JP2007095673A - Power generation cell for solid electrolyte fuel cells - Google Patents

Power generation cell for solid electrolyte fuel cells Download PDF

Info

Publication number
JP2007095673A
JP2007095673A JP2006233211A JP2006233211A JP2007095673A JP 2007095673 A JP2007095673 A JP 2007095673A JP 2006233211 A JP2006233211 A JP 2006233211A JP 2006233211 A JP2006233211 A JP 2006233211A JP 2007095673 A JP2007095673 A JP 2007095673A
Authority
JP
Japan
Prior art keywords
solid electrolyte
power generation
cell
solid
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006233211A
Other languages
Japanese (ja)
Inventor
Masaharu Yamada
雅治 山田
Takashi Yamada
喬 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006233211A priority Critical patent/JP2007095673A/en
Publication of JP2007095673A publication Critical patent/JP2007095673A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation cell for a solid electrolyte fuel cell. <P>SOLUTION: The power generation cell for a solid electrolyte fuel cell includes a solid electrolyte including an ion conductive oxide shown by a general formula: La<SB>1-X</SB>Sr<SB>X</SB>Ga<SB>1-Y-Z</SB>Mg<SB>Y</SB>A<SB>Z</SB>O<SB>3</SB>(wherein A is at least one kind of metal or two or more kinds of metals selected from Co, Fe, Ni, or Cu; X is a number of 0.05 to 0.3; Y is a number of 0 to 0.29; Z is a number of 0.01 to 0.3; and Y+Z is a number of 0.025 to 0.3). A face of the solid electrolyte material has a porous air electrode formed thereon. Another plane of the solid electrolyte has a fuel electrode comprising a B-doped ceria and nickel sintered material shown by a general formula: Ce<SB>1-m</SB>B<SB>m</SB>O<SB>2</SB>(wherein B is at least one kind of metal or two or more kinds of metals selected from Sm, Gd, Y, and Ca; m is a number of 0 to 0.4 but not including 0). The Ce and B in the fuel electrode A forms a diffusion layer diffused in the solid electrolyte. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、固体電解質としてランタンガレート系固体電解質を用い、燃料極としてB(ただし、BはSm、Gd、Y、Caの1種または2種以上)をドープしたセリアとニッケルとの焼結体を用いた固体電解質型燃料電池用発電セルに関するものである。   The present invention uses a lanthanum gallate solid electrolyte as a solid electrolyte, and a sintered body of ceria and nickel doped with B (wherein B is one or more of Sm, Gd, Y, and Ca) as a fuel electrode. The present invention relates to a power generation cell for a solid oxide fuel cell.

一般に、固体電解質型燃料電池は、水素ガス、天然ガス、メタノール、石炭ガスなどを燃料とすることができるので、発電における石油代替エネルギー化を促進することができ、さらに廃熱を利用することができるので省資源および環境問題の観点からも注目されている。この固体電解質型燃料電池の構造は、一般に、酸化物からなる固体電解質の片面に空気極を積層し、固体電解質のもう一方の片面に燃料極を積層してなる構造を有する発電セルと、この発電セルの空気極の外側に空気極集電体を積層させ、一方、発電セルの燃料極の外側に燃料極集電体を積層させ、前記空気極および燃料極の外側にそれぞれセパレータを積層させた構造を有している。この固体電解質型燃料電池は、一般に800〜1000℃で作動するが、近年、作動温度が600〜800℃の低温タイプのものが提案されている。   In general, since solid oxide fuel cells can use hydrogen gas, natural gas, methanol, coal gas, etc. as fuel, they can promote the use of alternative energy for petroleum in power generation, and can utilize waste heat. Because it can be done, it is attracting attention from the viewpoint of resource saving and environmental problems. The structure of this solid oxide fuel cell is generally a power generation cell having a structure in which an air electrode is laminated on one side of a solid electrolyte made of an oxide and a fuel electrode is laminated on the other side of the solid electrolyte, An air electrode current collector is laminated outside the air electrode of the power generation cell, while a fuel electrode current collector is laminated outside the fuel electrode of the power generation cell, and a separator is laminated outside the air electrode and the fuel electrode, respectively. Have a structure. This solid oxide fuel cell generally operates at 800 to 1000 ° C., but recently, a low-temperature type fuel cell having an operating temperature of 600 to 800 ° C. has been proposed.

前記低温タイプの固体電解質型燃料電池に組込まれる固体電解質の一つとして、ランタンガレート系酸化物イオン伝導体を用いることが知られており、このランタンガレート系酸化物イオン伝導体は、一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表される酸化物イオン伝導体であることが知られている。
また、前記燃料極としては、B(ただし、BはSm、Gd、Y、Caの1種または2種以上)をドープしたセリアとニッケルからなる焼結体を用いることが知られており、このBをドープしたセリアは、一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されることなどが知られている。
さらに、空気極は、例えば(Sm0.5Sr0.5)CoOなどの焼結体で構成されていることが知られている。
そして、固体電解質型燃料電池用発電セルを作製するには、まず一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表されるランタンガレード系酸化物イオン伝導体からなる固体電解質を作製し、次に、この固体電解質の表面に一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表される酸化物粉末と酸化ニッケル粉を含むスラリーを塗布し乾燥したのち、空気中、1250℃に3時間加熱保持することにより前記固体電解質の一方の面に燃料極を焼付けて形成し、さらに固体電解質の他方の面に空気極を焼き付けて固体電解質型燃料電池用発電セルを作製することも知られている(特許文献1参照)。
特開2005−16640号公報
As one of the solid electrolytes incorporated in the low-temperature type solid oxide fuel cell, it is known to use a lanthanum gallate oxide ion conductor, and the lanthanum gallate oxide ion conductor has a general formula: la 1-X Sr in X Ga 1-Y-Z Mg Y a Z O 3 ( wherein, a = Co, Fe, Ni , 1 or more kinds of Cu; X = 0.05~0.3; Y = 0 to 0.29; Z = 0.01 to 0.3; Y + Z = 0.025 to 0.3).
Further, as the fuel electrode, it is known to use a sintered body made of ceria and nickel doped with B (where B is one or more of Sm, Gd, Y, and Ca). Ceria doped with B has a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0 <m ≦ 0.4). It is known that it is represented.
Furthermore, it is known that the air electrode is composed of a sintered body such as (Sm 0.5 Sr 0.5 ) CoO 3 .
In order to produce a power generation cell for a solid oxide fuel cell, first, a general formula: La 1-X Sr X Ga 1-YZ Mg Y AZ O 3 (where A = Co, Fe, Ni, One or more of Cu; X = 0.05 to 0.3; Y = 0 to 0.29; Z = 0.01 to 0.3; Y + Z = 0.025 to 0.3) Next, a solid electrolyte composed of a lanthanum galide-based oxide ion conductor is prepared, and then a general formula: Ce 1-m B m O 2 (wherein B is Sm, Gd, Y, After applying and drying a slurry containing oxide powder and nickel oxide powder represented by one or more of Ca, where m is 0 <m ≦ 0.4), heat and hold at 1250 ° C. for 3 hours in air To form a fuel electrode on one side of the solid electrolyte, and further to the other side of the solid electrolyte. Baked air electrode is also known to fabricate a solid electrolyte fuel cell power generation cell (see Patent Document 1).
Japanese Patent Laid-Open No. 2005-16640

従来の一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表されるランタンガレード系酸化物イオン伝導体を固体電解質とし、Bドープしたセリアとニッケルを含む焼結体を燃料極とした発電セルを組込んだ固体電解質型燃料電池の一層の高出力化を目的とするものである。 Conventional general formula: La 1-X Sr in X Ga 1-Y-Z Mg Y A Z O 3 ( wherein, A = Co, Fe, Ni , 1 or more kinds of Cu; X = 0.05 to 0.3; Y = 0-0.29; Z = 0.01-0.3; Y + Z = 0.025-0.3) as a solid electrolyte, The object of the present invention is to further increase the output of a solid oxide fuel cell incorporating a power generation cell using a sintered body containing B-doped ceria and nickel as a fuel electrode.

本発明者等は、一層高出力の固体電解質型燃料電池を得るべく固体電解質型燃料電池用発電セルについての研究を行った。その結果、
(イ)一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表されるランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBドープしたセリアとニッケルの焼結体からなる多孔質の燃料極が成形された通常の固体電解質型燃料電池用発電セルにおいて、前記固体電解質と前記燃料極との境界領域に、燃料極のBドープしたセリアにおけるCeおよびBの一部がランタンガレード系酸化物イオン伝導体の固体電解質に拡散して形成された拡散層を有する固体電解質型燃料電池用発電セルを作製し、この拡散層を有する固体電解質型燃料電池用発電セルを組み込んで作製した固体電解質型燃料電池は、発電出力を一層高めることができる、
(ロ)一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表されるランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBドープしたセリアとニッケルの焼結体からなる多孔質の燃料極が成形された固体電解質型燃料電池用発電セルにおいて、前記固体電解質と前記燃料極との境界領域に、燃料極のBドープしたセリアにおけるCeおよびBの一部がランタンガレード系酸化物イオン伝導体の固体電解質に拡散し、一方、固体電解質のLa、Sr、Ga、MgおよびAが前記燃料極に拡散した相互拡散層を有する固体電解質型燃料電池用発電セルを作製し、この相互拡散層を有する固体電解質型燃料電池用発電セルを組み込んで作製した固体電解質型燃料電池は、発電出力をさらに一層高めることができる、という研究結果が得られたのである。
The present inventors conducted research on a power generation cell for a solid oxide fuel cell in order to obtain a solid oxide fuel cell with higher output. as a result,
(B) the general formula: La 1-X Sr in X Ga 1-Y-Z Mg Y A Z O 3 ( wherein, A = Co, Fe, Ni , 1 or more kinds of Cu; X = 0.05 -0.3; Y = 0-0.29; Z = 0.01-0.3; Y + Z = 0.025-0.3) as a solid electrolyte A porous air electrode is formed on one surface of the solid electrolyte, and a general formula: Ce 1-m B m O 2 (wherein B is one of Sm, Gd, Y, Ca or In a normal power generation cell for a solid oxide fuel cell in which a porous fuel electrode made of a sintered body of B-doped ceria and nickel represented by 2 or more and m is 0 <m ≦ 0.4) is formed In the boundary region between the solid electrolyte and the fuel electrode, a part of Ce and B in the B-doped ceria of the fuel electrode A power generation cell for a solid oxide fuel cell having a diffusion layer formed by diffusing a tantalum oxide oxide ion conductor into a solid electrolyte was manufactured, and the power generation cell for a solid oxide fuel cell having the diffusion layer was incorporated. The solid oxide fuel cell can further increase the power generation output,
(Ii) general formula: La 1-X Sr in X Ga 1-Y-Z Mg Y A Z O 3 ( wherein, A = Co, Fe, Ni , 1 or more kinds of Cu; X = 0.05 -0.3; Y = 0-0.29; Z = 0.01-0.3; Y + Z = 0.025-0.3) as a solid electrolyte A porous air electrode is formed on one surface of the solid electrolyte, and a general formula: Ce 1-m B m O 2 (wherein B is one of Sm, Gd, Y, Ca or In the power generation cell for a solid oxide fuel cell in which a porous fuel electrode made of a sintered body of B-doped ceria and nickel represented by 2 or more and m is 0 <m ≦ 0.4) is formed, In the boundary region between the solid electrolyte and the fuel electrode, Ce and B in the B-doped ceria of the fuel electrode are part of the lanthanum. A power generation cell for a solid oxide fuel cell having an interdiffusion layer in which La, Sr, Ga, Mg and A of a solid electrolyte diffused into the fuel electrode while diffusing into a solid electrolyte of a galide-based oxide ion conductor The solid electrolyte fuel cell produced by incorporating the power generation cell for the solid oxide fuel cell having the interdiffusion layer has a research result that the power generation output can be further increased.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表される酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBドープしたセリアとニッケルの焼結体からなる燃料極が成形された固体電解質型燃料電池用発電セルであって、前記燃料極に含まれるCeおよびBが前記固体電解質に拡散した拡散層を有する固体電解質型燃料電池用発電セル、
(2)一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表される酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBドープしたセリアとニッケルの焼結体からなる燃料極が成形された固体電解質型燃料電池用発電セルであって、前記燃料極に含まれるCeおよびBが前記固体電解質に拡散し、一方、固体電解質に含まれるLa、Sr、Ga、MgおよびAが前記燃料極に拡散した相互拡散層を有する固体電解質型燃料電池用発電セル、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) General formula: La 1-X Sr in X Ga 1-Y-Z Mg Y A Z O 3 ( wherein, A = Co, Fe, Ni , 1 or more kinds of Cu; X = 0.05 ~ 0.3; Y = 0 to 0.29; Z = 0.01 to 0.3; Y + Z = 0.025 to 0.3)) as a solid electrolyte, and the solid electrolyte A porous air electrode is formed on one surface of the material, and a porous general formula: Ce 1-m B m O 2 (wherein B is one or two of Sm, Gd, Y, and Ca). A power electrode for a solid oxide fuel cell, in which a fuel electrode made of a sintered body of B-doped ceria and nickel represented by 0 <m ≦ 0.4) is formed, wherein the fuel electrode A power generation cell for a solid oxide fuel cell having a diffusion layer in which Ce and B contained in the gas diffused into the solid electrolyte,
(2) General formula: La 1-X Sr in X Ga 1-Y-Z Mg Y A Z O 3 ( wherein, A = Co, Fe, Ni , 1 or more kinds of Cu; X = 0.05 ~ 0.3; Y = 0 to 0.29; Z = 0.01 to 0.3; Y + Z = 0.025 to 0.3)) as a solid electrolyte, and the solid electrolyte A porous air electrode is formed on one surface of the material, and a porous general formula: Ce 1-m B m O 2 (wherein B is one or two of Sm, Gd, Y, and Ca). A power electrode for a solid oxide fuel cell, in which a fuel electrode made of a sintered body of B-doped ceria and nickel represented by 0 <m ≦ 0.4) is formed, wherein the fuel electrode Ce and B contained in the solid electrolyte diffuse into the solid electrolyte, while La, Sr, Ga, Mg and A contained in the solid electrolyte contain the fuel. Solid oxide fuel cell power generating cell having a mutual diffusion layer diffused to the poles, the one having the characteristics.

前記拡散層は0.1〜5μmの範囲内にあることが好ましく、また、前記相互拡散層は0.1〜5μmの範囲内にあることが好ましい。   The diffusion layer is preferably in the range of 0.1 to 5 μm, and the mutual diffusion layer is preferably in the range of 0.1 to 5 μm.

一般に、固体電解質型燃料電池用発電セルにおけるランタンガレード系酸化物イオン伝導体からなる固体電解質とBドープしたセリアおよびニッケルの焼結体からなる燃料極を形成するには、固体電解質の表面に燃料極のスラリーを塗布し乾燥させたのち1250℃で3時間程度保持する条件で焼結することにより形成しているが、この発明の固体電解質と燃料極の境界領域に前記拡散層を形成するには1250℃で従来の焼結時間よりも一層長い時間保持することにより形成され、1250℃で5時間以上保持することにより前記拡散層が形成されようになる。さらに長時間保持すると、前記相互拡散層が形成されるようになり、1250℃で6時間程度保持すると前記相互拡散層が生成し始める。したがって、前記相互拡散層を形成するには1250℃で6時間以上保持することが必要である。 In general, in order to form a solid electrolyte composed of a lanthanum galide oxide ion conductor and a B-doped ceria and nickel sintered body in a power cell for a solid oxide fuel cell, a surface of the solid electrolyte is formed. The diffusion layer is formed in the boundary region between the solid electrolyte and the fuel electrode of the present invention after the slurry of the fuel electrode is applied and dried and then sintered at 1250 ° C. for about 3 hours. Is formed by holding at 1250 ° C. for a longer time than the conventional sintering time, and the diffusion layer is formed by holding at 1250 ° C. for 5 hours or more. When held for a longer time, the interdiffusion layer is formed, and when held at 1250 ° C. for about 6 hours, the interdiffusion layer begins to form. Therefore, in order to form the interdiffusion layer, it is necessary to hold at 1250 ° C. for 6 hours or more.

この発明の固体電解質と燃料極の境界領域に前記拡散層または相互拡散層を設けてなる発電セルを組込んだ固体酸化物型燃料電池は、低温作動しても発電出力を一層高めることができる、さらに燃料電池発電モジュールのコンパクト化、高効率化が可能となる。   The solid oxide fuel cell incorporating the power generation cell provided with the diffusion layer or the mutual diffusion layer in the boundary region between the solid electrolyte and the fuel electrode according to the present invention can further increase the power generation output even when operated at a low temperature. In addition, the fuel cell power generation module can be made more compact and more efficient.

実施例1
まず、下記の(a)〜(d)に示される方法で原料粉末を製造した。
(a)ランタンガレート系酸化物イオン伝導体からなる固体電解質原料粉末の製造:
酸化ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルトを用意し、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oで示される組成となるよう秤量し、ボールミル混合の後、空気中、1350℃に3時間加熱保持し、得られた塊状焼結体をハンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径1.3μmのランタンガレート系酸化物イオン伝導体(以下、LSGMCという)からなる固体電解質原料粉末を製造した。
Example 1
First, the raw material powder was manufactured by the method shown by the following (a)-(d).
(A) Production of solid electrolyte raw material powder comprising a lanthanum gallate-based oxide ion conductor:
Lanthanum oxide, strontium carbonate, gallium oxide, magnesium oxide, and cobalt oxide are prepared, and the composition is represented by (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3. After weighing and mixing in a ball mill, the mixture was heated and held at 1350 ° C. for 3 hours in the air. The resulting massive sintered body was coarsely pulverized with a hammer mill and then finely pulverized with a ball mill to obtain an average particle size of 1.3 μm. A solid electrolyte raw material powder made of a lanthanum gallate-based oxide ion conductor (hereinafter referred to as LSGMC) was produced.

(b)サマリウムをドープしたセリア粉末の製造:
0.5mol/Lの硝酸セリウム水溶液8部と0.5mol/Lの硝酸サマリウム水溶液2部の混合水溶液に1mol/Lの水酸化ナトリウム水溶液を攪拌しながら滴下し、酸化セリウムと酸化サマリウムを共沈させ、ろ過した後、純水での攪拌洗浄とろ過を6回繰返して水洗し、酸化セリウムと酸化サマリウムの共沈粉を製造し、これを空気中、1000℃に3時間加熱保持して、(Ce0.8Sm0.2)Oの組成を有する平均粒径約0.8μmのサマリウムをドープしたセリア(以下、SDCという)粉末を製造した。
(B) Production of ceria powder doped with samarium:
A 1 mol / L sodium hydroxide aqueous solution is dropped into a mixed aqueous solution of 8 parts of 0.5 mol / L cerium nitrate aqueous solution and 2 parts of 0.5 mol / L samarium nitrate aqueous solution while stirring to coprecipitate cerium oxide and samarium oxide. After filtration, the mixture is washed with pure water with stirring and filtration 6 times to produce a co-precipitated powder of cerium oxide and samarium oxide, which is heated and held at 1000 ° C. for 3 hours in the air, A ceria (hereinafter referred to as SDC) powder doped with samarium having a composition of (Ce 0.8 Sm 0.2 ) O 2 and an average particle diameter of about 0.8 μm was produced.

(c)酸化ニッケル粉末の製造:
1mol/Lの硝酸ニッケル水溶液に1mol/Lの水酸化ナトリウム水溶液を攪拌しながら滴下し、水酸化ニッケルを沈殿させ、ろ過した後、純水での攪拌洗浄とろ過を6回繰返して水洗し、これを空気中、900℃に3時間加熱保持して、平均粒径1.1μmの酸化ニッケル粉を製造した。
(C) Production of nickel oxide powder:
A 1 mol / L aqueous solution of sodium nitrate was added dropwise to a 1 mol / L aqueous solution of nickel nitrate while stirring to precipitate nickel hydroxide, which was filtered and then washed with pure water with stirring and filtration 6 times. This was heated and held in air at 900 ° C. for 3 hours to produce nickel oxide powder having an average particle size of 1.1 μm.

(d)サマリウムストロンチウムコバルタイト系空気極原料粉末の製造:
酸化サマリウム、炭酸ストロンチウム、酸化コバルトのそれぞれ試薬級の粉体を用意し、(Sm0.5Sr0.5)CoOで示される組成となるよう秤量し、ボールミル混合の後、空気中、1000℃に3時間加熱保持し、得られた粉体をボールミルで微粉砕して、平均粒径1.1μmのサマリウムストロンチウムコバルタイト系空気極原料粉末を製造した。
(D) Production of samarium strontium cobaltite-based cathode electrode powder:
Reagent grade powders of samarium oxide, strontium carbonate, and cobalt oxide were prepared, weighed so as to have a composition represented by (Sm 0.5 Sr 0.5 ) CoO 3 , and after ball mill mixing, The resulting powder was heated and held at 0 ° C. for 3 hours, and the obtained powder was pulverized with a ball mill to produce a samarium strontium cobaltite-based air electrode raw material powder having an average particle size of 1.1 μm.

次に、前記(a)〜(d)で製造した原料粉末を用いて、固体電解質型燃料電池用発電セルを製造する方法を説明する。
(A)ランタンガレート系固体電解質の製造:
前記(a)で製造したLSGMCからなる固体電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだした後、空気中、1450℃に4時間加熱保持して焼結し、厚さ200μm、直径120mmの円板状のランタンガレート系固体電解質を製造した。
Next, a method for producing a power generation cell for a solid oxide fuel cell using the raw material powder produced in the above (a) to (d) will be described.
(A) Production of lanthanum gallate solid electrolyte:
The solid electrolyte raw material powder made of LSGMC produced in (a) above is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry, and formed into a thin plate by the doctor blade method After being cut into a circle, it was heated and held in air at 1450 ° C. for 4 hours and sintered to produce a disc-shaped lanthanum gallate solid electrolyte having a thickness of 200 μm and a diameter of 120 mm.

(B)燃料極の成形・焼き付け:
前記(c)で製造した酸化ニッケル粉と前記(b)で製造したSDC粉末を60:40の体積比率で混合し、トルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、このスラリーをスクリーン印刷法で、前記(A)で製造したランタンガレート系固体電解質の一方の面に、平均厚さ:30μmになるようにスラリーを塗布し、乾燥することによりグリーン層を成形し、空気中、1250℃に5時間加熱保持することによりランタンガレート系固体電解質の一方の面に燃料極を焼付け形成した。
(B) Fuel electrode molding and baking:
An organic binder in which the nickel oxide powder produced in (c) and the SDC powder produced in (b) are mixed at a volume ratio of 60:40, and polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent. The slurry is mixed with the solution to form a slurry, and this slurry is applied by screen printing to one surface of the lanthanum gallate solid electrolyte produced in (A) so as to have an average thickness of 30 μm and dried. Thus, a green layer was formed, and the fuel electrode was baked and formed on one surface of the lanthanum gallate solid electrolyte by heating and holding in air at 1250 ° C. for 5 hours.

(C)空気極の成形・焼付け:
前記(d)で製造したサマリウムストロンチウムコバルタイト系空気極原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレート系固体電解質の他方の面にスクリーン印刷法により厚さ:30μmになるように成形し乾燥したのち、空気中、1100℃に5時間加熱保持して空気極を成形・焼きつけた。
(C) Air electrode molding and baking:
The samarium strontium cobaltite air electrode raw material powder produced in (d) above is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to prepare a slurry, and this slurry is lanthanum. The other surface of the gallate solid electrolyte was molded by screen printing to a thickness of 30 μm and dried, and then heated and held at 1100 ° C. for 5 hours in air to form and bake the air electrode.

このようにして、固体電解質、燃料極および空気極からなる本発明固体電解質型燃料電池用発電セル(以下、本発明発電セルと言う)1を製造し、本発明発電セル1におけるランタンガレート系固体電解質と燃料極の境界領域を二次イオン質量分析計で測定したところ、燃料極を構成するSDCのCeおよびSmの一部がランタンガレート系固体電解質に拡散浸透して形成された拡散層が形成されていることが分かった。   In this way, the power generation cell (hereinafter referred to as the present power generation cell) 1 of the present invention comprising the solid electrolyte, the fuel electrode and the air electrode is manufactured, and the lanthanum gallate solid in the power generation cell 1 of the present invention. When the boundary region between the electrolyte and the fuel electrode was measured with a secondary ion mass spectrometer, a diffusion layer formed by diffusing and penetrating part of SDC Ce and Sm constituting the fuel electrode into the lanthanum gallate solid electrolyte was formed. I found out that

実施例2
実施例1における(B)の燃料極の成形・焼き付け工程において、グリーン層の焼付け時間を7時間に延ばす以外は全く同じ条件で加熱保持することによりランタンガレート系固体電解質の一方の面に燃料極を焼付け形成し、他方の面に実施例1の(C)に示される条件と同じ条件で空気極を焼付け形成することにより本発明発電セル2を作製した。本発明発電セル2におけるランタンガレート系固体電解質と燃料極の境界領域を二次イオン質量分析計で測定したところ、燃料極を構成するSDCのCeおよびSmの一部がランタンガレート系固体電解質に拡散浸透し、一方、ランタンガレート系固体電解質を構成するLa、Sr、Ga、MgおよびCoの一部が燃料極に拡散浸透している相互拡散層が形成されていることが分かった。
Example 2
In the fuel electrode forming / baking step (B) in Example 1, the fuel electrode is formed on one surface of the lanthanum gallate solid electrolyte by heating and holding under the same conditions except that the baking time of the green layer is extended to 7 hours. The power generation cell 2 of the present invention was manufactured by baking and forming an air electrode on the other surface under the same conditions as shown in (C) of Example 1. When the boundary region between the lanthanum gallate solid electrolyte and the fuel electrode in the power generation cell 2 of the present invention was measured with a secondary ion mass spectrometer, part of Ce and Sm of SDC constituting the fuel electrode diffused into the lanthanum gallate solid electrolyte. On the other hand, it was found that an interdiffusion layer in which a part of La, Sr, Ga, Mg and Co constituting the lanthanum gallate solid electrolyte was diffused and penetrated into the fuel electrode was formed.

実施例3
下記の(e)および(f)に示される方法で原料粉末を製造した。
(e)ガドリウムをドープしたセリア粉末の製造:
0.5mol/Lの硝酸セリウム水溶液9部と0.5mol/Lの硝酸ガドリウム水溶液1部の混合水溶液に1mol/Lの水酸化ナトリウム水溶液を攪拌しながら滴下し、酸化セリウムと酸化ガドリウムを共沈させ、ろ過した後、純水での攪拌洗浄とろ過を6回繰返して水洗し、酸化セリウムと酸化ガドリウムの共沈粉を製造し、これを空気中、1000℃に3時間加熱保持して、(Ce0.9Gd0.1)Oの組成を有する平均粒径約0.8μmのガドリウムをドープしたセリア(以下、GDCという)粉末を製造した。
Example 3
Raw material powder was produced by the method shown in the following (e) and (f).
(E) Production of ceria powder doped with gadolinium:
A 1 mol / L sodium hydroxide aqueous solution is dropped into a mixed aqueous solution of 9 parts of 0.5 mol / L cerium nitrate aqueous solution and 1 part of 0.5 mol / L gadolinium nitrate solution while stirring to coprecipitate cerium oxide and gadolinium oxide. After filtration, the mixture is washed with pure water with stirring and filtration six times to produce a co-precipitated powder of cerium oxide and gadolinium oxide, which is heated and held at 1000 ° C. for 3 hours in the air, A ceria (hereinafter referred to as GDC) powder doped with gadolinium having a composition of (Ce 0.9 Gd 0.1 ) O 2 and an average particle diameter of about 0.8 μm was produced.

(f)ランタンバリウムコバルタイト系空気極原料粉末の製造:
酸化ランタン、炭酸バリウム、酸化コバルトのそれぞれ試薬級の粉体を用意し、(La0.5Ba0.5)CoOで示される組成となるよう秤量し、ボールミル混合の後、空気中、1000℃に3時間加熱保持し、得られた粉体をボールミルで微粉砕して、平均粒径1.1μmのランタンバリウムコバルタイト系空気極原料粉末を製造した。
(F) Production of lanthanum barium cobaltite-based air electrode raw material powder:
Reagent grade powders of lanthanum oxide, barium carbonate, and cobalt oxide were prepared, weighed to have a composition represented by (La 0.5 Ba 0.5 ) CoO 3 , and after ball mill mixing, The obtained powder was held at 3 ° C. for 3 hours and pulverized with a ball mill to produce a lanthanum barium cobaltite-based air electrode raw material powder having an average particle size of 1.1 μm.

次に、実施例1(a)および(c)で製造した原料粉末並びに前記(e)および(f)で製造した原料粉末を用い、下記の方法で固体電解質型燃料電池用発電セルを製造した。
まず、実施例1の(c)で製造した酸化ニッケル粉と前記(e)で製造したGDC粉末を60:40の体積比率で混合し、トルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、このスラリーをスクリーン印刷法で、実施例1の(a)で製造したLSGMCからなる固体電解質原料粉末を用い実施例1の(A)で製造したランタンガレート系固体電解質の一方の面に、平均厚さ:30μmになるようにスラリーを塗布し、乾燥することによりグリーン層を成形し、空気中、1250℃に5時間加熱保持することによりランタンガレート系固体電解質の一方の面に燃料極を焼付け形成した。
Next, using the raw material powder produced in Example 1 (a) and (c) and the raw material powder produced in the above (e) and (f), a power cell for a solid oxide fuel cell was produced by the following method. .
First, the nickel oxide powder produced in (c) of Example 1 and the GDC powder produced in (e) were mixed at a volume ratio of 60:40, and polyvinyl butyral and N-dioctyl phthalate were mixed in a toluene-ethanol mixed solvent. The slurry was mixed with an organic binder solution dissolved in a slurry, and this slurry was produced by (A) of Example 1 using the solid electrolyte raw material powder made of LSGMC produced in (a) of Example 1 by screen printing. A slurry is applied to one surface of the lanthanum gallate solid electrolyte so as to have an average thickness of 30 μm, dried to form a green layer, and heated in air at 1250 ° C. for 5 hours to maintain lanthanum gallate. A fuel electrode was baked and formed on one surface of the solid electrolyte.

さらに、前記(f)で製造したランタンバリウムコバルタイト系空気極原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーを作製し、このスラリーを実施例1の(A)で製造したランタンガレート系固体電解質の他方の面にスクリーン印刷法により厚さ:30μmになるように成形し乾燥したのち、空気中、1100℃に5時間加熱保持して空気極を成形・焼きつけた。   Further, the lanthanum barium cobaltite-based air electrode raw material powder produced in the above (f) is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to produce a slurry. Was formed on the other surface of the lanthanum gallate solid electrolyte produced in (A) of Example 1 to a thickness of 30 μm by screen printing, dried, and then heated and held at 1100 ° C. for 5 hours in air. The air electrode was molded and baked.

このようにして、固体電解質、燃料極および空気極からなる本発明発電セル3を製造し、本発明発電セル3におけるランタンガレート系固体電解質と燃料極の境界領域を二次イオン質量分析計で測定したところ、燃料極を構成するGDCのCeおよびGdの一部がランタンガレート系固体電解質に拡散浸透して形成された拡散層が形成されていることが分かった。   In this way, the power generation cell 3 of the present invention comprising the solid electrolyte, the fuel electrode and the air electrode is manufactured, and the boundary region between the lanthanum gallate solid electrolyte and the fuel electrode in the power generation cell 3 of the present invention is measured with a secondary ion mass spectrometer. As a result, it was found that a diffusion layer formed by diffusing and penetrating part of Ce and Gd of GDC constituting the fuel electrode into the lanthanum gallate solid electrolyte was formed.

実施例4
酸化ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化第二鉄を用意し、(La0.8Sr0.2)(Ga0.8Mg0.15Fe0.05)Oで示される組成となるよう秤量し、ボールミル混合の後、空気中、1350℃に3時間加熱保持し、得られた塊状焼結体をハンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径1.3μmのランタンガレート系酸化物イオン伝導体(以下、LSGMFという)からなる固体電解質原料粉末を製造した。
Example 4
A composition represented by (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Fe 0.05 ) O 3 is prepared by preparing lanthanum oxide, strontium carbonate, gallium oxide, magnesium oxide, and ferric oxide. After being mixed with a ball mill and heated and maintained at 1350 ° C. for 3 hours in air, the mass sintered body obtained was roughly pulverized with a hammer mill and then finely pulverized with a ball mill to obtain an average particle size of 1 A solid electrolyte raw material powder made of .3 μm lanthanum gallate-based oxide ion conductor (hereinafter referred to as LSGMF) was produced.

前記LSGMFからなる固体電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだした後、空気中、1450℃に4時間加熱保持して焼結し、厚さ200μm、直径120mmの円板状のランタンガレート系固体電解質を製造した。 The solid electrolyte raw material powder made of LSGMF was mixed with a toluene-ethanol mixed solvent with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate were dissolved to form a slurry, formed into a thin plate by the doctor blade method, and cut into a circle After that, it was heated and held in air at 1450 ° C. for 4 hours to sinter to produce a disc-shaped lanthanum gallate solid electrolyte having a thickness of 200 μm and a diameter of 120 mm.

このランタンガレート系固体電解質を用いる以外は実施例1と同様にして本発明発電セル4を製造し、本発明発電セル4におけるランタンガレート系固体電解質と燃料極の境界領域を二次イオン質量分析計で測定したところ、燃料極を構成するGDCのCeおよびGdの一部がランタンガレート系固体電解質に拡散浸透して形成された拡散層が形成されていることが分かった。 The power generation cell 4 of the present invention is manufactured in the same manner as in Example 1 except that this lanthanum gallate solid electrolyte is used, and the boundary region between the lanthanum gallate solid electrolyte and the fuel electrode in the power generation cell 4 of the present invention is determined as a secondary ion mass spectrometer. As a result, it was found that a diffusion layer was formed in which part of Ce and Gd of GDC constituting the fuel electrode was diffused and permeated into the lanthanum gallate solid electrolyte.

従来例1
実施例1における(B)の燃料極の成形・焼き付け工程において、グリーン層の焼付け時間を通常行われている3時間とする以外は実施例1と全く同じ条件で加熱保持することによりランタンガレート系固体電解質の一方の面に燃料極を焼付け形成し、実施例1と同様にしてランタンガレート系固体電解質の他方の面に空気極を焼付け形成することにより従来発電セル1を作製した。このようにして作製した従来発電セル1におけるランタンガレート系固体電解質と燃料極の境界領域を二次イオン質量分析計で測定したところ、実施例1〜4に見られるような拡散層または相互拡散層は検出されなかった。
Conventional Example 1
In the fuel electrode forming / baking step (B) in Example 1, the lanthanum gallate system is heated and held under exactly the same conditions as in Example 1 except that the green layer is baked for 3 hours as usual. A fuel cell was baked and formed on one surface of the solid electrolyte, and an air electrode was baked and formed on the other surface of the lanthanum gallate solid electrolyte in the same manner as in Example 1 to fabricate a conventional power generation cell 1. When the boundary region between the lanthanum gallate solid electrolyte and the fuel electrode in the thus produced conventional power generation cell 1 was measured with a secondary ion mass spectrometer, a diffusion layer or an interdiffusion layer as seen in Examples 1 to 4 was obtained. Was not detected.

実施例1〜4および従来例1で得られた本発明発電セル1〜4および従来発電セル1の燃料極の上に厚さ1mmの多孔質ニッケルからなる燃料極集電体を積層し、一方、本発明発電セル1〜4および従来発電セル1の空気極の上に厚さ1.2mmの多孔質銀からなる空気極集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にセパレータを積層することにより本発明固体電解質型燃料電池1〜4および従来固体電解質型燃料電池1を作製し、これら本発明固体電解質型燃料電池1〜4および従来固体電解質型燃料電池1を用いて、次の条件で発電試験を実施し、負荷電流密度、燃料利用率、セル電圧、出力、出力密度および発電効率を測定し、その結果を表1に示した。
<発電試験>
温度:750℃、
燃料ガス:水素、
燃料ガス流量:0.34L/min(=3cc/nin/cm2)、
酸化剤ガス:空気、
酸化剤ガス流量:1.7L/min(=15cc/nin/cm2)、
A fuel electrode current collector made of porous nickel having a thickness of 1 mm is laminated on the fuel electrodes of the present invention power generation cells 1 to 4 and the conventional power generation cell 1 obtained in Examples 1 to 4 and Conventional Example 1. Further, an air electrode current collector made of porous silver having a thickness of 1.2 mm is laminated on the air electrode of the present power generation cells 1 to 4 and the conventional power generation cell 1, and further the fuel electrode current collector and the air electrode current collector. The solid electrolyte fuel cells 1 to 4 of the present invention and the conventional solid electrolyte fuel cell 1 are produced by laminating a separator on the electric body, and the solid electrolyte fuel cells 1 to 4 of the present invention and the conventional solid electrolyte fuel are manufactured. Using the battery 1, a power generation test was performed under the following conditions, and the load current density, fuel utilization, cell voltage, output, output density, and power generation efficiency were measured. The results are shown in Table 1.
<Power generation test>
Temperature: 750 ° C.
Fuel gas: hydrogen,
Fuel gas flow rate: 0.34 L / min (= 3 cc / nin / cm 2 ),
Oxidant gas: air,
Oxidant gas flow rate: 1.7 L / min (= 15 cc / nin / cm 2 ),

Figure 2007095673
Figure 2007095673

表1に示される結果から、本発明固体電解質型燃料電池1〜4と従来固体電解質型燃料電池1とは、固体電解質と燃料極との境界領域に拡散層または相互拡散層を有する構成が相違するのみで、その他の構成は同じであるが、本発明固体電解質型燃料電池1〜4は従来固体電解質型燃料電池1と比べて、負荷電流密度、燃料利用率、セル電圧、出力、出力密度、および発電効率がいずれも優れた値を示すことがわかる。 From the results shown in Table 1, the solid electrolyte fuel cells 1 to 4 of the present invention and the conventional solid electrolyte fuel cell 1 are different in the configuration having a diffusion layer or an interdiffusion layer in the boundary region between the solid electrolyte and the fuel electrode. However, the other configurations are the same, but the solid electrolyte fuel cells 1 to 4 of the present invention have a load current density, a fuel utilization rate, a cell voltage, an output, and an output density as compared with the conventional solid oxide fuel cell 1. It can be seen that the power generation efficiency is excellent.

Claims (3)

一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表される酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBドープしたセリアとニッケルの焼結体からなる燃料極が成形された固体電解質型燃料電池用発電セルであって、
前記燃料極に含まれるCeおよびBが前記固体電解質に拡散した拡散層を有することを特徴とする固体電解質型燃料電池用発電セル。
General formula: La 1-X Sr in X Ga 1-Y-Z Mg Y A Z O 3 ( wherein, A = Co, Fe, Ni , 1 or more kinds of Cu; X = 0.05~0. 3; Y = 0 to 0.29; Z = 0.01 to 0.3; Y + Z = 0.025 to 0.3) as a solid electrolyte, and one of the solid electrolytes A porous air electrode is formed on the surface, and a porous general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, m is a power generation cell for a solid oxide fuel cell in which a fuel electrode made of a sintered body of B-doped ceria and nickel represented by 0 <m ≦ 0.4) is formed,
A power generation cell for a solid oxide fuel cell, comprising a diffusion layer in which Ce and B contained in the fuel electrode are diffused into the solid electrolyte.
一般式:La1−XSr Ga1−Y−Z Mg(式中、A=Co、Fe、Ni、Cuの1種または2種以上;X=0.05〜0.3; Y=0〜0.29;Z=0.01〜0.3; Y+Z=0.025〜0.3)で表される酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBドープしたセリアとニッケルの焼結体からなる燃料極が成形された固体電解質型燃料電池用発電セルであって、
前記燃料極に含まれるCeおよびBが前記固体電解質に拡散し、一方、固体電解質に含まれるLa、Sr、Ga、MgおよびAが前記燃料極に拡散した相互拡散層を有することを特徴とする固体電解質型燃料電池用発電セル。
General formula: La 1-X Sr in X Ga 1-Y-Z Mg Y A Z O 3 ( wherein, A = Co, Fe, Ni , 1 or more kinds of Cu; X = 0.05~0. 3; Y = 0 to 0.29; Z = 0.01 to 0.3; Y + Z = 0.025 to 0.3) as a solid electrolyte, and one of the solid electrolytes A porous air electrode is formed on the surface, and a porous general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, m is a power generation cell for a solid oxide fuel cell in which a fuel electrode made of a sintered body of B-doped ceria and nickel represented by 0 <m ≦ 0.4) is formed,
Ce and B contained in the fuel electrode diffuse into the solid electrolyte, while La, Sr, Ga, Mg and A contained in the solid electrolyte have an interdiffusion layer diffused into the fuel electrode. A power generation cell for a solid oxide fuel cell.
請求項1または2記載の固体電解質型燃料電池用発電セルを組み込んだことを特徴とする固体電解質型燃料電池。 A solid oxide fuel cell comprising the solid oxide fuel cell power generation cell according to claim 1 or 2.
JP2006233211A 2005-08-31 2006-08-30 Power generation cell for solid electrolyte fuel cells Pending JP2007095673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233211A JP2007095673A (en) 2005-08-31 2006-08-30 Power generation cell for solid electrolyte fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005251395 2005-08-31
JP2006233211A JP2007095673A (en) 2005-08-31 2006-08-30 Power generation cell for solid electrolyte fuel cells

Publications (1)

Publication Number Publication Date
JP2007095673A true JP2007095673A (en) 2007-04-12

Family

ID=37981083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233211A Pending JP2007095673A (en) 2005-08-31 2006-08-30 Power generation cell for solid electrolyte fuel cells

Country Status (1)

Country Link
JP (1) JP2007095673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245628A (en) * 2008-03-28 2009-10-22 Mitsubishi Materials Corp Solid electrolye and flat-type solid-oxide fuel cell
JP2011216464A (en) * 2010-03-19 2011-10-27 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method
JP2012178305A (en) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp Solid oxide fuel cell
JP2018112494A (en) * 2017-01-12 2018-07-19 日本特殊陶業株式会社 Gas sensor element and gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355928A (en) * 2003-05-28 2004-12-16 Kyocera Corp Electrochemical element and its manufacturing method
JP2007035435A (en) * 2005-07-27 2007-02-08 Kansai Electric Power Co Inc:The Solid oxide fuel cell, and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355928A (en) * 2003-05-28 2004-12-16 Kyocera Corp Electrochemical element and its manufacturing method
JP2007035435A (en) * 2005-07-27 2007-02-08 Kansai Electric Power Co Inc:The Solid oxide fuel cell, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245628A (en) * 2008-03-28 2009-10-22 Mitsubishi Materials Corp Solid electrolye and flat-type solid-oxide fuel cell
JP2011216464A (en) * 2010-03-19 2011-10-27 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method
JP2012178305A (en) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp Solid oxide fuel cell
JP2018112494A (en) * 2017-01-12 2018-07-19 日本特殊陶業株式会社 Gas sensor element and gas sensor

Similar Documents

Publication Publication Date Title
US20120171595A1 (en) Power generation cell for solid electrolyte fuel cell and structure of fuel electrode thereof
JP2002216807A (en) Air electrode collector for solid electrolyte type fuel cell
JP2007095673A (en) Power generation cell for solid electrolyte fuel cells
JP2009272291A (en) Solid-oxide fuel cell
Torres-Garibay et al. Ln0. 6Sr0. 4Co1− yFeyO3− δ (Ln= La and Nd; y= 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells
JP2002280026A (en) Air electrode current collector for solid electrolyte fuel cell
JP2007213891A (en) Power generation cell for solid oxide fuel cell
JP2010232134A (en) Durable fuel electrode and solid oxide fuel battery incorporating this fuel electrode
JP2010232135A (en) Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode
KR102111859B1 (en) Solid oxide fuel cell and a battery module comprising the same
JP2006228587A (en) Fuel electrode of power generation cell for solid electrolyte fuel cell
US20090098436A1 (en) Power generation cell for solid electrolyte fuel cell
JP5093741B2 (en) Power generation cell for solid oxide fuel cell and manufacturing method thereof
CN103682406B (en) Utilize the Solid Oxide Fuel Cell of natural gas
JP2018509730A (en) Solid oxide fuel cell manufacturing method, solid oxide fuel cell and battery module including the same
JP2005174663A (en) Single chamber fuel cell
JP2012156097A (en) Fuel electrode of power generation cell of solid oxide fuel cell
JP2007188749A (en) Solid electrolyte fuel cell and its operation method
JP6562623B2 (en) Mixed air electrode material for solid oxide fuel cell and solid oxide fuel cell
JP2007213890A (en) Fuel electrode material constituting fuel electrode in power generation cell for solid oxide fuel cell
JP5294474B2 (en) High power power generation cell with laminated solid electrolyte
JP2004303713A (en) Solid oxide fuel cell
KR102091454B1 (en) Cathode material for solid oxide fuel cell, and solid oxide fuel cell having the same
JP2007213889A (en) Power generation cell for solid oxide fuel cell
Sivasankaran Manufacturing and characterization of single cell intermediate-temperature solid oxide fuel cells for APU in transportation application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120713