JP2010232135A - Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode - Google Patents

Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode Download PDF

Info

Publication number
JP2010232135A
JP2010232135A JP2009081177A JP2009081177A JP2010232135A JP 2010232135 A JP2010232135 A JP 2010232135A JP 2009081177 A JP2009081177 A JP 2009081177A JP 2009081177 A JP2009081177 A JP 2009081177A JP 2010232135 A JP2010232135 A JP 2010232135A
Authority
JP
Japan
Prior art keywords
solid oxide
fuel electrode
power generation
oxide fuel
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009081177A
Other languages
Japanese (ja)
Inventor
Satoshi Uozumi
学司 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2009081177A priority Critical patent/JP2010232135A/en
Publication of JP2010232135A publication Critical patent/JP2010232135A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel electrode with durability and a solid oxide fuel battery incorporating the fuel electrode. <P>SOLUTION: For a power-generating cell for the solid oxide fuel battery with a lanthanum gallate system oxide ionic conductor as solid electrolyte, having a porous air electrode formed on one face and a porous fuel electrode molded on the other; and a skeleton structure for the fuel electrode made of an Ni-Mn alloy or an Ni-Mo alloy is adopted in place of that made of Ni so that aggregation of the alloy of the structure is restrained and a cell voltage degradation ratio is small, even after an operation for a long period. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池に関するものである。   The present invention relates to a durable fuel electrode and a solid oxide fuel cell incorporating the fuel electrode.

一般に、固体酸化物形燃料電池は、純水素ガスを燃料として発電しているが純水素ガスは比較的高価であるために、近年、都市ガス、天然ガス、メタノール、石炭ガスなどを改質して得られた水素ガスを燃料とすることが主流となってきた。この固体酸化物形燃料電池の構造は、一般に、酸化物からなる固体電解質の片面に空気極を積層し、固体電解質のもう一方の片面に燃料極を積層してなる構造を有している発電セルと、この発電セルの空気極の外側に空気極集電体を積層させ、一方、発電セルの燃料極の外側に燃料極集電体を積層させ、前記空気極集電体および燃料極集電体の外側にそれぞれセパレータを積層させた積層構造体を複数積層させた構造を有している。   In general, solid oxide fuel cells generate electricity using pure hydrogen gas as fuel, but since pure hydrogen gas is relatively expensive, in recent years, city gas, natural gas, methanol, coal gas, etc. have been reformed. It has become mainstream to use hydrogen gas obtained in this way as fuel. This solid oxide fuel cell generally has a structure in which an air electrode is laminated on one side of a solid electrolyte made of oxide and a fuel electrode is laminated on the other side of the solid electrolyte. An air electrode current collector is laminated outside the air electrode of the power generation cell, and a fuel electrode current collector is laminated outside the fuel electrode of the power generation cell. It has a structure in which a plurality of laminated structures each having a separator laminated on the outside of the electric body are laminated.

前記発電セルを構成する固体電解質として、ランタンガレート系酸化物イオン伝導体を用いることが知られており、このランタンガレート系酸化物イオン伝導体は、一般式:La1−XSrGa1−Y−ZMg(式中、A=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体であることが知られている(特許文献1参照)。 It is known that a lanthanum gallate-based oxide ion conductor is used as a solid electrolyte constituting the power generation cell. This lanthanum gallate-based oxide ion conductor has a general formula: La 1-X Sr X Ga 1- Y-Z Mg Y a Z O 3 ( where, a = Co, Fe, Ni , Cu 1 or more kinds of, X = 0.05~0.3, Y = 0~0.29 , Z = 0.01-0.3, Y + Z = 0.025-0.3) is known to be an oxide ion conductor (see Patent Document 1).

また、前記発電セルを構成する燃料極は、B(ただし、BはSm、Gd、Y、Caの1種または2種以上)をドープしたセリア(以下、「Bドープセリア」という)とニッケルからなるサーメットからなることが知られており、このBドープセリアは、一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表され、このBドープセリアとニッケルからなるサーメットは、ニッケル:Bドープセリア=90:10〜20:80(体積%)の範囲内にある焼結体であり、酸化ニッケル粉末とBドープセリア粉末との混合粉末に有機結合剤を添加したペーストを印刷、乾燥、焼成して作製することが知られている。そして、この燃料極となるサーメットは、発電時に酸化ニッケルは還元されてニッケルとなり、ニッケルからなる多孔質な骨格構造の表面に大粒径のBドープセリア粒が前記多孔質な骨格構造のニッケル表面を取り囲むようにネットワーク構造を形成してニッケル表面に固着しているとされている(特許文献2参照)。 The fuel electrode constituting the power generation cell is made of ceria doped with B (where B is one or more of Sm, Gd, Y, and Ca) (hereinafter referred to as “B-doped ceria”) and nickel. It is known that it consists of cermet, and this B-doped ceria has a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0) <M ≦ 0.4), and the cermet made of B-doped ceria and nickel is a sintered body in a range of nickel: B-doped ceria = 90: 10 to 20:80 (volume%), and nickel oxide It is known that a paste obtained by adding an organic binder to a mixed powder of powder and B-doped ceria powder is printed, dried and fired. In the cermet serving as the fuel electrode, nickel oxide is reduced to nickel during power generation, and B-doped ceria grains having a large particle size are formed on the surface of the porous skeleton structure made of nickel. It is said that a network structure is formed so as to surround and is fixed to the nickel surface (see Patent Document 2).

さらに、固体酸化物形燃料電池用発電セルを構成する燃料極として、一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBドープセリアとニッケルとの焼結体からなり、このBドープセリアとニッケルの焼結体におけるBドープセリア粒とニッケル粒の粒径が厚さ方向に変化し、その粒径は固体電解質に近いほど微細にした傾斜粒径を有する構造の燃料極(特許文献3参照)、Bドープしたセリア粒が固体電解質に接する界面およびその近傍の多孔質ニッケルの骨格表面に最も多く固着している構造の燃料極(特許文献4参照)などが知られている。
特開平11−335164号公報 特開平11−297333号公報 特開2004−55194号公報 特開2006−331798号公報
Furthermore, as a fuel electrode constituting a power generation cell for a solid oxide fuel cell, a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, m is composed of a sintered body of B-doped ceria and nickel represented by 0 <m ≦ 0.4), and the grain sizes of the B-doped ceria grains and nickel grains in the sintered body of B-doped ceria and nickel are in the thickness direction. The fuel electrode has a gradient particle size that is finer as the solid electrolyte is closer to the solid electrolyte (see Patent Document 3), the interface where the B-doped ceria grains are in contact with the solid electrolyte, and the porous nickel in the vicinity thereof. A fuel electrode (see Patent Document 4) having a structure that adheres most to the surface of the skeleton is known.
Japanese Patent Laid-Open No. 11-335164 JP 11-297333 A JP 2004-55194 A JP 2006-331798 A

固体酸化物形燃料電池を広く普及させるためには、長期間の運転を行っても発電効率が低下しないことが求められているが、現在使用されている固体酸化物形燃料電池は比較的短期間の使用で電圧が低下するという問題点があった。 In order to widely disseminate solid oxide fuel cells, it is required that the power generation efficiency does not decrease even after long-term operation. However, currently used solid oxide fuel cells are relatively short-term. There was a problem that the voltage was lowered by use during the period.

そのため、本発明者らは、長期間の運転を行っても発電効率が低下しない固体酸化物形燃料電池を開発すべく鋭意研究を行った。その結果、
(イ)固体酸化物形燃料電池の発電効率が低下する原因の一つとして、固体酸化物形燃料電池を長期間運転すると、固体酸化物形燃料電池の発電セルを構成する燃料極の多孔質なニッケル骨格構造体のNiがシンタリングによって凝集し、気孔率が低下することにより発電効率が低下すること、
(ロ)前記ニッケル骨格構造体のNiが凝集する別の理由は、都市ガス、天然ガス、メタノール、石炭ガスなどを改質して得られた改質ガスには高温の水蒸気が含有されるため、固体酸化物燃料電池の起動停止を繰り返すとNiの酸化還元が繰り返され、ニッケルの凝集が進み、燃料極の気孔率が低下すること、
(ハ)Niに代えて、Mn:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi合金(以下、Ni−Mn合金という)またはMo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi合金(Ni−Mo合金と言う)を用いて作製したニッケル合金骨格構造体は、前記従来のニッケル骨格構造体と比べて固体酸化物形燃料電池の発電セルの運転温度である750℃に長期間曝したり、起動停止を繰り返しても粒径の変化が小さく、したがって、前記ニッケル合金骨格構造体とBドープセリアとの焼結体からなる燃料極は凝集が少なくなって気孔率の低下が少なくなり、耐久性が向上すること、などの研究結果が得られたのである。
For this reason, the present inventors have conducted intensive research to develop a solid oxide fuel cell in which power generation efficiency does not decrease even after long-term operation. as a result,
(B) As one of the causes of the decrease in power generation efficiency of the solid oxide fuel cell, when the solid oxide fuel cell is operated for a long period of time, the porosity of the fuel electrode constituting the power generation cell of the solid oxide fuel cell Ni of the nickel skeleton structure is aggregated by sintering, and the power generation efficiency decreases due to the decrease in porosity.
(B) Another reason why Ni in the nickel skeleton structure aggregates is that the reformed gas obtained by reforming city gas, natural gas, methanol, coal gas, etc. contains high-temperature water vapor. When the start and stop of the solid oxide fuel cell is repeated, the oxidation and reduction of Ni is repeated, the aggregation of nickel proceeds, and the porosity of the fuel electrode decreases.
(C) Instead of Ni, it contains Mn: 1 to 20% by mass, and the balance contains Ni and unavoidable impurities (hereinafter referred to as Ni-Mn alloy) or Mo: 1 to 20% by mass, The nickel alloy skeleton structure manufactured using a Ni alloy (referred to as Ni—Mo alloy) consisting of Ni and inevitable impurities as the balance is a power generation cell of a solid oxide fuel cell as compared with the conventional nickel skeleton structure. The change in particle size is small even when exposed to an operating temperature of 750 ° C. for a long period of time or repeated starting and stopping. Therefore, the fuel electrode made of a sintered body of the nickel alloy skeleton structure and B-doped ceria has less aggregation. As a result, research results such as a decrease in porosity and improved durability were obtained.

この発明は、かかる研究結果に基づいて成されたものであって、
(1)一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとMn:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mn合金のサーメットからなる固体電解質形燃料電池の発電セル用燃料極、
(2)一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとMo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mo合金のサーメットからなる固体電解質形燃料電池の発電セル用燃料極、に特徴を有するものである。
The present invention has been made based on such research results,
(1) General formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, m is 0 <m ≦ 0.4) B-doped ceria and Mn: 1 to 20% by mass, the balance being a Ni-Mn alloy cermet made of Ni and inevitable impurities, and a fuel electrode for a power generation cell of a solid oxide fuel cell,
(2) General formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, m is 0 <m ≦ 0.4) B-doped ceria and Mo: 1 to 20% by mass, the balance being characterized by a fuel electrode for a power generation cell of a solid oxide fuel cell made of Ni-Mo alloy cermet consisting of Ni and inevitable impurities It is.

前記燃料極を組み込んだ固体酸化物形燃料電池用発電セルもこの発明に含まれる。したがって、この発明は、
(3)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体酸化物形燃料電池用発電セルにおいて、
前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとMn:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mn合金のサーメットからなる固体電解質形燃料電池の発電セル、
(4)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体酸化物形燃料電池用発電セルにおいて、
前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとMo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mo合金のサーメットからなる固体電解質形燃料電池の発電セル、に特徴を有するものである。
A power generation cell for a solid oxide fuel cell incorporating the fuel electrode is also included in the present invention. Therefore, the present invention
(3) A solid oxide in which a lanthanum galade oxide oxide conductor is a solid electrolyte, a porous air electrode is formed on one surface of the solid electrolyte, and a porous fuel electrode is formed on the other surface In power generation cells for fuel cells,
The fuel electrode is represented by a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0 <m ≦ 0.4). B-doped ceria and Mn: 1 to 20% by mass of a power generation cell of a solid oxide fuel cell comprising Ni-Mn alloy cermet comprising Ni and inevitable impurities as the balance,
(4) Solid oxide in which a lanthanum galade oxide oxide conductor is a solid electrolyte, a porous air electrode is formed on one surface of the solid electrolyte, and a porous fuel electrode is formed on the other surface In power generation cells for fuel cells,
The fuel electrode is represented by a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0 <m ≦ 0.4). B-doped ceria and Mo: 1 to 20% by mass, the balance being characterized by a power generation cell of a solid oxide fuel cell made of Ni-Mo alloy cermet consisting of Ni and inevitable impurities is there.

次に、この発明の燃料極の焼結体に含まれるNi合金の成分組成を上記のごとく限定した理由は、MnまたはMoを1質量%未満含んでも純Niとほぼ同じとなるため、合金(Ni−Mn合金、Ni−Mo合金)の焼結開始温度や耐酸化還元性が純Niのそれと変わらないために凝集を起しやすくなるので好ましくなく、一方、MnまたはMoを20質量%を越えて含むと、耐凝集効果が高くなって劣化率が低減するが、燃料極としての触媒活性が落ちるために発電セルの性能が低下するので好ましくないという理由によるものである。 Next, the reason why the composition of the Ni alloy contained in the fuel electrode sintered body of the present invention is limited as described above is almost the same as that of pure Ni even if it contains less than 1% by mass of Mn or Mo. Ni-Mn alloy, Ni-Mo alloy) are not preferable because the sintering start temperature and oxidation-reduction resistance are not different from those of pure Ni, and thus aggregation is likely to occur. On the other hand, Mn or Mo exceeds 20% by mass. If it is included, the anti-aggregation effect is increased and the deterioration rate is reduced, but this is because the catalytic activity as the fuel electrode is lowered and the performance of the power generation cell is lowered, which is not preferable.

この発明の固体酸化物形燃料電池用発電セルで使用される固体電解質は、既に知られている一般式:La1−XSrGa1−Y−ZMg(式中、A=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体であり、また、この発明の固体酸化物形燃料電池用発電セルで使用される燃料極は、Bドープセリアと骨格構造を有する多孔質Ni−Mn合金または多孔質Ni−Mo合金の骨格表面に固着したサーメット(焼結体)からなり、このBドープセリアは一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表される酸化物からなる。 The solid electrolyte used in the solid oxide fuel cell power generation cell of the present invention have the general formula are known: La 1-X Sr X Ga 1-Y-Z Mg Y A Z O 3 ( in the formula, A = one or more of Co, Fe, Ni, Cu, X = 0.05 to 0.3, Y = 0 to 0.29, Z = 0.01 to 0.3, Y + Z = 0.025 The fuel electrode used in the power generation cell for a solid oxide fuel cell according to the present invention is a porous Ni- having a B-doped ceria and a skeleton structure. It consists of a cermet (sintered body) fixed to the skeleton surface of a Mn alloy or a porous Ni—Mo alloy, and this B-doped ceria has a general formula: Ce 1-m B m O 2 (where B is Sm, Gd, Y , One or more of Ca, and m is an oxide represented by 0 <m ≦ 0.4) .

この発明の固体酸化物形燃料電池の発電セル用燃料極を製造するには、まず、酸化ニッケル粉末と酸化マンガン粉末との混合粉末または酸化ニッケル粉末と酸化モリブデン粉末との混合粉末をそれぞれ作製し、これら混合粉末をそれぞれ焼成して焼成体を作製し、これら焼成体をそれぞれ粉砕してNiとMnの複合酸化物粉末(以下、NiMn複合酸化物粉末という)またはNiとMoの複合酸化物粉末(以下、NiMo複合酸化物粉末という)を作製し、NiMn複合酸化物粉末とBドープセリア粉末を含むスラリーまたはNiMo複合酸化物粉末とBドープセリア粉末を含むスラリーを作製し、このスラリーを基板の表面にスクリーン印刷などの方法により基板に塗布し、大気中、温度:1000〜1200℃で焼成することにより作製する。   In order to produce the fuel electrode for the power generation cell of the solid oxide fuel cell according to the present invention, first, a mixed powder of nickel oxide powder and manganese oxide powder or a mixed powder of nickel oxide powder and molybdenum oxide powder is prepared. Each of these mixed powders is fired to produce a fired body, and each of these fired bodies is pulverized to obtain a composite oxide powder of Ni and Mn (hereinafter referred to as NiMn composite oxide powder) or a composite oxide powder of Ni and Mo. (Hereinafter referred to as NiMo composite oxide powder), a slurry containing NiMn composite oxide powder and B-doped ceria powder or a slurry containing NiMo composite oxide powder and B-doped ceria powder is prepared, and this slurry is applied to the surface of the substrate. It is produced by applying to the substrate by a method such as screen printing and baking at a temperature of 1000 to 1200 ° C. in the air. That.

また、この発明の固体酸化物形燃料電池用発電セルを製造するには、NiMn複合酸化物粉末とBドープセリア粉末を含むスラリーまたはNiMo複合酸化物粉末とBドープセリア粉末を含むスラリーをそれぞれ作製し、このスラリーを固体電解質の一方の面にスクリーン印刷などの方法により塗布し、大気中、温度:1000〜1200℃で焼き付け、その後、固体電解質の他方の面に通常の方法で空気極を形成することにより発電セルを製造することができる。   In order to produce a power generation cell for a solid oxide fuel cell according to the present invention, a slurry containing NiMn composite oxide powder and B-doped ceria powder or a slurry containing NiMo composite oxide powder and B-doped ceria powder are prepared, This slurry is applied to one surface of the solid electrolyte by a method such as screen printing and baked at a temperature of 1000 to 1200 ° C. in the atmosphere, and then an air electrode is formed on the other surface of the solid electrolyte by a normal method. Thus, a power generation cell can be manufactured.

この発明の燃料極を設けてなる発電セルを組込んだ固体酸化物形燃料電池は、数千〜数万時間に亘って連続運転しても、起動停止を繰り返しても、発電効率を低下させることなく高効率で発電することができる。   The solid oxide fuel cell incorporating the power generation cell provided with the fuel electrode of the present invention reduces the power generation efficiency even if it is continuously operated over several thousands to tens of thousands of hours or repeatedly started and stopped. It is possible to generate electricity with high efficiency without any problems.

実施例1
酸化ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルトの粉体を用意し、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oで示される組成となるよう秤量し、ボールミル混合の後、空気中、1200℃に3時間加熱保持し、得られた塊状焼結体をハンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径1.8μmのランタンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固体電解質原料粉末をトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだした後、空気中、1450℃に6時間加熱保持して焼結し、厚さ200μm、直径120mmの円板状のランタンガレート系固体電解質板を製造した。
Example 1
A powder of lanthanum oxide, strontium carbonate, gallium oxide, magnesium oxide, and cobalt oxide is prepared, and is represented by (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3. Weighed to a composition, mixed in a ball mill, heated and held in air at 1200 ° C. for 3 hours, and coarsely ground the resulting sintered body with a hammer mill and then finely ground with a ball mill to obtain an average particle size. A 1.8 μm lanthanum gallate solid electrolyte raw material powder was produced. The lanthanum gallate-based solid electrolyte raw material powder is mixed with an organic binder solution in which an organic binder is dissolved in a toluene-ethanol mixed solvent to form a slurry, formed into a thin plate by the doctor blade method, cut into a circular shape, The mixture was heated and sintered at 1450 ° C. for 6 hours and sintered to produce a disc-shaped lanthanum gallate solid electrolyte plate having a thickness of 200 μm and a diameter of 120 mm.

さらに、原料粉末として、平均粒径0.5μmのNiO粉末およびMnO粉末を用意し、これら粉末を表1に示される割合となるように配合し混合して混合粉末を作製し、これら混合粉末を空気中、温度:1200℃に6時間加熱保持の条件で焼成を行うことにより焼成体を作製し、この焼成体を粉砕することにより平均粒径:0.5μmのNiMn複合酸化物粉末A〜Gを作製した。
このNiMn複合酸化物粉末A〜Gに対して平均粒径:0.04μmのSmドープセリア(以下、SDCという)の微粉末を表2に示される割合で配合し混合して混合粉末を作製し、この混合粉末にトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液を混合してスラリーとし、このスラリーをスクリーン印刷法で、前記ランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるようにスラリーを塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の条件で焼結を行うことにより、ランタンガレート系固体電解質板の表面にNiMn複合酸化物とSDCとの焼結体からなる燃料極を形成した。
Further, NiO powder and MnO 2 powder having an average particle size of 0.5 μm are prepared as raw powders, and these powders are blended and mixed so as to have the ratio shown in Table 1 to produce a mixed powder. Is fired at a temperature of 1200 ° C. for 6 hours in the air to prepare a fired body, and the fired body is pulverized to pulverize the NiMn composite oxide powder A to 0.5 μm in average particle size. G was produced.
A fine powder of Sm-doped ceria (hereinafter referred to as SDC) having an average particle size of 0.04 μm is blended and mixed with the NiMn composite oxide powders A to G at a ratio shown in Table 2 to prepare a mixed powder. The mixed powder is mixed with an organic binder solution in which an organic binder is dissolved in a toluene-ethanol mixed solvent to form a slurry, and this slurry is screen-printed on one surface of the lanthanum gallate solid electrolyte with an average thickness: The surface of the lanthanum gallate solid electrolyte plate is coated by applying slurry to 20 μm, heating and drying to evaporate the organic binder solution and then sintering in air at 1200 ° C. for 3 hours. A fuel electrode made of a sintered body of NiMn composite oxide and SDC was formed.

さらに、サマリウムストロンチウムコバルタイト系空気極原料粉をトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレート系固体電解質の燃料極と反対側の他方の面にスクリーン印刷法により厚さ:30μmになるように成形し乾燥したのち、空気中、1100℃に3時間加熱保持して、空気極を成形・焼きつけることにより空気極を形成し、固体電解質、燃料極および空気極からなる本発明固体酸化物形燃料電池用発電セル(以下、本発明発電セルと言う)1〜5および比較固体酸化物形燃料電池用発電セル(以下、比較発電セルと言う)1〜2をそれぞれ複数個製造した。 Furthermore, samarium strontium cobaltite air electrode raw material powder is mixed with an organic binder solution in which an organic binder is dissolved in a toluene-ethanol mixed solvent to prepare a slurry, and this slurry is opposite to the fuel electrode of the lanthanum gallate solid electrolyte. After forming and drying to the other side of the film to a thickness of 30 μm by screen printing method, heating and holding in air at 1100 ° C. for 3 hours, forming and baking the air electrode to form an air electrode, The solid oxide fuel cell power generation cell (hereinafter referred to as the present power generation cell) 1 to 5 comprising a solid electrolyte, a fuel electrode and an air electrode, and a comparative solid oxide fuel cell power generation cell (hereinafter referred to as comparative power generation). A plurality of cells 1 and 2 were produced.

得られた本発明発電セル1〜5および比較発電セル1〜2の燃料極の上にいずれも厚さ1mmの燃料極集電体を積層し、一方、本発明発電セル1〜5および比較発電セル1〜2の空気極の上にいずれも厚さ1.2mmの空気極集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にセパレータを積層することにより本発明固体酸化物形燃料電池1〜10および比較固体酸化物形燃料電池1〜2をそれぞれ複数個作製した。   A fuel electrode current collector having a thickness of 1 mm is laminated on the fuel electrodes of the obtained power generation cells 1 to 5 and comparative power generation cells 1 and 2, while the power generation cells 1 to 5 of the present invention and comparative power generation cells are compared. By laminating an air electrode current collector having a thickness of 1.2 mm on the air electrode of each of the cells 1 and 2, and further laminating a separator on the fuel electrode current collector and the air electrode current collector, Inventive solid oxide fuel cells 1 to 10 and a plurality of comparative solid oxide fuel cells 1 to 2 were produced.

さらに比較のために、原料粉末として、平均粒径0.5μmのNiO粉末を用意し、このNiO粉末に対して平均粒径:0.04μmのSmドープセリア(SDC)の微粉末を表2に示される割合(NiO粉末とSDC粉末が体積比率で60:40)で配合し混合して混合粉末を作製し、この混合粉末にトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液を混合してスラリーとし、このスラリーをスクリーン印刷法で、先に作製したランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるように塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の条件で焼結を行うことにより、ランタンガレート系固体電解質板の表面にNiOとSDCとの焼結体からなる燃料極を形成し、さらに実施例1と同様にして空気極を形成して従来発電セル1を複数個製造した。この従来発電セル1の片面に燃料極集電体を積層しさらにその上にセパレータを積層し、一方、従来の発電セルの他方の片面に空気極集電体を積層しさらにセパレータを積層することにより従来固体酸化物形燃料電池1を複数個作製した。   For comparison, NiO powder having an average particle size of 0.5 μm was prepared as a raw material powder, and a fine powder of Sm-doped ceria (SDC) having an average particle size of 0.04 μm is shown in Table 2 for this NiO powder. The mixed powder is prepared by mixing and mixing at a ratio (NiO powder and SDC powder 60:40 by volume), and this mixed powder is mixed with an organic binder solution in which an organic binder is dissolved in a toluene-ethanol mixed solvent. The slurry was applied to one surface of the previously prepared lanthanum gallate solid electrolyte by screen printing so that the average thickness was 20 μm, and dried by heating to evaporate the organic binder solution. After that, sintering is performed in air at 1200 ° C. for 3 hours under heating, and the surface of the lanthanum gallate solid electrolyte plate is made of a sintered body of NiO and SDC. A fuel electrode was formed, and an air electrode was further formed in the same manner as in Example 1 to produce a plurality of conventional power generation cells 1. A fuel electrode current collector is laminated on one side of the conventional power generation cell 1 and a separator is further laminated thereon, while an air electrode current collector is laminated on the other side of the conventional power generation cell and a separator is further laminated. Thus, a plurality of conventional solid oxide fuel cells 1 were produced.

これら複数個の本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1を、
温度:750℃、
燃料ガス:水素(0.05ppmの硫黄含有)、
燃料ガス流量:0.34L/min、
酸化剤ガス:空気、
酸化剤ガス流量:1.7L/min、
の発電条件で1時間運転するセル検査を行い、その時得られたセル電圧低下率を測定し、その結果をセル検査後のセル電圧低下率として表2に示した。その後、本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1の内の1個を分解し、本発明発電セル1〜5および比較発電セル1〜2の燃料極を構成する骨格構造のNi−Mn合金の成分組成および平均粒径を測定し、さらに従来発電セル1の燃料極を構成する骨格構造のNiの平均粒径を測定し、それらの結果を表2に示した。
The plurality of the solid oxide fuel cells 1 to 5 of the present invention, the comparative solid oxide fuel cells 1 to 2 and the conventional solid oxide fuel cell 1 are
Temperature: 750 ° C.
Fuel gas: hydrogen (containing 0.05 ppm sulfur),
Fuel gas flow rate: 0.34 L / min,
Oxidant gas: air,
Oxidant gas flow rate: 1.7 L / min,
The cell test was performed for 1 hour under the power generation conditions, and the cell voltage drop rate obtained at that time was measured. Thereafter, one of the solid oxide fuel cells 1 to 5 of the present invention, the comparative solid oxide fuel cells 1 and 2 and the conventional solid oxide fuel cell 1 is disassembled, and the power generation cells 1 to 5 of the present invention The component composition and average particle size of the Ni-Mn alloy of the skeleton structure constituting the fuel electrode of the comparative power generation cells 1 and 2 are measured, and the average particle diameter of Ni of the skeleton structure constituting the fuel electrode of the conventional power generation cell 1 is further measured. The results are shown in Table 2.

さらに、本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1について、本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1を先の発電条件で12時間運転したのち12時間停止する運転を40回繰り返し行う起動−停止繰返し運転を行ったのちセル電圧低下率を測定し、その結果を表2に示し、さらに、この起動−停止繰返し運転を行った本発明固体酸化物形燃料電池1〜5および比較固体酸化物形燃料電池1〜2を分解して、燃料極を構成する骨格構造を有するNi−Mn合金の平均粒径を測定し、さらに従来固体酸化物形燃料電池1を分解して従来発電セル1の燃料極を構成する骨格構造を有するNiの平均粒径を測定し、その結果を表2に示した。
さらに、本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1を連続して5000時間運転したのちセル電圧低下率を測定し、その結果を表2に示し、さらにこの5000時間連続運転した本発明固体酸化物形燃料電池1〜5および比較固体酸化物形燃料電池1〜2を分解して燃料極を構成する骨格構造のNi−Mn合金の平均粒径を測定し、さらに従来固体酸化物形燃料電池1を分解して燃料極を構成する骨格構造のNiの平均粒径を測定し、その結果を表2に示した。
Furthermore, the solid oxide fuel cells 1 to 5 of the present invention, the comparative solid oxide fuel cells 1 and 2 and the conventional solid oxide fuel cell 1 are compared with each other. Cell voltage drop rate after performing start-stop repeated operation in which physical fuel cells 1 and 2 and conventional solid oxide fuel cell 1 are operated for 12 hours under the previous power generation conditions and then stopped for 12 hours are repeated 40 times The results are shown in Table 2, and further, the present solid oxide fuel cells 1 to 5 and comparative solid oxide fuel cells 1 and 2 that have been subjected to the start-stop repeated operation are disassembled, The average particle diameter of the Ni—Mn alloy having the skeleton structure constituting the fuel electrode is measured, and the solid oxide fuel cell 1 is further decomposed to form the fuel electrode of the conventional power generation cell 1. Measure the average particle size and The results are shown in Table 2.
Furthermore, after continuously operating the solid oxide fuel cells 1 to 5 of the present invention, the comparative solid oxide fuel cells 1 and 2 and the conventional solid oxide fuel cell 1 for 5000 hours, the cell voltage drop rate is measured, The results are shown in Table 2, and the solid oxide fuel cells 1 to 5 of the present invention and the comparative solid oxide fuel cells 1 and 2 that have been continuously operated for 5000 hours are decomposed to form a fuel electrode. The average particle diameter of the -Mn alloy was measured, and the average particle diameter of Ni in the skeleton structure constituting the fuel electrode by disassembling the conventional solid oxide fuel cell 1 was measured. The results are shown in Table 2.

Figure 2010232135
Figure 2010232135

Figure 2010232135
Figure 2010232135

表1〜2に示される結果から、SmドープされたセリアとMn:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mn合金の焼結体を燃料極とした本発明固体酸化物形燃料電池1〜5は、SmドープされたセリアとNiの焼結体を燃料極とした従来固体酸化物形燃料電池1と比べて、燃料極を構成する骨格構造のNi−Mn合金の凝集が遅く、したがって長期間運転してもセル電圧の低下率が少ないことから耐久性に優れた固体酸化物形燃料電池を提供することができることが分かる。しかし、この発明の条件から外れた量のMnを含むNi−Mn合金を骨格構造とする比較固体酸化物形燃料電池1〜2は、Mnの含有率が1質量%未満の場合本発明の効果が期待できず、また、Mnの含有率が20質量%を超える場合は燃料極の触媒活性が低下するので好ましくないことがわかる。 From the results shown in Tables 1 and 2, the present invention uses a sintered body of a Ni—Mn alloy containing Sm-doped ceria and Mn: 1 to 20% by mass, the balance being Ni and inevitable impurities, as the fuel electrode. Compared with the conventional solid oxide fuel cell 1 in which the solid oxide fuel cells 1 to 5 have a sintered body of Sm-doped ceria and Ni as the fuel electrode, the skeleton structure Ni-Mn constituting the fuel electrode It can be seen that a solid oxide fuel cell having excellent durability can be provided because the alloy aggregation is slow and, therefore, the cell voltage decrease rate is small even when operated for a long period of time. However, the comparative solid oxide fuel cells 1 and 2 having a Ni—Mn alloy containing Mn in an amount deviating from the conditions of the present invention as a skeleton structure are effective when the Mn content is less than 1% by mass. In addition, it can be seen that when the Mn content exceeds 20% by mass, the catalytic activity of the fuel electrode is lowered, which is not preferable.

実施例2
酸化ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルトの粉体を用意し、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oで示される組成となるよう秤量し、ボールミル混合の後、空気中、1200℃に3時間加熱保持し、得られた塊状焼結体をハンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径1.8μmのランタンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固体電解質原料粉末をトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだした後、空気中、1450℃に6時間加熱保持して焼結し、厚さ200μm、直径120mmの円板状のランタンガレート系固体電解質板を製造した。
Example 2
A powder of lanthanum oxide, strontium carbonate, gallium oxide, magnesium oxide, and cobalt oxide is prepared, and is represented by (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3. Weighed to a composition, mixed in a ball mill, heated and held in air at 1200 ° C. for 3 hours, and coarsely ground the resulting sintered body with a hammer mill and then finely ground with a ball mill to obtain an average particle size. A 1.8 μm lanthanum gallate solid electrolyte raw material powder was produced. The lanthanum gallate-based solid electrolyte raw material powder is mixed with an organic binder solution in which an organic binder is dissolved in a toluene-ethanol mixed solvent to form a slurry, formed into a thin plate by the doctor blade method, cut into a circular shape, The mixture was heated and sintered at 1450 ° C. for 6 hours and sintered to produce a disc-shaped lanthanum gallate solid electrolyte plate having a thickness of 200 μm and a diameter of 120 mm.

さらに、原料粉末として、平均粒径0.5μmのNiO粉末およびMoO粉末を用意し、これら粉末を表3に示される割合となるように配合し混合して混合粉末を作製し、これら混合粉末を空気中、温度:800℃に6時間加熱保持の条件で焼成を行うことにより焼成体を作製し、この焼成体を粉砕することにより平均粒径:0.5μmのNiMo複合酸化物粉末A〜Gを作製した。
このNiMo複合酸化物粉末A〜Gに対して平均粒径:0.04μmのGdドープセリア(以下、GDCという)の微粉末を表3に示される割合で配合し混合して混合粉末を作製し、この混合粉末にトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーとし、このスラリーをスクリーン印刷法で、前記ランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるようにスラリーを塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の条件で焼結を行うことにより、ランタンガレート系固体電解質板の表面にNiMo複合酸化物とGDCからなる燃料極を形成した。
Furthermore, NiO powder and MoO 3 powder having an average particle diameter of 0.5 μm are prepared as raw powders, and these powders are blended and mixed so as to have the ratio shown in Table 3, to produce a mixed powder. Is fired at a temperature of 800 ° C. for 6 hours under heating in the air to prepare a fired body, and the fired body is pulverized to pulverize the NiMo composite oxide powder A to 0.5 μm in average particle size. G was produced.
A fine powder of Gd-doped ceria (hereinafter referred to as GDC) having an average particle diameter of 0.04 μm is blended and mixed with the NiMo composite oxide powders A to G at a ratio shown in Table 3 to prepare a mixed powder. This mixed powder is mixed with an organic binder solution in which an organic binder is dissolved in a toluene-ethanol mixed solvent to form a slurry, and this slurry is screen-printed with an average thickness on one surface of the lanthanum gallate solid electrolyte: The surface of the lanthanum gallate solid electrolyte plate is coated by applying slurry to 20 μm, heating and drying to evaporate the organic binder solution and then sintering in air at 1200 ° C. for 3 hours. A fuel electrode made of NiMo composite oxide and GDC was formed.

さらに、サマリウムストロンチウムコバルタイト系空気極原料粉をトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレート系固体電解質の燃料極と反対側の他方の面にスクリーン印刷法により厚さ:30μmになるように成形し乾燥したのち、空気中、1100℃に3時間加熱保持して、空気極を成形・焼きつけることにより空気極を形成し、固体電解質、燃料極および空気極からなる本発明固体酸化物形燃料電池用発電セル(以下、本発明発電セルと言う)6〜10および比較固体酸化物形燃料電池用発電セル(以下、比較発電セルと言う)3〜4をそれぞれ複数個製造した。 Furthermore, samarium strontium cobaltite air electrode raw material powder is mixed with an organic binder solution in which an organic binder is dissolved in a toluene-ethanol mixed solvent to prepare a slurry, and this slurry is opposite to the fuel electrode of the lanthanum gallate solid electrolyte. After forming and drying to the other side of the film to a thickness of 30 μm by screen printing method, heating and holding in air at 1100 ° C. for 3 hours, forming and baking the air electrode to form an air electrode, A power generation cell for a solid oxide fuel cell of the present invention (hereinafter referred to as the present power generation cell) 6 to 10 and a power generation cell for a comparative solid oxide fuel cell (hereinafter referred to as comparative power generation) comprising a solid electrolyte, a fuel electrode and an air electrode A plurality of cells 3 to 4 were manufactured.

得られた本発明発電セル6〜10および比較発電セル3〜4の燃料極の上にいずれも厚さ1mmの燃料極集電体を積層し、一方、本発明発電セル6〜10および比較発電セル3〜4の空気極の上にいずれも厚さ1.2mmの空気極集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にセパレータを積層することにより本発明固体酸化物形燃料電池6〜10および比較固体酸化物形燃料電池3〜4をそれぞれ複数個作製した。   A fuel electrode current collector having a thickness of 1 mm is laminated on the fuel electrodes of the obtained power generation cells 6 to 10 and comparative power generation cells 3 to 4, while the power generation cells 6 to 10 and comparative power generation of the present invention are stacked. By stacking an air electrode current collector having a thickness of 1.2 mm on the air electrode of each of the cells 3 to 4, and further stacking a separator on the fuel electrode current collector and the air electrode current collector, A plurality of inventive solid oxide fuel cells 6 to 10 and comparative solid oxide fuel cells 3 to 4 were produced.

さらに比較のために、原料粉末として、平均粒径0.5μmのNiO粉末を用意し、このNiO粉末に対して平均粒径:0.04μmのGdドープセリア(GDC)を表4に示される割合(NiO粉末とGDC粉末が体積比率で60:40)で配合し混合して混合粉末を作製し、この混合粉末にトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液を混合してスラリーとし、このスラリーをスクリーン印刷法で、先に作製したランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるように塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の条件で焼結を行うことにより、ランタンガレート系固体電解質板の表面にNiOとGDCとの焼結体からなる燃料極を形成し、さらに実施例2と同様にして空気極を形成して従来発電セル2を複数個製造した。この従来発電セル2の片面に燃料極集電体を積層しさらにその上にセパレータを積層し、一方、従来の発電セルの他方の片面に空気極集電体を積層しさらにセパレータを積層することにより従来固体酸化物形燃料電池2を複数個作製した。   Further, for comparison, NiO powder having an average particle diameter of 0.5 μm was prepared as a raw material powder, and Gd-doped ceria (GDC) having an average particle diameter of 0.04 μm with respect to this NiO powder is a ratio shown in Table 4 ( NiO powder and GDC powder are mixed and mixed at a volume ratio of 60:40) to prepare a mixed powder, and this mixed powder is mixed with an organic binder solution in which an organic binder is dissolved in a toluene-ethanol mixed solvent to form a slurry. The slurry was applied to one surface of the previously prepared lanthanum gallate solid electrolyte by screen printing so as to have an average thickness of 20 μm, dried by heating and evaporated in the air. By sintering at 1200 ° C. for 3 hours under heating, a fuel electrode made of a sintered body of NiO and GDC is formed on the surface of the lanthanum gallate solid electrolyte plate. Then, in the same manner as in Example 2, an air electrode was formed to produce a plurality of conventional power generation cells 2. A fuel electrode current collector is laminated on one side of the conventional power generation cell 2 and a separator is further laminated thereon, while an air electrode current collector is laminated on the other side of the conventional power generation cell and a separator is further laminated. Thus, a plurality of conventional solid oxide fuel cells 2 were produced.

これら複数個の本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2を、
温度:750℃、
燃料ガス:水素(0.05ppmの硫黄含有)、
燃料ガス流量:0.34L/min、
酸化剤ガス:空気、
酸化剤ガス流量:1.7L/min、
の発電条件で1時間運転するセル検査を行い、その時得られたセル電圧低下率を測定し、その結果を表4に示した。その後、本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2の内の1個を分解し、本発明発電セル6〜10の燃料極を構成する骨格構造のNi−Mo合金の成分組成および平均粒径を測定し、さらに従来発電セル2の燃料極を構成する骨格構造のNiの平均粒径を測定し、それらの結果を表4に示した。
The plurality of the solid oxide fuel cells 6 to 10 of the present invention, the comparative solid oxide fuel cells 3 to 4 and the conventional solid oxide fuel cell 2 are
Temperature: 750 ° C.
Fuel gas: hydrogen (containing 0.05 ppm sulfur),
Fuel gas flow rate: 0.34 L / min,
Oxidant gas: air,
Oxidant gas flow rate: 1.7 L / min,
A cell test that operates for 1 hour under the power generation conditions was performed, the cell voltage drop rate obtained at that time was measured, and the results are shown in Table 4. Thereafter, one of the solid oxide fuel cells 6 to 10 of the present invention, the comparative solid oxide fuel cells 3 to 4 and the conventional solid oxide fuel cell 2 is disassembled, and the power generation cells 6 to 10 of the present invention are disassembled. The component composition and average particle diameter of the Ni-Mo alloy having the skeleton structure constituting the fuel electrode are measured, and the average particle diameter of Ni having the skeleton structure constituting the fuel electrode of the conventional power generation cell 2 is measured. It is shown in Table 4.

さらに、本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2について、本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2を先の発電条件で12時間運転したのち12時間停止する運転を40回繰り返し行う起動−停止繰返し運転を行った後セル電圧低下率を測定し、その結果を表4に示し、さらに、この起動−停止繰返し運転を行った本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2を分解して、燃料極を構成する骨格構造のNi−Mo合金の平均粒径、並びに従来発電セル2の燃料極を構成する骨格構造のNiの平均粒径を測定し、その結果を表4に示した。
さらに、本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2を5000時間連続運転したのちセル電圧低下率を測定し、その結果を表4に示し、さらに、この5000時間連続運転した本発明固体酸化物形燃料電池6〜10および比較固体酸化物形燃料電池3〜4を分解して燃料極を構成する骨格構造のNi−Mo合金の平均結晶粒径を測定し、さらに従来固体酸化物形燃料電池2を分解して燃料極を構成する骨格構造のNiの平均粒径を測定し、その結果を表4に示した。
Furthermore, for the solid oxide fuel cells 6 to 10 of the present invention, the comparative solid oxide fuel cells 3 to 4 and the conventional solid oxide fuel cell 2, the solid oxide fuel cells 6 to 10 of the present invention and the comparative solid oxide fuel cell 2 are compared. Cell voltage drop rate after performing start-stop repeated operation in which physical fuel cells 3 to 4 and conventional solid oxide fuel cell 2 are operated for 12 hours under the previous power generation conditions and then stopped for 12 hours are repeated 40 times The results are shown in Table 4. Further, the solid oxide fuel cells 6 to 10 of the present invention, the comparative solid oxide fuel cells 3 to 4 and the conventional solid oxide which were subjected to this start-stop repeated operation were measured. The fuel cell 2 is disassembled, and the average particle diameter of the Ni-Mo alloy of the skeleton structure constituting the fuel electrode and the average particle diameter of Ni of the skeleton structure constituting the fuel electrode of the conventional power generation cell 2 are measured. The results are shown in Table 4.
Further, after continuously operating the solid oxide fuel cells 6 to 10 of the present invention, the comparative solid oxide fuel cells 3 to 4 and the conventional solid oxide fuel cell 2 for 5000 hours, the cell voltage drop rate was measured. Table 4 shows the structure of Ni- having a skeletal structure in which the solid oxide fuel cells 6 to 10 of the present invention and the comparative solid oxide fuel cells 3 to 4 continuously operated for 5000 hours are decomposed to form a fuel electrode. The average crystal grain size of the Mo alloy was measured, and the average grain size of Ni having a skeleton structure constituting the fuel electrode by disassembling the conventional solid oxide fuel cell 2 was measured. The results are shown in Table 4.

Figure 2010232135
Figure 2010232135

Figure 2010232135
Figure 2010232135

表3〜4に示される結果から、GdドープされたセリアとMo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi合金の焼結体を燃料極とした本発明固体酸化物形燃料電池6〜10は、GdドープされたセリアとNiの焼結体を燃料極とした従来固体酸化物形燃料電池1と比べて、燃料極を構成する骨格構造のNi−Mo合金の凝集が遅く、したがって長期間運転してもセル電圧の低下率が少ないことから耐久性に優れた固体酸化物形燃料電池を提供することができることが分かる。しかし、この発明の条件から外れた量のMoを含むNi−Mo合金を骨格構造とする比較固体酸化物形燃料電池3〜4は、Moの含有率が1質量%未満の場合本発明の効果が期待できず、また、Moの含有率が20質量%を超える場合は燃料極の触媒活性が低下するので好ましくないことがわかる。 From the results shown in Tables 3 to 4, the present invention solid oxidation using a sintered body of Ni alloy containing Gd-doped ceria and Mo: 1 to 20% by mass with the balance being Ni and inevitable impurities. Compared with the conventional solid oxide fuel cell 1 using a sintered body of Gd-doped ceria and Ni as a fuel electrode, the physical fuel cells 6 to 10 are made of Ni-Mo alloy having a skeleton structure constituting the fuel electrode. It can be seen that a solid oxide fuel cell having excellent durability can be provided because aggregation is slow and, therefore, the cell voltage decrease rate is small even when operated for a long period of time. However, the comparative solid oxide fuel cells 3 to 4 having a Ni—Mo alloy containing Mo in an amount deviating from the conditions of the present invention as a skeleton structure have the effect of the present invention when the Mo content is less than 1% by mass. It cannot be expected, and when the Mo content exceeds 20% by mass, the catalytic activity of the fuel electrode is lowered, which is not preferable.

Claims (5)

一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとMn:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mn合金のサーメットからなることを特徴とする固体電解質形燃料電池用燃料極。 General formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, Ca and m is 0 <m ≦ 0.4). A fuel electrode for a solid oxide fuel cell, comprising: ceria and Mn: 1 to 20% by mass, the balance being a cermet of a Ni—Mn alloy composed of Ni and inevitable impurities. 一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとMo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mo合金のサーメットからなることを特徴とする固体電解質形燃料電池用燃料極。 General formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, Ca and m is 0 <m ≦ 0.4). A fuel electrode for a solid oxide fuel cell, characterized by comprising cermet of Ni-Mo alloy containing ceria and Mo: 1 to 20% by mass, and the balance being Ni and inevitable impurities. ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体酸化物形燃料電池用発電セルにおいて、
前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとMn:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mn合金のサーメットからなることを特徴とする固体電解質形燃料電池の発電セル。
A solid oxide fuel cell comprising a lanthanum galide oxide ion conductor as a solid electrolyte, a porous air electrode formed on one surface of the solid electrolyte, and a porous fuel electrode formed on the other surface For power generation cells,
The fuel electrode is represented by a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0 <m ≦ 0.4). B-doped ceria and Mn: 1 to 20% by mass, the balance being made of Ni-Mn alloy cermet consisting of Ni and inevitable impurities, a power generation cell of a solid oxide fuel cell
ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体酸化物形燃料電池用発電セルにおいて、
前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとMo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Mo合金のサーメットからなることを特徴とする固体電解質形燃料電池の発電セル。
A solid oxide fuel cell comprising a lanthanum galide oxide ion conductor as a solid electrolyte, a porous air electrode formed on one surface of the solid electrolyte, and a porous fuel electrode formed on the other surface For power generation cells,
The fuel electrode is represented by a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0 <m ≦ 0.4). B-doped ceria and Mo: 1 to 20% by mass of Ni—Mo alloy cermet consisting of Ni and inevitable impurities, and a power generation cell of a solid oxide fuel cell,
請求項3または4記載の固体電解質形燃料電池用発電セルを組み込んだことを特徴とする固体電解質形燃料電池。 5. A solid oxide fuel cell comprising the solid oxide fuel cell power generation cell according to claim 3 incorporated therein.
JP2009081177A 2009-03-30 2009-03-30 Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode Pending JP2010232135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081177A JP2010232135A (en) 2009-03-30 2009-03-30 Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081177A JP2010232135A (en) 2009-03-30 2009-03-30 Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode

Publications (1)

Publication Number Publication Date
JP2010232135A true JP2010232135A (en) 2010-10-14

Family

ID=43047755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081177A Pending JP2010232135A (en) 2009-03-30 2009-03-30 Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode

Country Status (1)

Country Link
JP (1) JP2010232135A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057771A (en) * 2013-08-13 2015-03-26 日本特殊陶業株式会社 Single cell for fuel cell, fuel cell, and method of manufacturing single cell for fuel cell
JP2015195168A (en) * 2014-03-28 2015-11-05 学校法人同志社 Fuel electrode for solid oxide type fuel battery, method of manufacturing the same, and solid oxide type fuel battery including fuel electrode
WO2017205660A1 (en) * 2016-05-25 2017-11-30 Saint-Gobain Ceramics & Plastics, Inc. Electrode comprising heavily-doped ceria
CN111048794A (en) * 2019-12-23 2020-04-21 佛山科学技术学院 Solid oxide fuel cell catalyst
CN114927706A (en) * 2022-05-06 2022-08-19 佛山科学技术学院 Catalyst and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228587A (en) * 2005-02-18 2006-08-31 Mitsubishi Materials Corp Fuel electrode of power generation cell for solid electrolyte fuel cell
WO2007020863A1 (en) * 2005-08-18 2007-02-22 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid electrolyte fuel battery, production process thereof, raw material composition for use in the same, and fuel electrode material using the nickel oxide powder material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228587A (en) * 2005-02-18 2006-08-31 Mitsubishi Materials Corp Fuel electrode of power generation cell for solid electrolyte fuel cell
WO2007020863A1 (en) * 2005-08-18 2007-02-22 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid electrolyte fuel battery, production process thereof, raw material composition for use in the same, and fuel electrode material using the nickel oxide powder material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057771A (en) * 2013-08-13 2015-03-26 日本特殊陶業株式会社 Single cell for fuel cell, fuel cell, and method of manufacturing single cell for fuel cell
JP2015195168A (en) * 2014-03-28 2015-11-05 学校法人同志社 Fuel electrode for solid oxide type fuel battery, method of manufacturing the same, and solid oxide type fuel battery including fuel electrode
WO2017205660A1 (en) * 2016-05-25 2017-11-30 Saint-Gobain Ceramics & Plastics, Inc. Electrode comprising heavily-doped ceria
KR20190035617A (en) * 2016-05-25 2019-04-03 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Electrodes containing high concentration of doped ceria
US10622628B2 (en) 2016-05-25 2020-04-14 Saint-Gobain Ceramics & Plastics, Inc. Electrode comprising heavily-doped ceria
KR20200133819A (en) * 2016-05-25 2020-11-30 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Electrode comprising heavily-doped ceria
KR102185472B1 (en) 2016-05-25 2020-12-03 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Electrodes containing highly doped ceria
KR102248541B1 (en) 2016-05-25 2021-05-07 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Electrode comprising heavily-doped ceria
CN111048794A (en) * 2019-12-23 2020-04-21 佛山科学技术学院 Solid oxide fuel cell catalyst
CN114927706A (en) * 2022-05-06 2022-08-19 佛山科学技术学院 Catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US20130095408A1 (en) Anode material for solid oxide fuel cell, and anode and solid oxide fuel cell including anode material
Fu et al. A promising Ni–Fe bimetallic anode for intermediate-temperature SOFC based on Gd-doped ceria electrolyte
JP2006351405A (en) Sofc fuel electrode, and its manufacturing method
JP2010232135A (en) Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode
JP2015088284A (en) Solid oxide fuel cell
Fu et al. Characterization of nanosized Ce0. 8Sm0. 2O1. 9-infiltrated Sm0. 5Sr0. 5Co0. 8Cu0. 2O3− δ cathodes for solid oxide fuel cells
JP2000133280A (en) Anode for high performance solid oxide fuel cell
JP2010232134A (en) Durable fuel electrode and solid oxide fuel battery incorporating this fuel electrode
JP6362007B2 (en) Electrochemical cell and method for producing the same
JP5336207B2 (en) Solid oxide fuel cell
JP2007200664A (en) Method of manufacturing solid oxide fuel cell
JP2010277877A (en) Solid oxide fuel cell
Torres-Garibay et al. Ln0. 6Sr0. 4Co1− yFeyO3− δ (Ln= La and Nd; y= 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells
JP2019153391A (en) Solid oxide fuel cell and electrode material using the same
JP6372283B2 (en) Method for producing solid oxide fuel cell
JP2018172763A (en) Steam electrolytic cell
JP2007213891A (en) Power generation cell for solid oxide fuel cell
JP2017071830A (en) Cell for water vapor electrolysis and manufacturing method therefor
JP2007095673A (en) Power generation cell for solid electrolyte fuel cells
JP6367636B2 (en) Steam electrolysis cell
JP2005259518A (en) Assembly for electrochemical cell and electrochemical cell
JP6088949B2 (en) Fuel cell single cell and manufacturing method thereof
JP5093741B2 (en) Power generation cell for solid oxide fuel cell and manufacturing method thereof
JP2017071831A (en) Steam electrolysis cell
KR20160038833A (en) Electrolyte membrane, fuel cell comprising the same, battery module comprising the fuel cell and method for manufacturing the electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119