差を抑制するとい点から
10〜15μmが望ましい。
The diffusion preventing layer 41 may further contain Ca and Y as air cathode components by diffusion, and the thickness of the diffusion preventing layer 41 is set at 2 from the viewpoint of matching thermal expansion coefficients between members. 1515 μm is desirable. In particular, the thickness is preferably 10 to 15 μm from the viewpoint of suppressing the difference in performance between cells and between cells.

【0035】更に、セル内およびセル間での性能のバラ
ツキ差を抑制する点において、上記空気極32を構成す
るLaMnO3系複合酸化物のAサイトとBサイトの比
率を調整することでも可能である。即ち、Aサイトが化学
量論組成よりも不足するように、1よりも小さくなる範
囲で、且つ上記ペロブスカイト型酸化物が分解しないよ
うに出来る限り化学量論組成に近づけた組成が好まし
い。特に0.97〜0.99であることが望ましい。
Further, in order to suppress the difference in performance between cells and between cells, it is possible to adjust the ratio of the A site and the B site of the LaMnO 3 -based composite oxide constituting the air electrode 32. is there. That is, the composition is preferably as close to the stoichiometric composition as possible so that the A site is less than the stoichiometric composition so as to be less than 1, and so as not to decompose the perovskite oxide. In particular, it is preferably 0.97 to 0.99.

【0036】燃料極33中のMn量は0.2重量%以下
とされている。このように燃料極33中のMn量を0.
2重量%以下とすることにより、燃料極サイトの分極値
およびセル構成成分の実抵抗値をさらに低くできる。
The Mn content in the fuel electrode 33 is set to 0.2% by weight or less. Thus, the amount of Mn in the fuel electrode 33 is reduced to 0.1.
By setting the content to 2% by weight or less, the polarization value of the fuel electrode site and the actual resistance value of the cell component can be further reduced.

【0037】そして、本発明では、固体電解質31の拡
散防止層41側の面から固体電解質31の燃料極33に
向けて形成された厚さ30μmの表層45におけるMn
量が1.5重量%以下であることを特徴とする。
In the present invention, the Mn in the 30 μm thick surface layer 45 formed from the surface of the solid electrolyte 31 on the side of the diffusion preventing layer 41 toward the fuel electrode 33 of the solid electrolyte 31.
The amount is not more than 1.5% by weight.

【0038】このように空気極からのMn成分の拡散を
従来よりも低減するためには、Mn拡散防止能を高める
必要がある。そのためには、拡散防止層41のZrO2
量を減らし、セリア(CeO2)の含有量を高めなけれ
ばならない。一方、セリア(CeO2)の含有量を単に
高めることは、セル構成部材(固体電解質31、空気極
32)間での熱膨張率のミスマッチを招き、その結果固
体電解質31と拡散防止層41との間で界面剥離に伴う
セルの歩留り低下を招く。以上のことから、CeO2
の固溶種は、SmよりもYを用いる方が拡散防止層41
の中のCeO2含有量を高められる点でより望ましい。
このように、拡散防止層41を設け、表層45における
Mn量を1.5重量%以下とすることにより、上記燃料
極33中のMn量低減による効果に加え、更にセル構成
成分の実抵抗値を低く出来、その結果同仕様のセル内、
セル間において性能のバラツキ差を抑制できる。
As described above, in order to reduce the diffusion of the Mn component from the air electrode as compared with the prior art, it is necessary to increase the Mn diffusion preventing ability. For that purpose, the ZrO 2 of the diffusion prevention layer 41 is used.
The amount must be reduced and the ceria (CeO 2 ) content must be increased. On the other hand, simply increasing the content of ceria (CeO 2 ) causes a mismatch in the coefficient of thermal expansion between the cell components (the solid electrolyte 31 and the air electrode 32), and as a result, the solid electrolyte 31 and the diffusion prevention layer 41 In this case, the cell yield is reduced due to the interface separation. From the above, it is better to use Y as the solid solution species in CeO 2 than in Sm.
Is more preferable in that the content of CeO 2 in the above can be increased.
As described above, by providing the diffusion preventing layer 41 and reducing the Mn content in the surface layer 45 to 1.5% by weight or less, in addition to the effect of reducing the Mn content in the fuel electrode 33, the actual resistance value of the cell component is further reduced. Can be lowered, and as a result,
Variations in performance between cells can be suppressed.

【0039】以上のように構成された固体電解質型燃料
電池セルの製法は、まず、円筒状の空気極成形体を形成
する。この円筒状の空気極成形体は、例えば所定の調合
組成に従いLa23、Y23、CaCO3およびMn2
3の素原料を秤量、混合する。
In the method for manufacturing the solid oxide fuel cell constructed as described above, first, a cylindrical air electrode molded body is formed. The cylindrical air electrode molded body is made of, for example, La 2 O 3 , Y 2 O 3 , CaCO 3 and Mn 2 O in accordance with a predetermined composition.
Weigh and mix 3 raw materials.

【0040】この後、例えば、1500℃程度の温度で
2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調
製する。調製した粉体に、バインダーを混合、混練し押
出成形法により円筒状の空気極成形体を作製し、さらに
脱バインダー処理し、1200〜1250℃で仮焼を行
うことで円筒状の空気極仮焼体を作製する。尚、Mnの
拡散は1400℃以上で顕著であるため、上記空気極成
形体の仮焼温度ではMnは殆ど拡散しない。
Thereafter, for example, the mixture is calcined at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm. A binder is mixed and kneaded with the prepared powder to produce a cylindrical air electrode molded body by an extrusion molding method, further debindered, and calcined at 1200 to 1250 ° C. to form a cylindrical air electrode temporary body. Prepare a fired body. Since the diffusion of Mn is remarkable at 1400 ° C. or higher, Mn hardly diffuses at the calcining temperature of the air electrode compact.

【0041】また、例えば、Y23、CaOの少なくと
も一種が固溶したZrO2粉末と、組成式が(CeO2
1−x(Y23)xで表わされるYが固溶したCeO2
粉末とを混合仮焼し、その後粒度調製した混合粉末に溶
媒としてトルエンを添加し、ペーストを作製し、このペ
ーストを円筒状の空気極仮焼体の表面に塗布してMn拡
散防止層41の塗布膜を形成する。ペースト中にはY2
3が存在していても良いが、焼成後には。ZrO2また
はCeO2にすべて固溶することが望ましい。尚、Mn
拡散防止層41は、一旦ペーストによりシートを作製
し、これを空気極仮焼体の表面に積層しても良く、この
ようにすることにより、Mn拡散防止層41の厚みバラ
ツキを防止できる。
Further, for example, a ZrO 2 powder in which at least one of Y 2 O 3 and CaO is dissolved as a solid solution and a composition formula of (CeO 2 )
CeO 2 in which Y represented by 1-x (Y 2 O 3 ) x is dissolved
The powder is mixed and calcined, and then toluene is added as a solvent to the mixed powder whose particle size has been adjusted to prepare a paste. The paste is applied to the surface of a cylindrical air electrode calcined body to form a Mn diffusion preventing layer 41. Form a coating film. Y 2 in the paste
O 3 may be present, but after firing. It is desirable that all be dissolved in ZrO 2 or CeO 2 . In addition, Mn
The diffusion prevention layer 41 may be prepared by temporarily forming a sheet using a paste and laminating the sheet on the surface of the air electrode calcined body. By doing so, the thickness variation of the Mn diffusion prevention layer 41 can be prevented.

【0042】シート状の第1固体電解質成形体として、
所定粉末にトルエン、バインダー、市販の分散剤を加え
てスラリー化したものをドクターブレード等の方法によ
り、例えば、100〜120μmの厚さに成形したもの
を用い、円筒状の空気極仮焼体の表面に形成された拡散
防止層41の塗布膜の表面に、第1固体電解質成形体を
貼り付けて仮焼し、空気極仮焼体の表面に第1固体電解
質仮焼体を形成する。尚、第1固体電解質成形体を仮焼
したが、仮焼しなくても良い。
As the sheet-like first solid electrolyte molded body,
Toluene, a binder, a slurry obtained by adding a commercially available dispersant to a predetermined powder, by a method such as a doctor blade, for example, using a molded thing to a thickness of 100 ~ 120μm, the cylindrical air electrode calcined body The first solid electrolyte molded body is adhered to the surface of the coating film of the diffusion preventing layer 41 formed on the surface and calcined to form the first solid electrolyte calcined body on the surface of the air electrode calcined body. In addition, although the first solid electrolyte molded body was calcined, it does not have to be calcined.

【0043】次に、シート状の燃料極成形体を作製す
る。まず、例えば、所定比率に調製したNi/YSZ混
合粉体にトルエン、バインダーを加えてスラリー化した
ものを準備する。前記第1固体電解質成形体の作製と同
様、成形、乾燥し、例えば、15μmの厚さのシート状
の第2固体電解質成形体を形成する。
Next, a sheet-shaped fuel electrode molded body is manufactured. First, for example, a slurry prepared by adding toluene and a binder to a Ni / YSZ mixed powder prepared at a predetermined ratio is prepared. Similarly to the production of the first solid electrolyte molded body, the molded body is dried and formed into a sheet-shaped second solid electrolyte molded body having a thickness of, for example, 15 μm.

【0044】この第2固体電解質成形体上に燃料極層成
形体を印刷、乾燥した後、第1固体電解質仮焼体上に、
燃料極層成形体が形成された第2固体電解質成形体を、
第1固体電解質仮焼体に第2固体電解質成形体が当接す
るように巻き付け、積層する。
After printing and drying the fuel electrode layer molded body on the second solid electrolyte molded body, the fuel electrode layer molded body is printed on the first solid electrolyte calcined body.
The second solid electrolyte molded body on which the fuel electrode layer molded body is formed,
The first solid electrolyte calcined body is wound and laminated so that the second solid electrolyte molded body is in contact with the first solid electrolyte calcined body.

【0045】次に、固体電解質成形体の調製同様、10
0〜120μmの厚さに成形した集電体成形体を所定箇
所に貼り付ける。
Next, as in the preparation of the solid electrolyte compact, 10
A current collector molded body having a thickness of 0 to 120 μm is attached to a predetermined location.

【0046】この後、円筒状空気極仮焼体、拡散防止層
41の塗布膜、第1固体電解質仮焼体、第2固体電解質
成形体、燃料極成形体および集電体成形体の積層体は、
例えば、大気中1400〜1550℃の温度で、4層同
時に共焼成される。
Thereafter, a laminated body of the cylindrical air electrode calcined body, the coating film of the diffusion preventing layer 41, the first solid electrolyte calcined body, the second solid electrolyte molded body, the fuel electrode molded body and the current collector molded body Is
For example, four layers are co-fired simultaneously at a temperature of 1400 to 1550 ° C. in the atmosphere.

【0047】Mnの拡散は、焼成温度、保持時間にも影
響するため、焼成温度をできるだけ低下させ、焼成時間
をできるだけ短くすることにより、さらにMn量を減少
できる。
Since the diffusion of Mn affects the firing temperature and the holding time, the Mn content can be further reduced by lowering the firing temperature as much as possible and shortening the firing time as much as possible.

【0048】このような製法では、Yが固溶したZrO
2、およびYが固溶したCeO2を含有するペーストを、
円筒状の空気極仮焼体の表面に塗布して拡散防止層41
の塗布膜を形成し、固体電解質成形体、燃料極成形体を
順次積層した後、同時焼成することにより、固体電解質
と空気極との間に、Y、ZrおよびCeを含有する拡散
防止層41が形成され、この拡散防止層41により、空
気極から固体電解質へのMnの拡散を抑制でき、燃料極
中におけるMnの拡散量を減少できる。
In such a production method, ZrO containing Y as a solid solution
2 , and a paste containing CeO 2 in which Y forms a solid solution,
Diffusion prevention layer 41 applied to the surface of a cylindrical air electrode calcined body
Is formed, and the solid electrolyte molded body and the fuel electrode molded body are sequentially laminated and then fired at the same time, so that the diffusion preventing layer 41 containing Y, Zr and Ce is provided between the solid electrolyte and the air electrode. Is formed, and the diffusion preventing layer 41 can suppress the diffusion of Mn from the air electrode to the solid electrolyte, and can reduce the amount of Mn diffusion in the fuel electrode.

【0049】また、本発明の拡散防止層は、固体電解質
層と同組成のYを固溶したZrO2と熱膨張係数値がセ
ル構成部材に近いYDCをあらかじめ用いているため、
製造中におけるセルの破損や発電中における昇温冷却に
よって生じる破損を防止できる。
Further, since the diffusion preventing layer of the present invention uses in advance ZrO 2 in which Y having the same composition as that of the solid electrolyte layer and YDC whose coefficient of thermal expansion is close to the cell constituting member,
It is possible to prevent breakage of the cell during manufacturing and damage caused by heating and cooling during power generation.

【0050】また、円筒状の固体電解質型燃料電池セル
においても、固体電解質の片面に空気極、他面に燃料極
が形成されていればよく、その構造は図1に限定される
ものではない。
Also, in the case of a cylindrical solid electrolyte fuel cell, the air electrode may be formed on one side of the solid electrolyte and the fuel electrode may be formed on the other side, and the structure is not limited to FIG. .

【0051】さらに、上記例では、空気極仮焼体、第1
固体電解質仮焼体を形成した例について説明したが、こ
れらが、空気極成形体、第1固体電解質成形体であって
も良い。
Further, in the above example, the calcined cathode electrode, the first
Although the example in which the solid electrolyte calcined body is formed has been described, these may be an air electrode molded body or a first solid electrolyte molded body.

【0052】[0052]

【実施例】円筒状の固体電解質型燃料電池セルを共焼結
法により作製するため、まず円筒状の空気極仮焼体を以
下の手順で作製した。市販の純度99.9%以上のLa
23、Y23、CaCO3、Mn23を出発原料とし
て、1500℃で仮焼し、(La0.560.14Ca0.3
0.97MnO3、および(La0.560.14Ca0.30.98
nO3を作製し、その後、5μmの粒度に粉砕調整し、
これを用いて、押出成形後、1250℃の条件で脱バ
イ、仮焼し、空気極仮焼体を作製した。この際、Mn拡
散の低減による性能バラツキ抑制への効果を確認するた
め、上記したように、A/Bサイト比率が0.97と
0.98の2種類の空気極仮焼体を準備した。
EXAMPLE In order to produce a cylindrical solid oxide fuel cell by a co-sintering method, first, a cylindrical air electrode calcined body was produced by the following procedure. La with commercial purity of 99.9% or more
Starting from 2 O 3 , Y 2 O 3 , CaCO 3 , Mn 2 O 3 and calcining at 1500 ° C., (La 0.56 Y 0.14 Ca 0.3 )
0.97 MnO 3 and (La 0.56 Y 0.14 Ca 0.3 ) 0.98 M
nO 3 was prepared and then crushed and adjusted to a particle size of 5 μm,
Using this, after extrusion molding, debubbling and calcination were performed under the conditions of 1250 ° C. to prepare a cathode calcined body. At this time, in order to confirm the effect of reducing the Mn diffusion on suppressing the performance variation, as described above, two types of air electrode calcined bodies having A / B site ratios of 0.97 and 0.98 were prepared.

【0053】次に、Y23を8モル%の割合で含有する
平均粒径が1〜2μmのZrO2粉末を用いてスラリー
を調製し、ドクターブレード法により厚さ100μmと
厚さ15μmの第1及び2固体電解質成形体としてのシ
ートを作製した。
Next, a slurry was prepared using ZrO 2 powder containing Y 2 O 3 at a rate of 8 mol% and having an average particle size of 1 to 2 μm, and was then 100 μm thick and 15 μm thick by a doctor blade method. Sheets as first and second solid electrolyte molded bodies were prepared.

【0054】次に、燃料極成形体の作製について説明す
る。平均粒径が0.4μmのNi粉末に対し、平均粒径
が0.6μmのY23を8モル%の割合で含有するZr
2粉末を準備し、Ni/YSZ比率(重量分率)が6
5/35になるように調合し、粉砕混合処理を行い、ス
ラリー化した。
Next, the production of the fuel electrode molded body will be described. Zr containing 8 mol% of Y 2 O 3 having an average particle diameter of 0.6 μm with respect to Ni powder having an average particle diameter of 0.4 μm.
O 2 powder was prepared and the Ni / YSZ ratio (weight fraction) was 6
The mixture was prepared to be 5/35, crushed and mixed, and slurried.

【0055】その後、調製したスラリーを第2固体電解
質成形体上に、30μmの厚さになるように全面に印刷
した。
Thereafter, the prepared slurry was printed on the entire surface of the second solid electrolyte molded body so as to have a thickness of 30 μm.

【0056】次に、市販の純度99.9%以上のLa2
3、Cr23、MgOを出発原料として、これをLa
(Mg0.3Cr0.70.973の組成になるように秤量混
合した後1500℃で3時間仮焼粉砕し、この固溶体粉
末を用いてスラリーを調製し、ドクターブレード法によ
り厚さ100μmの集電体成形体を作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 , and MgO, this
(Mg 0.3 Cr 0.7 ) After weighing and mixing to a composition of 0.97 O 3 , the mixture was calcined and pulverized at 1500 ° C. for 3 hours, a slurry was prepared using the solid solution powder, and a 100 μm-thick current collector was obtained by a doctor blade method. A molded body was produced.

【0057】また、Y23を8mol%含有するZrO
2粉末(8YSZ)と、組成式(CeO2)1−x(Y2
3)xと表わしたとき、即ち、Y23を8mol%固
溶したZrO2粉末、Y23をxmol%固溶したCe
2粉末を表1に示す割合になるように混合し、この混
合粉末に溶媒としてトルエンを添加し、拡散防止層のペ
ーストを作製した。更に、ペーストを調製し、上記ドク
ターブレード法により拡散防止層のシートを作製した。
ZrO containing 8 mol% of Y 2 O 3
And 2 powder (8YSZ), formula (CeO 2) 1-x ( Y 2
O 3) when expressed as x, i.e., Y 2 O 3 ZrO 2 powder dissolved 8 mol% of, Y 2 O 3 was dissolved x mol% Ce
O 2 powder was mixed so as to have the ratio shown in Table 1, and toluene was added as a solvent to the mixed powder to prepare a paste for a diffusion preventing layer. Further, a paste was prepared, and a sheet of a diffusion preventing layer was prepared by the doctor blade method.

【0058】まず、前記空気極仮焼体に、拡散防止層の
シートを積層し、このシートに、前記第1固体電解質成
形体を、その両端部が開口するようにロール状に巻き付
け1150℃で5時間の条件で仮焼した。仮焼後、第1
固体電解質仮焼体の両端部間を空気極仮焼体を露出させ
るように平坦に研磨し、連続した同一面を形成するよう
に加工した。
First, a sheet of a diffusion prevention layer is laminated on the calcined body of the cathode, and the first solid electrolyte molded body is wound on the sheet in a roll shape so that both ends thereof are opened, and is heated at 1150 ° C. Calcination was performed for 5 hours. After calcination, the first
The solid electrolyte calcined body was polished flat between both ends so as to expose the air electrode calcined body, and worked so as to form a continuous same surface.

【0059】次に、第1固体電解質仮焼体表面に、燃料
極成形体が形成された第2固体電解質成形体を、第1固
体電解質仮焼体と第2固体電解質成形体が当接するよう
に積層し、乾燥した後、上記連続同一面に集電体成形体
を貼り付け、この後、大気中1550℃で3時間の条件
で焼成を行い、共焼結体を作製した。
Next, the second solid electrolyte molded body having the fuel electrode molded body formed on the surface of the first solid electrolyte calcined body is brought into contact with the first solid electrolyte calcined body and the second solid electrolyte molded body. After drying, a current collector molded body was adhered to the same continuous surface, and then fired at 1550 ° C. for 3 hours in the atmosphere to produce a co-sintered body.

【0060】比較試料として、Y23を8mol%含有
するZrO2粉末を20wt%、モル比による(Ce
2)0.8(Sm23)0.2組成のSDC粉末を8
0wt%混合して作製したペースト、Y23を8mol
%含有するZrO2粉末からなるペーストを空気極仮焼
体に塗布し、上記と同様にして共焼結体を作製した。
As a comparative sample, a ZrO 2 powder containing 8 mol% of Y 2 O 3 was 20 wt%, and a molar ratio (Ce
O 2 ) 0.8 (Sm 2 O 3 ) 0.2
8 mol of Y 2 O 3 paste prepared by mixing 0 wt%
% Of a ZrO 2 powder was applied to the air electrode calcined body to prepare a co-sintered body in the same manner as described above.

【0061】次に、上記共焼結体を用いて、燃料極内
部、および固体電解質と拡散防止層との界面から固体電
解質内部へ向かって30μmの厚さの表層領域のMn拡
散量をそれぞれ評価した。評価は、まず、長さ50cm
の共焼結体の上部、中部、下部を、長さ10mm程度に
切り出し、その試料の断面の固体電解質の拡散防止層側
表面から30μmの表層において、X線マイクロアナラ
イザ(EPMA)を用い全構成成分の定量を行った。次
に、Mn成分の全成分に対する含有濃度を算出した。そ
の結果を、表1に示す。
Next, using the above-mentioned co-sintered body, the amount of Mn diffusion in the surface layer having a thickness of 30 μm from the inside of the fuel electrode and from the interface between the solid electrolyte and the diffusion preventing layer to the inside of the solid electrolyte was evaluated. did. Evaluation first, length 50cm
The upper, middle and lower parts of the co-sintered body were cut out to a length of about 10 mm. The components were quantified. Next, the concentration of the Mn component with respect to all the components was calculated. Table 1 shows the results.

【0062】次に、発電用の長さ50cm(有効長さ4
0cm)の円筒型セルを作製するため、前記共焼結体片
端部に封止部材の接合を行った。封止部材の接合は、以
下のような手順で行った。Y23を8モル%の割合で含
有する平均粒子径が1μmのZrO2粉末に水を溶媒と
して加えてスラリーを調製し、このスラリーに前記共焼
結体の片端部を浸漬し、厚さ100μmになるように片
端部外周面に塗布し乾燥した。
Next, a power generation length of 50 cm (effective length of 4 cm) is used.
(0 cm), a sealing member was joined to one end of the co-sintered body. The joining of the sealing member was performed in the following procedure. A slurry is prepared by adding water as a solvent to ZrO 2 powder having an average particle diameter of 1 μm and containing Y 2 O 3 at a ratio of 8 mol%, and one end of the co-sintered body is immersed in the slurry to obtain a slurry. It was applied to the outer peripheral surface at one end so as to have a thickness of 100 μm, and dried.

【0063】封止部材としてのキャップ形状を有する成
形体は、前記スラリー組成と同組成の粉末を用いて静水
圧成形(ラバープレス)を行い切削加工した。その後、
前記スラリーを被覆した前記共焼結体片端部を封止部材
用成形体に挿入し、大気中1300℃の温度で1時間焼
成を行った。
A molded article having a cap shape as a sealing member was subjected to isostatic pressing (rubber pressing) using a powder having the same composition as the above slurry composition, followed by cutting. afterwards,
One end of the co-sintered body coated with the slurry was inserted into a molding for a sealing member, and baked at 1300 ° C. for 1 hour in the atmosphere.

【0064】次に、発電評価用の試料を作製した。長さ
50cmのロングセルを用い、セルの上部、中部及び下
部(セルA、B、Cと略す。)の試料として電極長さが
2.5cmの切出しセルを計3種類作製した。尚、本発
明の試料について、空気極を塩酸で溶解して、拡散防止
層のx線回折測定を行ったところ、Y、Zrが固溶した
CeO2が主体となっており、YはすべてCeO2中に固
溶しており、Y23相は存在していなかった。固体電解
質等の剥離は見られなかった。
Next, a sample for power generation evaluation was prepared. Using a long cell having a length of 50 cm, three kinds of cut-out cells each having an electrode length of 2.5 cm were prepared as samples of the upper, middle, and lower portions of the cell (abbreviated as cells A, B, and C). For the sample of the present invention, the air electrode was dissolved with hydrochloric acid and the diffusion prevention layer was subjected to x-ray diffraction measurement. As a result, CeO 2 in which Y and Zr were dissolved in solid form was mainly used, and Y was all CeO 2. 2 and a Y 2 O 3 phase was not present. No peeling of the solid electrolyte or the like was observed.

【0065】発電は、上記各切出しセルを用いて100
0℃でセルの内側に空気を、外側に水素を流し、出力値
が安定した際の初期値と1000時間保持後の値でそれ
ぞれの性能を測定評価した。上記Mn量の結果と併せ
て、これらの測定結果を表1に示す。
The power generation is performed by using each of the above-mentioned cut cells for 100 times.
At 0 ° C., air was flowed inside the cell and hydrogen was flown outside, and the performance was measured and evaluated based on the initial value when the output value was stabilized and the value after holding for 1000 hours. These measurement results are shown in Table 1 together with the results of the Mn amount.

【0066】[0066]

【表1】 [Table 1]

【0067】この表1より、本発明の固体電解質型燃料
電池セルの試料では、燃料極部及び固体電解質の表層部
のMn量がそれぞれ0.2重量%、1.5重量%以下と
なっており、一本のセルにおける各部位での出力密度は
いずれも初期から0.4W/cm2を上回り、1000
時間経過後も出力密度がほぼ安定していることが判る。
According to Table 1, in the sample of the solid oxide fuel cell of the present invention, the Mn content of the fuel electrode portion and the surface layer portion of the solid electrolyte are 0.2% by weight and 1.5% by weight, respectively. The power density at each site in one cell exceeded 0.4 W / cm 2 from the beginning,
It can be seen that the output density is almost stable even after a lapse of time.

【0068】また、本発明の表層におけるMn量のバラ
ツキは、A,B,Cにおいて0.015重量%以下であ
った。出力密度についてもA,B,Cにおいて殆どバラ
ツキがなかった。
The variation in the amount of Mn in the surface layer of the present invention was 0.015% by weight or less in A, B and C. The output densities of A, B, and C were almost unchanged.

【0069】また、本発明の試料では、空気極のA/B
サイト比率が定比に近いほど、また拡散防止層の厚さを
10〜15μmとすることにより、Mn拡散量の制御を
有効に行うことができることが判る。
In the sample of the present invention, the air electrode A / B
It is understood that the closer the site ratio is to the constant ratio, and the more the thickness of the diffusion prevention layer is set to 10 to 15 μm, the more effectively the amount of Mn diffusion can be controlled.

【0070】一方、比較例の試料No.1、8では、固
体電解質の表層のMn量がバラツイており、その影響が
出力密度のバラツキにそのまま反映されていることがわ
かる。また、試料No.8についてはMn拡散量が大き
く、初期における出力密度が低いことが判る。
On the other hand, the sample No. In Examples 1 and 8, the amount of Mn in the surface layer of the solid electrolyte varies, and it can be seen that the effect is directly reflected in the variation in the output density. In addition, the sample No. 8, it can be seen that the Mn diffusion amount is large and the initial output density is low.

【0071】[0071]

【発明の効果】以上詳述したように、本発明の固体電解
質型燃料電池セルでは、例えば、固体電解質と空気極と
の間にCeO2を主成分とする拡散防止層を形成するこ
とにより、空気極から固体電解質を介して、燃料極に拡
散しようとするMnを、拡散防止層により遮断または抑
制でき、固体電解質の表層におけるMn量を1.5重量
%以下でとすることができ、燃料極中におけるMn含有
量を減少できる。
As described in detail above, in the solid oxide fuel cell of the present invention, for example, by forming a diffusion prevention layer containing CeO 2 as a main component between the solid electrolyte and the air electrode, Mn, which tends to diffuse from the air electrode to the fuel electrode via the solid electrolyte, can be blocked or suppressed by the diffusion preventing layer, and the Mn content in the surface layer of the solid electrolyte can be 1.5% by weight or less. The Mn content in the electrode can be reduced.

【0072】これにより、燃料極サイトの分極値および
セル構成成分の実抵抗値を低くでき、出力密度を高くで
きるとともに、高い出力密度を長期間に亘って維持で
き、さらに同一仕様のセル内、セル間において性能のバ
ラツキ差を抑制できる。特に、セル内部における性能の
バラツキ差が緩和されるため、長尺状、例えば有効長さ
40cmの円筒型セルの発電において電気的な局部破損
によるセル破壊を防止できる。
As a result, the polarization value of the fuel electrode site and the actual resistance value of the cell components can be reduced, the power density can be increased, and a high power density can be maintained for a long period of time. Variations in performance between cells can be suppressed. In particular, since the variation in performance inside the cell is reduced, it is possible to prevent cell breakage due to electrical local breakage in power generation of a long, for example, cylindrical cell having an effective length of 40 cm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状の固体電解質型燃料電池セルを
示す断面図であり、(b)は(a)の一部を拡大して示
す断面図である。
FIG. 1 is a cross-sectional view showing a cylindrical solid oxide fuel cell according to the present invention, and FIG. 1 (b) is an enlarged cross-sectional view showing a part of FIG.

【図2】従来の円筒状の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 2 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 35・・・集電体 41・・・拡散防止層 45・・・表層 DESCRIPTION OF SYMBOLS 31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 35 ... Current collector 41 ... Diffusion prevention layer 45 ... Surface layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくともLaおよびMnを含有するペロ
ブスカイト型複合酸化物からなる空気極の表面に、Zr
2を主成分とする固体電解質、および燃料極を順次積
層してなり、前記空気極、前記固体電解質が同時に焼結
された固体電解質型燃料電池セルにおいて、前記固体電
解質の空気極側の面から厚さ30μmの表層におけるM
n量が1.5重量%以下であることを特徴とする固体電
解質型燃料電池セル。
1. The method according to claim 1, wherein the surface of the air electrode made of a perovskite-type composite oxide containing at least La and Mn is coated with Zr.
In a solid electrolyte fuel cell in which a solid electrolyte containing O 2 as a main component and a fuel electrode are sequentially laminated, and the air electrode and the solid electrolyte are simultaneously sintered, a surface of the solid electrolyte on the air electrode side is provided. From the surface layer 30 μm thick
A solid oxide fuel cell having an n content of 1.5% by weight or less.
【請求項2】空気極と固体電解質との間に、CeO2
主成分とする拡散防止層が形成されていることを特徴と
する請求項1記載の固体電解質型燃料電池セル。
2. The solid oxide fuel cell according to claim 1, wherein a diffusion preventing layer mainly composed of CeO 2 is formed between the air electrode and the solid electrolyte.
【請求項3】拡散防止層が、YおよびZrが固溶したC
eO2を主成分とすることを特徴とする請求項2記載の
固体電解質型燃料電池セル。
3. The diffusion preventing layer is made of a solid solution of Y and Zr.
3. The solid oxide fuel cell according to claim 2 , comprising eO 2 as a main component.
【請求項4】固体電解質がY23を含有するZrO2
あることを特徴とする請求項1乃至3のうちいずれかに
記載の固体電解質型燃料電池セル。
4. The solid oxide fuel cell according to claim 1, wherein the solid electrolyte is ZrO 2 containing Y 2 O 3 .
JP2000329630A 2000-10-27 2000-10-27 Solid electrolyte fuel cell Expired - Fee Related JP4743949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000329630A JP4743949B2 (en) 2000-10-27 2000-10-27 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000329630A JP4743949B2 (en) 2000-10-27 2000-10-27 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002134133A true JP2002134133A (en) 2002-05-10
JP4743949B2 JP4743949B2 (en) 2011-08-10

Family

ID=18806273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000329630A Expired - Fee Related JP4743949B2 (en) 2000-10-27 2000-10-27 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4743949B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP2005149795A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Electrolyte/electrode joint body and its manufacturing method
JP4773588B1 (en) * 2010-06-15 2011-09-14 日本碍子株式会社 Fuel cell
JP4773589B1 (en) * 2010-06-15 2011-09-14 日本碍子株式会社 Fuel cell
JP5023250B1 (en) * 2011-07-19 2012-09-12 日本碍子株式会社 Fuel cell
JP2013041809A (en) * 2011-07-21 2013-02-28 Ngk Insulators Ltd Fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015754A (en) * 2000-06-30 2002-01-18 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015754A (en) * 2000-06-30 2002-01-18 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP2005149795A (en) * 2003-11-12 2005-06-09 Honda Motor Co Ltd Electrolyte/electrode joint body and its manufacturing method
JP4773588B1 (en) * 2010-06-15 2011-09-14 日本碍子株式会社 Fuel cell
JP4773589B1 (en) * 2010-06-15 2011-09-14 日本碍子株式会社 Fuel cell
JP5023250B1 (en) * 2011-07-19 2012-09-12 日本碍子株式会社 Fuel cell
JP2013041809A (en) * 2011-07-21 2013-02-28 Ngk Insulators Ltd Fuel cell

Also Published As

Publication number Publication date
JP4743949B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4383092B2 (en) Electrochemical element
JP2004119161A (en) Unit cell for solid electrolyte fuel battery, fuel battery therewith and manufacturing method thereof
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
JP4462727B2 (en) Solid electrolyte fuel cell
JP4332639B2 (en) Fuel cell and method for producing the same
US7297436B2 (en) Fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP3347561B2 (en) Solid oxide fuel cell
JP4743949B2 (en) Solid electrolyte fuel cell
JPH0992302A (en) Unit cell of cylindrical fuel cell and its manufacture
JPH09180731A (en) Solid electrolyte fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JPH08236138A (en) Cell of solid electrolyte fuel cell and manufacture thereof
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP4812176B2 (en) Solid oxide fuel cell and fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP3336171B2 (en) Solid oxide fuel cell
JP3725994B2 (en) Solid oxide fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4743949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees